Improved Pose Estimation of Aruco Tags Using a Novel 3D Placement Strategy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu dopisy
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008425
Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration project
SP2020/141
Specific research project, financed by the state budget of the Czech Republic
PubMed
32858985
PubMed Central
PMC7506853
DOI
10.3390/s20174825
PII: s20174825
Knihovny.cz E-zdroje
- Klíčová slova
- 3D grid board, Aruco, pose estimation, precision,
- Publikační typ
- dopisy MeSH
This paper extends the topic of monocular pose estimation of an object using Aruco tags imaged by RGB cameras. The accuracy of the Open CV Camera calibration and Aruco pose estimation pipelines is tested in detail by performing standardized tests with multiple Intel Realsense D435 Cameras. Analyzing the results led to a way to significantly improve the performance of Aruco tag localization which involved designing a 3D Aruco board, which is a set of Aruco tags placed at an angle to each other, and developing a library to combine the pose data from the individual tags for both higher accuracy and stability.
Department of Robotics Faculty of Mechanical Engineering VSB TU Ostrava 70833 Ostrava Czech Republic
Zobrazit více v PubMed
Garrido-Jurado S., Muñoz-Salinas R., Madrid-Cuevas F.J., Marín-Jiménez M.J. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 2014 doi: 10.1016/j.patcog.2014.01.005. DOI
Zhong X., Zhou Y., Liu H. Design and recognition of artificial landmarks for reliable indoor self-localization of mobile robots. Int. J. Adv. Robot. Syst. 2017 doi: 10.1177/1729881417693489. DOI
Chavez A.G., Mueller C.A., Doernbach T., Birk A. Underwater navigation using visual markers in the context of intervention missions. Int. J. Adv. Robot. Syst. 2019 doi: 10.1177/1729881419838967. DOI
Marut A., Wojtowicz K., Falkowski K. ArUco markers pose estimation in UAV landing aid system; Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace); Torino, Italy. 19 June 2019; pp. 261–266. DOI
Zheng J., Bi S., Cao B., Yang D. Visual localization of inspection robot using extended kalman filter and aruco markers; Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO); Kuala Lumpur, Malaysia. 12 December 2018; pp. 742–747. DOI
Zhu Q., Li Y. A practical estimating method of camera’s focal length and extrinsic parameters from a planar calibration image; Proceedings of the 2012 Second International Conference on Intelligent System Design and Engineering Application; Sanya, Hainan. 6 January 2012; pp. 138–142. DOI
Fetić A., Jurić D., Osmanković D. The procedure of a camera calibration using Camera Calibration Toolbox for MATLAB; Proceedings of the 2012 35th International Convention MIPRO; Opatija, Croatia. 21 May 2012; pp. 1752–1757.
Wang X., Zhao Y., Yang F. Camera calibration method based on Pascal’s theorem. Int. J. Adv. Robot. Syst. 2019 doi: 10.1177/1729881419846406. DOI
Ramírez-Hernández L.R., Rodríguez-Quiñonez J.C., Castro-Toscano M.J., Hernández-Balbuena D., Flores-Fuentes W., Rascón-Carmona R., Lindner L., Sergiyenko O. Improve three-dimensional point localization accuracy in stereo vision systems using a novel camera calibration method. Int. J. Adv. Robot. Syst. 2020 doi: 10.1177/1729881419896717. DOI
Bushnevskiy A., Sorgi L., Rosenhahn B. Multimode camera calibration; Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP); Phoenix, AZ, USA. 25 September 2016; pp. 1165–1169. DOI
Schmidt A., Kasiński A., Kraft M., Fularz M., Domagała Z. Calibration of the multi-camera registration system for visual navigation benchmarking. Int. J. Adv. Robot. Syst. 2014 doi: 10.5772/58471. DOI
Dong Y., Ye X., He X. A novel camera calibration method combined with calibration toolbox and genetic algorithm; Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA); Hefei, China. 5 June 2016; pp. 1416–1420. DOI
Bradski G. The OpenCV library. Dr. Dobbs J. Softw. Tools. 2000;120:122–125.
Calibration Targets. [(accessed on 20 August 2020)]; Available online: https://calib.io.
Atcheson B., Heide F., Heidrich W. CALTag: High precision fiducial markers for camera calibration; Proceedings of the Vision, Modeling, and Visualization Workshop 2010; Siegen, Germany. 15–17 November 2010; pp. 41–48.
Xing Z., Yu J., Ma Y. A new calibration technique for multi-camera systems of limited overlapping field-of-views; Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Vancouver, BC, Canada. 24 September 2017; DOI
Miseikis J., Glette K., Elle O.J., Torresen J. Automatic calibration of a robot manipulator and multi 3D camera system; Proceedings of the 2016 IEEE/SICE International Symposium on System Integration (SII); Sapporo, Japan. 13 December 2016; pp. 735–741. DOI
Sergio G., Nicholson S. Detection of ArUco Markers. OpenCV: Open Source Computer Vision. [(accessed on 1 February 2020)];2020 Available online: https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html.
Camera Calibration with OpenCV. OpenCV: Open Source Computer Vision. [(accessed on 1 February 2020)];2020 Available online: https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html.
Dubonnet, Olivier Roulet. “python-urx”. GitHub Repository. [(accessed on 1 February 2020)];2020 Available online: https://github.com/SintefManufacturing/python-urx.
Oščádal P., Heczko D., Bobovský Z., Mlotek J. “3D-Gridboard-Pose-Estimation”. GitHub Repository. [(accessed on 1 February 2020)];2020 Available online: https://github.com/robot-vsb-cz/3D-gridboard-pose-estimation.
Camera Arrangement Optimization for Workspace Monitoring in Human-Robot Collaboration
Distributed Camera Subsystem for Obstacle Detection
Finding the Optimal Pose of 2D LLT Sensors to Improve Object Pose Estimation