Increasing the Reliability of Data Collection of Laser Line Triangulation Sensor by Proper Placement of the Sensor

. 2021 Apr 20 ; 21 (8) : . [epub] 20210420

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33924257

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008425 Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration
SP2021/47 Specific research project financed by the state budget of the Czech Republic
VEGA 1/0389/18 Research on kinematically redundant mechanisms

In this paper, we investigated the effect of the incidence angle of a laser ray on the reflected laser intensity. A dataset on this dependence is presented for materials usually used in the industry, such as transparent and non-transparent plastics and aluminum alloys with different surface roughness. The measurements have been performed with a laser line triangulation sensor and a UR10e robot. The presented results are proposing where to place the sensor relative to the scanned object, thus increasing the reliability of the sensor data collection.

Zobrazit více v PubMed

Balduzzi M.A., Van Der Zande D., Stuckens J., Verstraeten W.W., Coppin P. The Properties of Terrestrial Laser System Intensity for Measuring Leaf Geometries: A Case Study with Conference Pear Trees (Pyrus Communis) Sensors. 2011;11:1657–1681. doi: 10.3390/s110201657. PubMed DOI PMC

Albano R. Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds. Appl. Sci. 2019;9:4674. doi: 10.3390/app9214674. DOI

Kus A. Implementation of 3D Optical Scanning Technology for Automotive Applications. Sensors. 2009;9:1967–1979. doi: 10.3390/s90301967. PubMed DOI PMC

Li F., Longstaff A.P., Fletcher S., Myers A. Rapid and accurate reverse engineering of geometry based on a multi-sensor system. Int. J. Adv. Manuf. Technol. 2014;74:369–382. doi: 10.1007/s00170-014-5997-y. DOI

Chang W.-C., Wu C.-H. Eye-in-hand vision-based robotic bin-picking with active laser projection. Int. J. Adv. Manuf. Technol. 2016;85:2873–2885. doi: 10.1007/s00170-015-8120-0. DOI

Wu X., Li Z., Wen P. An automatic shoe-groove feature extraction method based on robot and structural laser scanning. Int. J. Adv. Robot. Syst. 2017;14 doi: 10.1177/1729881416678135. DOI

Zhang M., Shi H., Yu Y., Zhou M. A Computer Vision Based Conveyor Deviation Detection System. Appl. Sci. 2020;10:2402. doi: 10.3390/app10072402. DOI

Na K.-M., Lee K., Shin S.-K., Kim H. Detecting Deformation on Pantograph Contact Strip of Railway Vehicle on Image Processing and Deep Learning. Appl. Sci. 2020;10:8509. doi: 10.3390/app10238509. DOI

Wang Z., Zhang C., Pan Z., Wang Z., Liu L., Qi X., Mao S., Pan J. Image Segmentation Approaches for Weld Pool Monitoring during Robotic Arc Welding. Appl. Sci. 2018;8:2445. doi: 10.3390/app8122445. DOI

Bickel G., Häusler G., Maul M. Triangulation with Expanded Range of Depth. Opt. Eng. 1985;24:246975. doi: 10.1117/12.7973610. DOI

Dong Z., Sun X., Liu W., Yang H. Measurement of Free-Form Curved Surfaces Using Laser Triangulation. Sensors. 2018;18:3527. doi: 10.3390/s18103527. PubMed DOI PMC

Wang Y., Feng H.-Y. Effects of scanning orientation on outlier formation in 3D laser scanning of reflective surfaces. Opt. Lasers Eng. 2016;81:35–45. doi: 10.1016/j.optlaseng.2016.01.003. DOI

Van Gestel N., Cuypers S., Bleys P., Kruth J.-P. A performance evaluation test for laser line scanners on CMMs. Opt. Lasers Eng. 2009;47:336–342. doi: 10.1016/j.optlaseng.2008.06.001. DOI

Gao F., Muhamedsalih H., Jiang X. Surface and thickness measurement of a transparent film using wavelength scanning interferometry. Opt. Express. 2012;20:21450–21456. doi: 10.1364/OE.20.021450. PubMed DOI

