Distributed Camera Subsystem for Obstacle Detection

. 2022 Jun 18 ; 22 (12) : . [epub] 20220618

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35746381

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008425 Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration project
SP2022/67 Specific research project

This work focuses on improving a camera system for sensing a workspace in which dynamic obstacles need to be detected. The currently available state-of-the-art solution (MoveIt!) processes data in a centralized manner from cameras that have to be registered before the system starts. Our solution enables distributed data processing and dynamic change in the number of sensors at runtime. The distributed camera data processing is implemented using a dedicated control unit on which the filtering is performed by comparing the real and expected depth images. Measurements of the processing speed of all sensor data into a global voxel map were compared between the centralized system (MoveIt!) and the new distributed system as part of a performance benchmark. The distributed system is more flexible in terms of sensitivity to a number of cameras, better framerate stability and the possibility of changing the camera number on the go. The effects of voxel grid size and camera resolution were also compared during the benchmark, where the distributed system showed better results. Finally, the overhead of data transmission in the network was discussed where the distributed system is considerably more efficient. The decentralized system proves to be faster by 38.7% with one camera and 71.5% with four cameras.

Zobrazit více v PubMed

Feigin M., Bhandari A., Izadi S., Rhemann C., Schmidt M., Raskar R. Resolving Multipath Interference in Kinect: An Inverse Problem Approach. IEEE Sens. J. 2016;16:3419–3427. doi: 10.1109/JSEN.2015.2421360. DOI

Bhandari A., Kadambi A., Whyte R., Barsi C., Feigin M., Dorrington A., Raskar R. Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization. Opt. Lett. 2014;39:1705–1708. doi: 10.1364/OL.39.001705. PubMed DOI

Naik N., Kadambi A., Rhemann C., Izadi S., Raskar R., Kang S. A light transport model for mitigating multipath interference in TOF sensors; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Boston, MA, USA. 7–12 June 2015.

Fanello S.R., Valentin J., Rhemann C., Kowdle A., Tankovich V., Davidson P., Izadi S. UltraStereo: Efficient Learning-Based Matching for Active Stereo Systems; Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Honolulu, HI, USA. 21–26 July 2017; pp. 6535–6544. DOI

Fanello S.R., Rhemann C., Tankovich V., Kowdle A., Escolano S.O., Kim D., Izadi S. HyperDepth: Learning Depth from Structured Light without Matching; Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV, USA. 27–30 June 2016; pp. 5441–5450. DOI

Zhang Y., Khamis S., Rhemann C., Valentin J., Kowdle A., Tankovich V., Schoenberg M., ShahramIzadi, Funkhouser T., Fanello S. Activestereonet: End-to-end self-supervised learning for active stereo systems; Proceedings of the European Conference on Computer Vision (ECCV); Munich, Germany. 7 October 2018; pp. 784–801. DOI

Kumar Jha V., Grushko S., Mlotek J., Kot T., Krys V., Oscadal P., Bobovsky Z. A depth image quality benchmark of three popular low-cost depth cameras. MM Sci. J. 2020;2020:4194–4200. doi: 10.17973/MMSJ.2020_12_2020057. DOI

Duan Y., Chen L., Wang Y., Yang M., Qin X., He S., Jia Y. A real-time system for 3D recovery of dynamic scene with multiple RGBD imagers; Proceedings of the 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops); Colorado Springs, CO, USA. 20–25 June 2011; pp. 1–8. DOI

Hayashi S., Igarashi H. HCI International 2021—Posters, Proceedings of the 23rd HCI International Conference, HCII 2021, Virtual, 24–29 July 2021. Springer International Publishing; Cham, Switzerland: 2021. Touchless Information Provision and Facial Expression Training Using Kinect. DOI

Yang K., Peng L., Tong L., Liu R., Liu B. An Assessment Method for Upper Limb Rehabilitation Training Using Kinect; Proceedings of the 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER); Tianjin, China. 19–23 July 2018; DOI

Chulhee B., Lee S. Object Recognition Using Deep Belief Nets with Spherical Signature Descriptor of 3DPoint Cloud Data for Extended Kalman Filter Based Simultaneous Localization and Mapping; Proceedings of the 2018 15th International Conference on Ubiquitous Robots (UR); Honolulu, HI, USA. 26–30 June 2018; DOI

Vysocky A., Novak P. Human—Robot collaboration in industry. MM Sci. J. 2016;9:903–906. doi: 10.17973/MMSJ.2016_06_201611. DOI

Wang L., Gao R., Váncza J., Krüger J., Wang X.V., Makris S., Chryssolouris G. Symbiotic human-robot collaborative assembly. CIRP Ann. 2019;68:701–726. doi: 10.1016/j.cirp.2019.05.002. DOI

Messeri C., Masotti G., Zanchettin A.M., Rocco P. Human-Robot Collaboration: Optimizing Stress and Productivity Based on Game Theory. IEEE Robot. Autom. Lett. 2021;6:8061–8068. doi: 10.1109/LRA.2021.3102309. DOI

Chacón A., Ponsa P., Angulo C. Usability Study through a Human-Robot Collaborative Workspace Experience. Designs. 2021;5:35. doi: 10.3390/designs5020035. DOI

Grushko S., Vysocký A., Oščádal P., Vocetka M., Novák P., Bobovský Z. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory. Sensors. 2021;21:3673. doi: 10.3390/s21113673. PubMed DOI PMC

