Finding the Optimal Pose of 2D LLT Sensors to Improve Object Pose Estimation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008425
Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration
SP2022/67
Specific research project financed by the state budget of the Czech Republic
KEGA 030TUKE-4/2020
Transfer of knowledge from the field of industrial automation and robotics to teaching in the field of Mechatronics
PubMed
35214438
PubMed Central
PMC8879124
DOI
10.3390/s22041536
PII: s22041536
Knihovny.cz E-zdroje
- Klíčová slova
- ICP algorithm, LLT sensor, laser scanning, optimal configuration, optimal pose, orientation estimation, pose estimation, virtual scanning,
- MeSH
- algoritmy * MeSH
- lasery * MeSH
- počítačová simulace MeSH
- Publikační typ
- časopisecké články MeSH
In this paper, we examine a method for improving pose estimation by correctly positioning the sensors relative to the scanned object. Three objects made of different materials and using different manufacturing technologies were selected for the experiment. To collect input data for orientation estimation, a simulation environment was created where each object was scanned at different poses. A simulation model of the laser line triangulation sensor was created for scanning, and the optical surface properties of the scanned objects were set to simulate real scanning conditions. The simulation was verified on a real system using the UR10e robot to rotate and move the object. The presented results show that the simulation matches the real measurements and that the appropriate placement of the sensors has improved the orientation estimation.
Zobrazit více v PubMed
Qin Z., Wang P., Sun J., Lu J., Qiao H. Precise Robotic Assembly for Large-Scale Objects Based on Automatic Guidance and Alignment. IEEE Trans. Instrum. Meas. 2016;65:1398–1411. doi: 10.1109/TIM.2016.2526738. DOI
Ma Y., Du K., Zhou D., Zhang J., Liu X., Xu D. Automatic precision robot assembly system with microscopic vision and force sensor. Int. J. Adv. Robot. Syst. 2019;16:172988141985161. doi: 10.1177/1729881419851619. DOI
Jiang Y., Huang X., Li S. An on-line compensation method of a metrology-integrated robot system for high-precision assembly. Ind. Robot. Int. J. Robot. Res. Appl. 2016;43:647–656. doi: 10.1108/IR-03-2016-0091. DOI
Martinez C., Boca R., Zhang B., Chen H., Nidamarthi S. Automated bin picking system for randomly located industrial parts; Proceedings of the 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA); Woburn, MA, USA. 11–12 May 2015; pp. 1–6. DOI
Kuo H.-Y., Su H.-R., Lai S.-H., Wu C.-C. 3D object detection and pose estimation from depth image for robotic bin picking; Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE); New Taipei, Taiwan. 18–22 August 2014; pp. 1264–1269. DOI
Wang J., Sun K., Cheng T., Jiang B., Deng C., Zhao Y., Liu D., Mu Y., Tan M., Wang X., et al. Deep High-Resolution Representation Learning for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021;43:3349–3364. doi: 10.1109/TPAMI.2020.2983686. PubMed DOI
Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017;40:834–848. doi: 10.1109/TPAMI.2017.2699184. PubMed DOI
Khalid M.U., Hager J.M., Kraus W., Huber M.F., Toussaint M. Deep Workpiece Region Segmentation for Bin Picking; Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE); Vancouver, BC, Canada. 22–26 August 2019; DOI
Dolezel P., Stursa D., Honc D. Rapid 2D Positioning of Multiple Complex Objects for Pick and Place Application Using Convolutional Neural Network; Proceedings of the 2020 24th International Conference on System Theory, Control and Computing (ICSTCC); Sinaia, Romania. 8–10 October 2020; pp. 213–217. DOI
Liu Y., Zhang Q., Zhang D., Han J. Employing Deep Part-Object Relationships for Salient Object Detection. 2019. [(accessed on 20 December 2021)]. pp. 1232–1241. Available online: https://openaccess.thecvf.com/content_ICCV_2019/html/Liu_Employing_Deep_Part-Object_Relationships_for_Salient_Object_Detection_ICCV_2019_paper.html.
