Finding the Optimal Pose of 2D LLT Sensors to Improve Object Pose Estimation

. 2022 Feb 16 ; 22 (4) : . [epub] 20220216

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35214438

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008425 Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration
SP2022/67 Specific research project financed by the state budget of the Czech Republic
KEGA 030TUKE-4/2020 Transfer of knowledge from the field of industrial automation and robotics to teaching in the field of Mechatronics

In this paper, we examine a method for improving pose estimation by correctly positioning the sensors relative to the scanned object. Three objects made of different materials and using different manufacturing technologies were selected for the experiment. To collect input data for orientation estimation, a simulation environment was created where each object was scanned at different poses. A simulation model of the laser line triangulation sensor was created for scanning, and the optical surface properties of the scanned objects were set to simulate real scanning conditions. The simulation was verified on a real system using the UR10e robot to rotate and move the object. The presented results show that the simulation matches the real measurements and that the appropriate placement of the sensors has improved the orientation estimation.

Zobrazit více v PubMed

Qin Z., Wang P., Sun J., Lu J., Qiao H. Precise Robotic Assembly for Large-Scale Objects Based on Automatic Guidance and Alignment. IEEE Trans. Instrum. Meas. 2016;65:1398–1411. doi: 10.1109/TIM.2016.2526738. DOI

Ma Y., Du K., Zhou D., Zhang J., Liu X., Xu D. Automatic precision robot assembly system with microscopic vision and force sensor. Int. J. Adv. Robot. Syst. 2019;16:172988141985161. doi: 10.1177/1729881419851619. DOI

Jiang Y., Huang X., Li S. An on-line compensation method of a metrology-integrated robot system for high-precision assembly. Ind. Robot. Int. J. Robot. Res. Appl. 2016;43:647–656. doi: 10.1108/IR-03-2016-0091. DOI

Martinez C., Boca R., Zhang B., Chen H., Nidamarthi S. Automated bin picking system for randomly located industrial parts; Proceedings of the 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA); Woburn, MA, USA. 11–12 May 2015; pp. 1–6. DOI

Kuo H.-Y., Su H.-R., Lai S.-H., Wu C.-C. 3D object detection and pose estimation from depth image for robotic bin picking; Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE); New Taipei, Taiwan. 18–22 August 2014; pp. 1264–1269. DOI

Wang J., Sun K., Cheng T., Jiang B., Deng C., Zhao Y., Liu D., Mu Y., Tan M., Wang X., et al. Deep High-Resolution Representation Learning for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021;43:3349–3364. doi: 10.1109/TPAMI.2020.2983686. PubMed DOI

Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017;40:834–848. doi: 10.1109/TPAMI.2017.2699184. PubMed DOI

Khalid M.U., Hager J.M., Kraus W., Huber M.F., Toussaint M. Deep Workpiece Region Segmentation for Bin Picking; Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE); Vancouver, BC, Canada. 22–26 August 2019; DOI

Dolezel P., Stursa D., Honc D. Rapid 2D Positioning of Multiple Complex Objects for Pick and Place Application Using Convolutional Neural Network; Proceedings of the 2020 24th International Conference on System Theory, Control and Computing (ICSTCC); Sinaia, Romania. 8–10 October 2020; pp. 213–217. DOI

Liu Y., Zhang Q., Zhang D., Han J. Employing Deep Part-Object Relationships for Salient Object Detection. 2019. [(accessed on 20 December 2021)]. pp. 1232–1241. Available online: https://openaccess.thecvf.com/content_ICCV_2019/html/Liu_Employing_Deep_Part-Object_Relationships_for_Salient_Object_Detection_ICCV_2019_paper.html.

Qi Q., Zhao S., Shen J., Lam K.-M. Multi-scale Capsule Attention-Based Salient Object Detection with Multi-crossed Layer Connections; Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME); Shanghai, China. 8–12 July 2019; pp. 1762–1767. DOI

Kaiser A., Zepeda J.A.Y., Boubekeur T. A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data. Comput. Graph. Forum. 2018;38:167–196. doi: 10.1111/cgf.13451. DOI

Li P., Wang R., Wang Y., Tao W. Evaluation of the ICP Algorithm in 3D Point Cloud Registration. IEEE Access. 2020;8:68030–68048. doi: 10.1109/ACCESS.2020.2986470. DOI

Shi X., Peng J., Li J., Yan P., Gong H. The Iterative Closest Point Registration Algorithm Based on the Normal Distribution Transformation. Procedia Comput. Sci. 2019;147:181–190. doi: 10.1016/j.procs.2019.01.219. DOI

