Camera Arrangement Optimization for Workspace Monitoring in Human-Robot Collaboration
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008425
Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration project
SP2022/67
Specific research project financed by the state budget of the Czech Republic.
PubMed
36616896
PubMed Central
PMC9823859
DOI
10.3390/s23010295
PII: s23010295
Knihovny.cz E-zdroje
- Klíčová slova
- camera, collaboration, human–robot interaction, sensors network, workspace monitoring,
- MeSH
- lidé MeSH
- robotika * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Human-robot interaction is becoming an integral part of practice. There is a greater emphasis on safety in workplaces where a robot may bump into a worker. In practice, there are solutions that control the robot based on the potential energy in a collision or a robot re-planning the straight-line trajectory. However, a sensor system must be designed to detect obstacles across the human-robot shared workspace. So far, there is no procedure that engineers can follow in practice to deploy sensors ideally. We come up with the idea of classifying the space as an importance index, which determines what part of the workspace sensors should sense to ensure ideal obstacle sensing. Then, the ideal camera positions can be automatically found according to this classified map. Based on the experiment, the coverage of the important volume by the calculated camera position in the workspace was found to be on average 37% greater compared to a camera placed intuitively by test subjects. Using two cameras at the workplace, the calculated positions were 27% more effective than the subjects' camera positions. Furthermore, for three cameras, the calculated positions were 13% better than the subjects' camera positions, with a total coverage of more than 99% of the classified map.
Department of Robotics Faculty of Mechanical Engineering VSB TU Ostrava 70833 Ostrava Czech Republic
Zobrazit více v PubMed
Bauer A., Wollherr D., Buss M. Human-Robot Collaboration: A Survey. Int. J. Hum. Robot. 2008;5:47–66. doi: 10.1142/S0219843608001303. DOI
Feleke A.G., Bi L., Fei W. EMG-based 3D hand motor intention prediction for information transfer from human to robot. Sensors. 2021;21:1316. doi: 10.3390/s21041316. PubMed DOI PMC
Wang L., Gao R., Váncza J., Krüger J., Wang X.V., Makris S., Chryssolouris G. Symbiotic Human-robot collaborative assembly. CIRP Ann. 2019;68:701–726. doi: 10.1016/j.cirp.2019.05.002. DOI
Semeraro F., Griffiths A., Cangelosi A. Human–robot collaboration and machine learning: A systematic review of recent research. Robot. Comput. Integr. Manuf. 2023;79:102432. doi: 10.1016/j.rcim.2022.102432. DOI
Vysocky A.L., Novak P.E. Human-Robot collaboration in industry. MM Sci. J. 2016;9:903–906. doi: 10.17973/MMSJ.2016_06_201611. DOI
Brock O., Khatib O. Elastic strips: A framework for motion generation in human environments. Int. J. Robot. Res. 2002;21:1031–1052. doi: 10.1177/0278364902021012002. DOI
Warren C.W. Global path planning using artificial potential fields; Proceedings of the 1989 International Conference on Robotics and Automation; Scottsdale, AZ, USA. 14–19 May 1989; Piscataway, NJ, USA: IEEE; pp. 316–321. DOI
Raibail M., Rahman A.H.A., AL-Anizy G.J., Nasrudin M.F., Nadzir M.S.M., Noraini N.M.R., Yee T.S. Decentralized Multi-Robot Collision Avoidance: A Systematic Review from 2015 to 2021. Symmetry. 2022;14:610. doi: 10.3390/sym14030610. DOI
Kot T., Bobovský Z., Brandstötter M., Krys V., Virgala I., Novák P. Finding Optimal Manipulator Arm Shapes to Avoid Collisions in a Static Environment. Appl. Sci. 2021;11:64. doi: 10.3390/app11010064. DOI
Tang K.-H., Ho C.-F., Mehlich J., Chen S.-T. Assessment of handover prediction models in estimation of cycle times for manual assembly tasks in a human–robot collaborative environment. Appl. Sci. 2020;10:556. doi: 10.3390/app10020556. DOI
Mainprice J., Berenson D. Human-robot collaborative manipulation planning using early prediction of human motion; Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; Tokyo, Japan. 3–7 November 2013; pp. 299–306.
Liu H., Wang L. Collision-free human-robot collaboration based on context awareness. Robot. Comput. Integr. Manuf. 2021;67:101997. doi: 10.1016/j.rcim.2020.101997. DOI
Liu H., Wang Y., Ji W., Wang L. Procedia Manufacturing. Volume 17. Elsevier BV; Amsterdam, The Netherlands: 2018. A Context-Aware Safety System for Human-Robot Collaboration; pp. 238–245. DOI
Haddadin S., De Luca A., Albu-Schäffer A. Robot Collisions: A Survey on Detection, Isolation, and Identification. IEEE Trans. Robot. 2017;33:1292–1312. doi: 10.1109/TRO.2017.2723903. DOI
Fryman J., Matthias B. Safety of Industrial Robots: From Conventional to Collaborative Applications; Proceedings of the ROBOTIK 2012; 7th German Conference on Robotics; Munich, Germany. 21–22 May 2012; Piscataway, NJ, USA: IEEE; 2012.