Grushko S., Vysocký A., Heczko D., Bobovský Z. Intuitive Spatial Tactile Feedback for Better Awareness about Robot Trajectory during Human–Robot Collaboration. Sensors. 2021;21:5748. doi: 10.3390/s21175748. PubMed DOI PMC

Moughlbay A.A., Herrero H., Pacheco R., Outón J.L., Sallé D. International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. Springer International Publishing; Berlin/Heidelberg, Germany: 2016. Reliable Workspace Monitoring in Safe Human-Robot Environment; pp. 256–266. DOI

Arents J., Abolins V., Judvaitis J., Vismanis O., Oraby A., Ozols K. Human–Robot Collaboration Trends and Safety Aspects: A Systematic Review. J. Sens. Actuator Netw. 2021;10:48. doi: 10.3390/jsan10030048. DOI

Chiriatti G., Palmieri G., Scoccia C., Palpacelli M.C., Callegari M. Adaptive Obstacle Avoidance for a Class of Collaborative Robots. Machines. 2021;9:113. doi: 10.3390/machines9060113. DOI

Brito T., Lima J., Costa P., Piardi L. Dynamic Collision Avoidance System for a Manipulator Based on RGB-D Data; Proceedings of the ROBOT 2017: Third Iberian Robotics Conference; Sevilla, Spain. 22–24 November 2017; Cham, Switzerland: Springer International Publishing; 2017. pp. 643–654. DOI

Bogue R. Detecting humans in the robot workspace. Ind. Robot. Int. J. 2017;44:689–694. doi: 10.1108/IR-07-2017-0132. DOI

Munaro M., Lewis C., Chambers D., Hvass P., Menegatti E. Intelligent Autonomous Systems 13. Springer International Publishing; Cham, Switzerland: 2015. RGB-D Human Detection and Tracking for Industrial Environments; pp. 1655–1668. DOI

Shu X., Yang J., Yan R., Song Y. Expansion-Squeeze-Excitation Fusion Network for Elderly Activity Recognition. IEEE Trans. Circuits Syst. Video Technol. 2022 doi: 10.1109/TCSVT.2022.3142771. DOI

Shu X., Qi G.-J., Tang J., Wang J. Weakly-Shared Deep Transfer Networks for Heterogeneous-Domain Knowledge Propagation; Proceedings of the 23rd ACM international conference on Multimedia; Brisbane, Australia. 26–30 October 2015; pp. 35–44. DOI

Shu X., Zhang L., Qi G.-J., Liu W., Tang J. Spatiotemporal Co-Attention Recurrent Neural Networks for Human-Skeleton Motion Prediction. IEEE Trans. Pattern Anal. Mach. Intell. 2022;44:3300–3315. doi: 10.1109/TPAMI.2021.3050918. PubMed DOI

Tang J., Shu X., Yan R., Zhang L. Coherence Constrained Graph LSTM for Group Activity Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2022;44:636–647. doi: 10.1109/TPAMI.2019.2928540. PubMed DOI

Grushko S., Vysocky A., Jha V.K., Pastor R., Prada E., Mikova L., Bobovsky Z. Tuning perception and motion planning parameters for moveit! Framework. MM Sci. J. 2020;2020:4154–4163. doi: 10.17973/MMSJ.2020_11_2020064. DOI

Stanford Artificial Intelligence Laboratory Robotic Operating System. 2018. [(accessed on 15 June 2022)]. Available online: https://www.ros.org.

Cohen-Or D., Kaufman A. Fundamentals of Surface Voxelization. Graph. Models Image Processing. 1995;57:453–461. doi: 10.1006/gmip.1995.1039. DOI

Huczala D., Oščádal P., Spurný T., Vysocký A., Vocetka M., Bobovský Z. Camera-Based Method for Identification of the Layout of a Robotic Workcell. Appl. Sci. 2020;10:7679. doi: 10.3390/app10217679. DOI

Oščádal P., Heczko D., Vysocký A., Mlotek J., Novák P., Virgala I., Sukop M., Bobovský Z. Improved Pose Estimation of Aruco Tags Using a Novel 3D Placement Strategy. Sensors. 2020;20:4825. doi: 10.3390/s20174825. PubMed DOI PMC

Xu Y., Tong X., Stilla U. Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry. Autom. Constr. 2021;126:103675. doi: 10.1016/j.autcon.2021.103675. DOI

Laine S. A Topological Approach to Voxelization. Comput. Graph. Forum. 2013;32:77–86. doi: 10.1111/cgf.12153. DOI

Nourian P., Gonçalves R., Zlatanova S., Ohori K.A., Vu Vo A. Voxelization algorithms for geospatial applications. MethodsX. 2016;3:69–86. doi: 10.1016/j.mex.2016.01.001. PubMed DOI PMC

Huczala D., Kot T., Pfurner M., Heczko D., Oščádal P., Mostýn V. Initial Estimation of Kinematic Structure of a Robotic Manipulator as an Input for Its Synthesis. Appl. Sci. 2021;11:3548. doi: 10.3390/app11083548. DOI

Jetson Nano Developer Kit NVIDIA Developer. 14 April 2021. [(accessed on 16 December 2021)]. Available online: https://developer.nvidia.com/embedded/jetson-nano-developer-kit.

Specification Lenovo IdeaPad Y910 80V1004CCK MobileXfiles.Com. [(accessed on 16 December 2021)]. Available online: https://mobilexfiles.com/notebooks/lenovo/lenovo_ideapad_y910_80v1004cck/

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...