Camera Arrangement Optimization for Workspace Monitoring in Human-Robot Collaboration

. 2022 Dec 27 ; 23 (1) : . [epub] 20221227

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36616896

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008425 Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration project
SP2022/67 Specific research project financed by the state budget of the Czech Republic.

Human-robot interaction is becoming an integral part of practice. There is a greater emphasis on safety in workplaces where a robot may bump into a worker. In practice, there are solutions that control the robot based on the potential energy in a collision or a robot re-planning the straight-line trajectory. However, a sensor system must be designed to detect obstacles across the human-robot shared workspace. So far, there is no procedure that engineers can follow in practice to deploy sensors ideally. We come up with the idea of classifying the space as an importance index, which determines what part of the workspace sensors should sense to ensure ideal obstacle sensing. Then, the ideal camera positions can be automatically found according to this classified map. Based on the experiment, the coverage of the important volume by the calculated camera position in the workspace was found to be on average 37% greater compared to a camera placed intuitively by test subjects. Using two cameras at the workplace, the calculated positions were 27% more effective than the subjects' camera positions. Furthermore, for three cameras, the calculated positions were 13% better than the subjects' camera positions, with a total coverage of more than 99% of the classified map.

Zobrazit více v PubMed

Bauer A., Wollherr D., Buss M. Human-Robot Collaboration: A Survey. Int. J. Hum. Robot. 2008;5:47–66. doi: 10.1142/S0219843608001303. DOI

Feleke A.G., Bi L., Fei W. EMG-based 3D hand motor intention prediction for information transfer from human to robot. Sensors. 2021;21:1316. doi: 10.3390/s21041316. PubMed DOI PMC

Wang L., Gao R., Váncza J., Krüger J., Wang X.V., Makris S., Chryssolouris G. Symbiotic Human-robot collaborative assembly. CIRP Ann. 2019;68:701–726. doi: 10.1016/j.cirp.2019.05.002. DOI

Semeraro F., Griffiths A., Cangelosi A. Human–robot collaboration and machine learning: A systematic review of recent research. Robot. Comput. Integr. Manuf. 2023;79:102432. doi: 10.1016/j.rcim.2022.102432. DOI

Vysocky A.L., Novak P.E. Human-Robot collaboration in industry. MM Sci. J. 2016;9:903–906. doi: 10.17973/MMSJ.2016_06_201611. DOI

Brock O., Khatib O. Elastic strips: A framework for motion generation in human environments. Int. J. Robot. Res. 2002;21:1031–1052. doi: 10.1177/0278364902021012002. DOI

Warren C.W. Global path planning using artificial potential fields; Proceedings of the 1989 International Conference on Robotics and Automation; Scottsdale, AZ, USA. 14–19 May 1989; Piscataway, NJ, USA: IEEE; pp. 316–321. DOI

Raibail M., Rahman A.H.A., AL-Anizy G.J., Nasrudin M.F., Nadzir M.S.M., Noraini N.M.R., Yee T.S. Decentralized Multi-Robot Collision Avoidance: A Systematic Review from 2015 to 2021. Symmetry. 2022;14:610. doi: 10.3390/sym14030610. DOI

Kot T., Bobovský Z., Brandstötter M., Krys V., Virgala I., Novák P. Finding Optimal Manipulator Arm Shapes to Avoid Collisions in a Static Environment. Appl. Sci. 2021;11:64. doi: 10.3390/app11010064. DOI

Tang K.-H., Ho C.-F., Mehlich J., Chen S.-T. Assessment of handover prediction models in estimation of cycle times for manual assembly tasks in a human–robot collaborative environment. Appl. Sci. 2020;10:556. doi: 10.3390/app10020556. DOI

Mainprice J., Berenson D. Human-robot collaborative manipulation planning using early prediction of human motion; Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; Tokyo, Japan. 3–7 November 2013; pp. 299–306.

Liu H., Wang L. Collision-free human-robot collaboration based on context awareness. Robot. Comput. Integr. Manuf. 2021;67:101997. doi: 10.1016/j.rcim.2020.101997. DOI

Liu H., Wang Y., Ji W., Wang L. Procedia Manufacturing. Volume 17. Elsevier BV; Amsterdam, The Netherlands: 2018. A Context-Aware Safety System for Human-Robot Collaboration; pp. 238–245. DOI

Haddadin S., De Luca A., Albu-Schäffer A. Robot Collisions: A Survey on Detection, Isolation, and Identification. IEEE Trans. Robot. 2017;33:1292–1312. doi: 10.1109/TRO.2017.2723903. DOI

Fryman J., Matthias B. Safety of Industrial Robots: From Conventional to Collaborative Applications; Proceedings of the ROBOTIK 2012; 7th German Conference on Robotics; Munich, Germany. 21–22 May 2012; Piscataway, NJ, USA: IEEE; 2012.