Rosenstrauch M.J., Krüger J. Safe human-robot-collaboration-introduction and experiment using ISO/TS 15066; Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR); Nagoya, Japan. 24–26 April 2017; Piscataway, NJ, USA: IEEE; 2017. pp. 740–744. DOI
Mansfeld N., Hamad M., Becker M., Marin A., Haddadin S. Safety Map: A Unified Representation for Biomechanics Impact Data and Robot Instantaneous Dynamic Properties. IEEE Robot. Autom. Lett. 2018;3:1880–1887. doi: 10.1109/LRA.2018.2801477. DOI
Zanchettin A.M., Ceriani N., Rocco P., Ding H., Matthias B. Safety in human-robot collaborative manufacturing environments: Metrics and control. IEEE Trans. Autom. Sci. Eng. 2016;13:882–893. doi: 10.1109/TASE.2015.2412256. DOI
Kostrzewski M., Sompolski K., Królikowski T. Procedia Computer Science. Volume 207. Elsevier BV; Amsterdam, The Netherlands: 2022. How profitable is it to apply Industry 4.0 solutions in blister factories? pp. 3281–3289. DOI
Parusel S., Haddadin S., Albu-Schäffer A. Modular state-based behavior control for safe human-robot interaction: A lightweight control architecture for a lightweight robot; Proceedings of the 2011 IEEE International Conference on Robotics and Automation; Shanghai, China. 9–13 May 2011; Piscataway, NJ, USA: IEEE; 2011. pp. 4298–4305. DOI
Haddadin S., Albu-Schaffer A., De Luca A., Hirzinger G. Collision Detection and Reaction: A Contribution to Safe Physical Human-Robot Interaction; Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems; Nice, France. 22–26 September 2008; Piscataway, NJ, USA: IEEE; 2008. pp. 3356–3363. DOI
Hermann A., Mauch F., Fischnaller K., Klemm S., Roennau A., Dillmann R. Anticipate your surroundings: Predictive collision detection between dynamic obstacles and planned robot trajectories on the GPU; Proceedings of the 2015 European Conference on Mobile Robots (ECMR); Lincoln, UK. 2–4 September 2015; pp. 1–8.
Kot T., Wierbica R., Oščádal P., Spurný T., Bobovský Z. Using Elastic Bands for Collision Avoidance in Collaborative Robotics. IEEE Access. :2022. doi: 10.1109/ACCESS.2022.3212407. DOI
Li G., Liu Z., Cai L., Yan J. Standing-Posture Recognition in Human–Robot Collaboration Based on Deep Learning and the Dempster–Shafer Evidence Theory. Sensors. 2020;20:1158. doi: 10.3390/s20041158. PubMed DOI PMC
Oščádal P., Spurný T., Kot T., Grushko S., Suder J., Heczko D., Novák P., Bobovský Z. Distributed Camera Subsystem for Obstacle Detection. Sensors. 2022;22:4588. doi: 10.3390/s22124588. PubMed DOI PMC
Grushko S., Vysocký A., Oščádal P., Vocetka M., Novák P., Bobovský Z. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory. Sensors. 2021;21:3673. doi: 10.3390/s21113673. PubMed DOI PMC
Grushko S., Vysocký A., Heczko D., Bobovský Z. Intuitive Spatial Tactile Feedback for Better Awareness about Robot Trajectory during Human–Robot Collaboration. Sensors. 2021;21:5748. doi: 10.3390/s21175748. PubMed DOI PMC
Wang L., Schmidt B., Nee A.Y. Vision-guided active collision avoidance for human-robot collaborations. Manuf. Lett. 2013;1:5–8. doi: 10.1016/j.mfglet.2013.08.001. DOI
Maric B., Jurican F., Orsag M., Kovacic Z. Vision based collision detection for a safe collaborative industrial manipulator; Proceedings of the 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR); Tokoname, Japan. 4–6 March 2021; Piscataway, NJ, USA: IEEE; 2021. pp. 334–337. DOI
Bodor R., Drenner A., Schrater P., Papanikolopoulos N. Optimal Camera Placement for Automated Surveillance Tasks. J. Intell. Robot. Syst. 2007;50:257–295. doi: 10.1007/s10846-007-9164-7. DOI
Gonzalez-Barbosa J., Garcia-Ramirez T., Salas J., Hurtado-Ramos J., Rico-Jimenez J. Optimal camera placement for total coverage; Proceedings of the 2009 IEEE International Conference on Robotics and Automation; Kobe, Japan. 12–17 May 2009; Piscataway, NJ, USA: IEEE; 2009. pp. 844–848. DOI
Olague G., Mohr R. Optimal camera placement to obtain accurate 3D point positions; Proceedings of the Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170); Brisbane, QLD, Australia. 20 August 1998; Piscataway, NJ, USA: IEEE; DOI
Becker E., Guerra-Filho G., Makedon F. Automatic sensor placement in a 3D volume; Proceedings of the 2nd International Conference on PErvsive Technologies Related to Assistive Environments–PETRA ’09; Corfu, Greece. 9–13 June 2009; New York, NY, USA: ACM Press; 2009. DOI
David P., Idasiak V., Kratz F. A Sensor Placement Approach for the Monitoring of Indoor Scenes. In: Kortuem G., Finney J., Lea R., Sundramoorthy V., editors. Smart Sensing and Context. Volume 4793. Springer; Berlin/Heidelberg, Germany: 2007. EuroSSC 2007; Lecture Notes in Computer Science. DOI
Flacco F., De Luca A. Multiple depth/presence sensors: Integration and optimal placement for human/robot coexistence; Proceedings of the 2010 IEEE International Conference on Robotics and Automation; Anchorage, AK, USA. 3–7 May 2010; Piscataway, NJ, USA: IEEE; pp. 3916–3923. DOI
Oščádal P., Heczko D., Vysocký A., Mlotek J., Novák P., Virgala I., Sukop M., Bobovský Z. Improved Pose Estimation of Aruco Tags Using a Novel 3D Placement Strategy. Sensors. 2020;20:4825. doi: 10.3390/s20174825. PubMed DOI PMC
Huczala D., Oščádal P., Spurný T., Vysocký A., Vocetka M., Bobovský Z. Camera-Based Method for Identification of the Layout of a Robotic Workcell. Appl. Sci. 2020;10:7679. doi: 10.3390/app10217679. DOI