Improved Pose Estimation of Aruco Tags Using a Novel 3D Placement Strategy

. 2020 Aug 26 ; 20 (17) : . [epub] 20200826

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32858985

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008425 Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration project
SP2020/141 Specific research project, financed by the state budget of the Czech Republic

This paper extends the topic of monocular pose estimation of an object using Aruco tags imaged by RGB cameras. The accuracy of the Open CV Camera calibration and Aruco pose estimation pipelines is tested in detail by performing standardized tests with multiple Intel Realsense D435 Cameras. Analyzing the results led to a way to significantly improve the performance of Aruco tag localization which involved designing a 3D Aruco board, which is a set of Aruco tags placed at an angle to each other, and developing a library to combine the pose data from the individual tags for both higher accuracy and stability.

Zobrazit více v PubMed

Garrido-Jurado S., Muñoz-Salinas R., Madrid-Cuevas F.J., Marín-Jiménez M.J. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 2014 doi: 10.1016/j.patcog.2014.01.005. DOI

Zhong X., Zhou Y., Liu H. Design and recognition of artificial landmarks for reliable indoor self-localization of mobile robots. Int. J. Adv. Robot. Syst. 2017 doi: 10.1177/1729881417693489. DOI

Chavez A.G., Mueller C.A., Doernbach T., Birk A. Underwater navigation using visual markers in the context of intervention missions. Int. J. Adv. Robot. Syst. 2019 doi: 10.1177/1729881419838967. DOI

Marut A., Wojtowicz K., Falkowski K. ArUco markers pose estimation in UAV landing aid system; Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace); Torino, Italy. 19 June 2019; pp. 261–266. DOI

Zheng J., Bi S., Cao B., Yang D. Visual localization of inspection robot using extended kalman filter and aruco markers; Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO); Kuala Lumpur, Malaysia. 12 December 2018; pp. 742–747. DOI

Zhu Q., Li Y. A practical estimating method of camera’s focal length and extrinsic parameters from a planar calibration image; Proceedings of the 2012 Second International Conference on Intelligent System Design and Engineering Application; Sanya, Hainan. 6 January 2012; pp. 138–142. DOI

Fetić A., Jurić D., Osmanković D. The procedure of a camera calibration using Camera Calibration Toolbox for MATLAB; Proceedings of the 2012 35th International Convention MIPRO; Opatija, Croatia. 21 May 2012; pp. 1752–1757.

Wang X., Zhao Y., Yang F. Camera calibration method based on Pascal’s theorem. Int. J. Adv. Robot. Syst. 2019 doi: 10.1177/1729881419846406. DOI

Ramírez-Hernández L.R., Rodríguez-Quiñonez J.C., Castro-Toscano M.J., Hernández-Balbuena D., Flores-Fuentes W., Rascón-Carmona R., Lindner L., Sergiyenko O. Improve three-dimensional point localization accuracy in stereo vision systems using a novel camera calibration method. Int. J. Adv. Robot. Syst. 2020 doi: 10.1177/1729881419896717. DOI

Bushnevskiy A., Sorgi L., Rosenhahn B. Multimode camera calibration; Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP); Phoenix, AZ, USA. 25 September 2016; pp. 1165–1169. DOI

Schmidt A., Kasiński A., Kraft M., Fularz M., Domagała Z. Calibration of the multi-camera registration system for visual navigation benchmarking. Int. J. Adv. Robot. Syst. 2014 doi: 10.5772/58471. DOI

Dong Y., Ye X., He X. A novel camera calibration method combined with calibration toolbox and genetic algorithm; Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA); Hefei, China. 5 June 2016; pp. 1416–1420. DOI

Bradski G. The OpenCV library. Dr. Dobbs J. Softw. Tools. 2000;120:122–125.

Calibration Targets. [(accessed on 20 August 2020)]; Available online: https://calib.io.

Atcheson B., Heide F., Heidrich W. CALTag: High precision fiducial markers for camera calibration; Proceedings of the Vision, Modeling, and Visualization Workshop 2010; Siegen, Germany. 15–17 November 2010; pp. 41–48.

Xing Z., Yu J., Ma Y. A new calibration technique for multi-camera systems of limited overlapping field-of-views; Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Vancouver, BC, Canada. 24 September 2017; DOI

Miseikis J., Glette K., Elle O.J., Torresen J. Automatic calibration of a robot manipulator and multi 3D camera system; Proceedings of the 2016 IEEE/SICE International Symposium on System Integration (SII); Sapporo, Japan. 13 December 2016; pp. 735–741. DOI

Sergio G., Nicholson S. Detection of ArUco Markers. OpenCV: Open Source Computer Vision. [(accessed on 1 February 2020)];2020 Available online: https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html.

Camera Calibration with OpenCV. OpenCV: Open Source Computer Vision. [(accessed on 1 February 2020)];2020 Available online: https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html.

Dubonnet, Olivier Roulet. “python-urx”. GitHub Repository. [(accessed on 1 February 2020)];2020 Available online: https://github.com/SintefManufacturing/python-urx.

Oščádal P., Heczko D., Bobovský Z., Mlotek J. “3D-Gridboard-Pose-Estimation”. GitHub Repository. [(accessed on 1 February 2020)];2020 Available online: https://github.com/robot-vsb-cz/3D-gridboard-pose-estimation.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...