Rosenstrauch M.J., Krüger J. Safe human-robot-collaboration-introduction and experiment using ISO/TS 15066; Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR); Nagoya, Japan. 24–26 April 2017; Piscataway, NJ, USA: IEEE; 2017. pp. 740–744. DOI

Mansfeld N., Hamad M., Becker M., Marin A., Haddadin S. Safety Map: A Unified Representation for Biomechanics Impact Data and Robot Instantaneous Dynamic Properties. IEEE Robot. Autom. Lett. 2018;3:1880–1887. doi: 10.1109/LRA.2018.2801477. DOI

Zanchettin A.M., Ceriani N., Rocco P., Ding H., Matthias B. Safety in human-robot collaborative manufacturing environments: Metrics and control. IEEE Trans. Autom. Sci. Eng. 2016;13:882–893. doi: 10.1109/TASE.2015.2412256. DOI

Kostrzewski M., Sompolski K., Królikowski T. Procedia Computer Science. Volume 207. Elsevier BV; Amsterdam, The Netherlands: 2022. How profitable is it to apply Industry 4.0 solutions in blister factories? pp. 3281–3289. DOI

Parusel S., Haddadin S., Albu-Schäffer A. Modular state-based behavior control for safe human-robot interaction: A lightweight control architecture for a lightweight robot; Proceedings of the 2011 IEEE International Conference on Robotics and Automation; Shanghai, China. 9–13 May 2011; Piscataway, NJ, USA: IEEE; 2011. pp. 4298–4305. DOI

Haddadin S., Albu-Schaffer A., De Luca A., Hirzinger G. Collision Detection and Reaction: A Contribution to Safe Physical Human-Robot Interaction; Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems; Nice, France. 22–26 September 2008; Piscataway, NJ, USA: IEEE; 2008. pp. 3356–3363. DOI

Hermann A., Mauch F., Fischnaller K., Klemm S., Roennau A., Dillmann R. Anticipate your surroundings: Predictive collision detection between dynamic obstacles and planned robot trajectories on the GPU; Proceedings of the 2015 European Conference on Mobile Robots (ECMR); Lincoln, UK. 2–4 September 2015; pp. 1–8.

Kot T., Wierbica R., Oščádal P., Spurný T., Bobovský Z. Using Elastic Bands for Collision Avoidance in Collaborative Robotics. IEEE Access. :2022. doi: 10.1109/ACCESS.2022.3212407. DOI

Li G., Liu Z., Cai L., Yan J. Standing-Posture Recognition in Human–Robot Collaboration Based on Deep Learning and the Dempster–Shafer Evidence Theory. Sensors. 2020;20:1158. doi: 10.3390/s20041158. PubMed DOI PMC

Oščádal P., Spurný T., Kot T., Grushko S., Suder J., Heczko D., Novák P., Bobovský Z. Distributed Camera Subsystem for Obstacle Detection. Sensors. 2022;22:4588. doi: 10.3390/s22124588. PubMed DOI PMC

Grushko S., Vysocký A., Oščádal P., Vocetka M., Novák P., Bobovský Z. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory. Sensors. 2021;21:3673. doi: 10.3390/s21113673. PubMed DOI PMC

Grushko S., Vysocký A., Heczko D., Bobovský Z. Intuitive Spatial Tactile Feedback for Better Awareness about Robot Trajectory during Human–Robot Collaboration. Sensors. 2021;21:5748. doi: 10.3390/s21175748. PubMed DOI PMC

Wang L., Schmidt B., Nee A.Y. Vision-guided active collision avoidance for human-robot collaborations. Manuf. Lett. 2013;1:5–8. doi: 10.1016/j.mfglet.2013.08.001. DOI

Maric B., Jurican F., Orsag M., Kovacic Z. Vision based collision detection for a safe collaborative industrial manipulator; Proceedings of the 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR); Tokoname, Japan. 4–6 March 2021; Piscataway, NJ, USA: IEEE; 2021. pp. 334–337. DOI

Bodor R., Drenner A., Schrater P., Papanikolopoulos N. Optimal Camera Placement for Automated Surveillance Tasks. J. Intell. Robot. Syst. 2007;50:257–295. doi: 10.1007/s10846-007-9164-7. DOI

Gonzalez-Barbosa J., Garcia-Ramirez T., Salas J., Hurtado-Ramos J., Rico-Jimenez J. Optimal camera placement for total coverage; Proceedings of the 2009 IEEE International Conference on Robotics and Automation; Kobe, Japan. 12–17 May 2009; Piscataway, NJ, USA: IEEE; 2009. pp. 844–848. DOI

Olague G., Mohr R. Optimal camera placement to obtain accurate 3D point positions; Proceedings of the Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170); Brisbane, QLD, Australia. 20 August 1998; Piscataway, NJ, USA: IEEE; DOI

Becker E., Guerra-Filho G., Makedon F. Automatic sensor placement in a 3D volume; Proceedings of the 2nd International Conference on PErvsive Technologies Related to Assistive Environments–PETRA ’09; Corfu, Greece. 9–13 June 2009; New York, NY, USA: ACM Press; 2009. DOI

David P., Idasiak V., Kratz F. A Sensor Placement Approach for the Monitoring of Indoor Scenes. In: Kortuem G., Finney J., Lea R., Sundramoorthy V., editors. Smart Sensing and Context. Volume 4793. Springer; Berlin/Heidelberg, Germany: 2007. EuroSSC 2007; Lecture Notes in Computer Science. DOI

Flacco F., De Luca A. Multiple depth/presence sensors: Integration and optimal placement for human/robot coexistence; Proceedings of the 2010 IEEE International Conference on Robotics and Automation; Anchorage, AK, USA. 3–7 May 2010; Piscataway, NJ, USA: IEEE; pp. 3916–3923. DOI

Oščádal P., Heczko D., Vysocký A., Mlotek J., Novák P., Virgala I., Sukop M., Bobovský Z. Improved Pose Estimation of Aruco Tags Using a Novel 3D Placement Strategy. Sensors. 2020;20:4825. doi: 10.3390/s20174825. PubMed DOI PMC

Huczala D., Oščádal P., Spurný T., Vysocký A., Vocetka M., Bobovský Z. Camera-Based Method for Identification of the Layout of a Robotic Workcell. Appl. Sci. 2020;10:7679. doi: 10.3390/app10217679. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...