Qi Q., Zhao S., Shen J., Lam K.-M. Multi-scale Capsule Attention-Based Salient Object Detection with Multi-crossed Layer Connections; Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME); Shanghai, China. 8–12 July 2019; pp. 1762–1767. DOI
Kaiser A., Zepeda J.A.Y., Boubekeur T. A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data. Comput. Graph. Forum. 2018;38:167–196. doi: 10.1111/cgf.13451. DOI
Li P., Wang R., Wang Y., Tao W. Evaluation of the ICP Algorithm in 3D Point Cloud Registration. IEEE Access. 2020;8:68030–68048. doi: 10.1109/ACCESS.2020.2986470. DOI
Shi X., Peng J., Li J., Yan P., Gong H. The Iterative Closest Point Registration Algorithm Based on the Normal Distribution Transformation. Procedia Comput. Sci. 2019;147:181–190. doi: 10.1016/j.procs.2019.01.219. DOI
Bimbo J., Luo S., Althoefer K., Liu H. In-Hand Object Pose Estimation Using Covariance-Based Tactile to Geometry Matching. IEEE Robot. Autom. Lett. 2016;1:570–577. doi: 10.1109/LRA.2016.2517244. DOI
Thalmann R., Meli F., Küng A. State of the Art of Tactile Micro Coordinate Metrology. Appl. Sci. 2016;6:150. doi: 10.3390/app6050150. DOI
Pasinetti S., Hassan M.M., Eberhardt J., Lancini M., Docchio F., Sansoni G. Performance Analysis of the PMD Camboard Picoflexx Time-of-Flight Camera for Markerless Motion Capture Applications. IEEE Trans. Instrum. Meas. 2019;68:4456–4471. doi: 10.1109/TIM.2018.2889233. DOI
Schlarp J., Csencsics E., Schitter G. Design and evaluation of an integrated scanning laser triangulation sensor. Mechatronics. 2020;72:102453. doi: 10.1016/j.mechatronics.2020.102453. DOI
Liu M.-Y., Tuzel O., Veeraraghavan A., Taguchi Y., Marks T.K., Chellappa R. Fast object localization and pose estimation in heavy clutter for robotic bin picking. Int. J. Robot. Res. 2012;31:951–973. doi: 10.1177/0278364911436018. DOI
Kot T., Bobovský Z., Heczko D., Vysocký A., Virgala I., Prada E. Using Virtual Scanning to Find Optimal Configuration of a 3D Scanner Turntable for Scanning of Mechanical Parts. Sensors. 2021;21:5343. doi: 10.3390/s21165343. PubMed DOI PMC
Wen B., Mitash C., Soorian S., Kimmel A., Sintov A., Bekris K.E. Robust, Occlusion-aware Pose Estimation for Objects Grasped by Adaptive Hands; Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA); Paris, France. 31 May–31 August 2020; pp. 6210–6217. DOI
Taryudi , Wang M.-S. 3D object pose estimation using stereo vision for object manipulation system; Proceedings of the 2017 International Conference on Applied System Innovation (ICASI); Sapporo, Japan. 13–17 May 2017; pp. 1532–1535. DOI
Heczko D., Oščádal P., Kot T., Huczala D., Semjon J., Bobovský Z. Increasing the Reliability of Data Collection of Laser Line Triangulation Sensor by Proper Placement of the Sensor. Sensors. 2021;21:2890. doi: 10.3390/s21082890. PubMed DOI PMC
Sensor Head—LJ-X8080|KEYENCE UK & Ireland. [(accessed on 21 December 2021)]. Available online: https://www.keyence.co.uk/products/measure/laser-2d/lj-x8000/models/lj-x8080/
Robot Simulator CoppeliaSim: Create, Compose, Simulate, any Robot—Coppelia Robotics’. [(accessed on 1 July 2020)]. Available online: https://www.coppeliarobotics.com/
Zhou Q.-Y., Park J., Koltun V. Open3D: A Modern Library for 3D Data Processing. [(accessed on 21 December 2021)];arXiv. 2018 Available online: http://arxiv.org/abs/1801.09847.1801.09847
Rusu R.B., Cousins S. 3d is here: Point cloud library (pcl); Proceedings of the 2011 IEEE International Conference on Robotics and Automation; Shanghai, China. 9–13 May 2011; pp. 1–4.
Vocetka M., Bobovský Z., Babjak J., Suder J., Grushko S., Mlotek J., Krys V., Hagara M. Influence of Drift on Robot Repeatability and Its Compensation. Appl. Sci. 2021;11:10813. doi: 10.3390/app112210813. DOI
Suder J., Bobovsky Z., Zeman Z., Milotek J., Vocetka M. The influence of annealing temperature on tensile strength of polylactic acid. MM Sci. J. 2020;2020:4132–4137. doi: 10.17973/MMSJ.2020_11_2020048. DOI
Huczala D., Oščádal P., Spurný T., Vysocký A., Vocetka M., Bobovský Z. Camera-Based Method for Identification of the Layout of a Robotic Workcell. Appl. Sci. 2020;10:7679. doi: 10.3390/app10217679. DOI
Oščádal P., Heczko D., Vysocký A., Mlotek J., Novák P., Virgala I., Sukop M., Bobovský Z. Improved Pose Estimation of Aruco Tags Using a Novel 3D Placement Strategy. Sensors. 2020;20:4825. doi: 10.3390/s20174825. PubMed DOI PMC