Bimbo J., Luo S., Althoefer K., Liu H. In-Hand Object Pose Estimation Using Covariance-Based Tactile to Geometry Matching. IEEE Robot. Autom. Lett. 2016;1:570–577. doi: 10.1109/LRA.2016.2517244. DOI

Thalmann R., Meli F., Küng A. State of the Art of Tactile Micro Coordinate Metrology. Appl. Sci. 2016;6:150. doi: 10.3390/app6050150. DOI

Pasinetti S., Hassan M.M., Eberhardt J., Lancini M., Docchio F., Sansoni G. Performance Analysis of the PMD Camboard Picoflexx Time-of-Flight Camera for Markerless Motion Capture Applications. IEEE Trans. Instrum. Meas. 2019;68:4456–4471. doi: 10.1109/TIM.2018.2889233. DOI

Schlarp J., Csencsics E., Schitter G. Design and evaluation of an integrated scanning laser triangulation sensor. Mechatronics. 2020;72:102453. doi: 10.1016/j.mechatronics.2020.102453. DOI

Liu M.-Y., Tuzel O., Veeraraghavan A., Taguchi Y., Marks T.K., Chellappa R. Fast object localization and pose estimation in heavy clutter for robotic bin picking. Int. J. Robot. Res. 2012;31:951–973. doi: 10.1177/0278364911436018. DOI

Kot T., Bobovský Z., Heczko D., Vysocký A., Virgala I., Prada E. Using Virtual Scanning to Find Optimal Configuration of a 3D Scanner Turntable for Scanning of Mechanical Parts. Sensors. 2021;21:5343. doi: 10.3390/s21165343. PubMed DOI PMC

Wen B., Mitash C., Soorian S., Kimmel A., Sintov A., Bekris K.E. Robust, Occlusion-aware Pose Estimation for Objects Grasped by Adaptive Hands; Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA); Paris, France. 31 May–31 August 2020; pp. 6210–6217. DOI

Taryudi , Wang M.-S. 3D object pose estimation using stereo vision for object manipulation system; Proceedings of the 2017 International Conference on Applied System Innovation (ICASI); Sapporo, Japan. 13–17 May 2017; pp. 1532–1535. DOI

Heczko D., Oščádal P., Kot T., Huczala D., Semjon J., Bobovský Z. Increasing the Reliability of Data Collection of Laser Line Triangulation Sensor by Proper Placement of the Sensor. Sensors. 2021;21:2890. doi: 10.3390/s21082890. PubMed DOI PMC

Sensor Head—LJ-X8080|KEYENCE UK & Ireland. [(accessed on 21 December 2021)]. Available online: https://www.keyence.co.uk/products/measure/laser-2d/lj-x8000/models/lj-x8080/

Robot Simulator CoppeliaSim: Create, Compose, Simulate, any Robot—Coppelia Robotics’. [(accessed on 1 July 2020)]. Available online: https://www.coppeliarobotics.com/

Zhou Q.-Y., Park J., Koltun V. Open3D: A Modern Library for 3D Data Processing. [(accessed on 21 December 2021)];arXiv. 2018 Available online: http://arxiv.org/abs/1801.09847.1801.09847

Rusu R.B., Cousins S. 3d is here: Point cloud library (pcl); Proceedings of the 2011 IEEE International Conference on Robotics and Automation; Shanghai, China. 9–13 May 2011; pp. 1–4.

Vocetka M., Bobovský Z., Babjak J., Suder J., Grushko S., Mlotek J., Krys V., Hagara M. Influence of Drift on Robot Repeatability and Its Compensation. Appl. Sci. 2021;11:10813. doi: 10.3390/app112210813. DOI

Suder J., Bobovsky Z., Zeman Z., Milotek J., Vocetka M. The influence of annealing temperature on tensile strength of polylactic acid. MM Sci. J. 2020;2020:4132–4137. doi: 10.17973/MMSJ.2020_11_2020048. DOI

Huczala D., Oščádal P., Spurný T., Vysocký A., Vocetka M., Bobovský Z. Camera-Based Method for Identification of the Layout of a Robotic Workcell. Appl. Sci. 2020;10:7679. doi: 10.3390/app10217679. DOI

Oščádal P., Heczko D., Vysocký A., Mlotek J., Novák P., Virgala I., Sukop M., Bobovský Z. Improved Pose Estimation of Aruco Tags Using a Novel 3D Placement Strategy. Sensors. 2020;20:4825. doi: 10.3390/s20174825. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...