Ran R., Stolz C., Fofi D., Meriaudeau F. Non contact 3D measurement scheme for transparent objects using UV structured light 2010; Proceedings of the 2010 20th International Conference on Pattern Recognition; Istanbul, Turkey. 23–26 August 2010; pp. 1646–1649. DOI

Bonfort T., Sturm P., Gargallo P. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Volume 3852. Springer; Hyderabad, India: 2006. General Specular Surface Triangulation; pp. 872–881. DOI

Weinmann M., Osep A., Ruiters R., Klein R. Multi-View Normal Field Integration for 3D Reconstruction of Mirroring Objects; Proceedings of the 2013 IEEE International Conference on Computer Vision; Sydney, NSW, Australia. 1–8 December 2013; pp. 2504–2511. DOI

Ihrke I., Kutulakos K.N., Lensch H.P.A., Magnor M., Heidrich W. Transparent and Specular Object Reconstruction. Comput. Graph. Forum. 2010;29:2400–2426. doi: 10.1111/j.1467-8659.2010.01753.x. DOI

Mian S.H., Mannan M.A., Al-Ahmari A.M. The influence of surface topology on the quality of the point cloud data acquired with laser line scanning probe. Sens. Rev. 2014;34:255–265. doi: 10.1108/SR-01-2013-611. DOI

Weyrich T., Pauly M., Keiser R., Heinzle S., Gross M. Post-processing of Scanned 3D Surface Data. Eurographics Symp. Point-Based Graph. 2004;1 doi: 10.2312/SPBG/SPBG04/085-094. DOI

Tan K., Cheng X. Specular Reflection Effects Elimination in Terrestrial Laser Scanning Intensity Data Using Phong Model. Remote. Sens. 2017;9:853. doi: 10.3390/rs9080853. DOI

Oren M., Nayar S.K. Generalization of the Lambertian model and implications for machine vision. Int. J. Comput. Vis. 1995;14:227–251. doi: 10.1007/BF01679684. DOI

Nayar S., Ikeuchi K., Kanade T. Surface reflection: Physical and geometrical perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 1991;13:611–634. doi: 10.1109/34.85654. DOI

Vukašinović N., Korošec M., Duhovnik J. The influence of surface topology on the accuracy of laser triangulation scanning results. Stroj. Vestn. J. Mech. Eng. 2010;56:23–30.

Li L.H., Yu N.H., Chan C.Y., Lee W.B. Al6061 surface roughness and optical reflectance when machined by single point diamond turning at a low feed rate. PLoS ONE. 2018;13:e0195083. doi: 10.1371/journal.pone.0195083. PubMed DOI PMC

Cuesta E., Rico J.C., Fernández J.C.R., Blanco D., Valiño G. Influence of roughness on surface scanning by means of a laser stripe system. Int. J. Adv. Manuf. Technol. 2009;43:1157–1166. doi: 10.1007/s00170-008-1794-9. DOI

Blanco D., Fernandez P.J.P., Valiño G., Rico J.C., Rodriguez A.L.P., Segui V.J. Influence of ambient light on the repeatability of laser triangulation digitized point clouds when scanning EN AW 6082 flat faced features. Third Manuf. Eng. Soc. Int. Conf. MESIC-09. 2009;1181:509–520. doi: 10.1063/1.3273669. DOI

Blanco D., Fernández D.B., Cuesta E., Mateos S., Beltran N. 2009 IEEE Conference on Emerging Technologies Factory Automation. IEEE; New York, NY, USA: Influence of surface material on the quality of laser triangulation digitized point clouds for reverse engineering tasks; pp. 1–8. DOI

Serway R.A., Jewett J.W. Physics for Scientists and Engineers with Modern Physics. 10th ed. Cengage Learning; Boston, MA, USA: 2018. Energy Transfer Mechanisms in Thermal Processes; pp. 522–525.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...