Enhancing Data Collection Through Optimization of Laser Line Triangulation Sensor Settings and Positioning
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.10.03.01/00/22_003/0000048
REFRESH - Research Excellence For REgion Sustainability and High-tech Industries
CZ.02.01.01/00/22_008/0004631
Materials and technologies for sustainable development
SP2025/042
Specific research project
PubMed
40292859
PubMed Central
PMC11946083
DOI
10.3390/s25061772
PII: s25061772
Knihovny.cz E-zdroje
- Klíčová slova
- in plane, laser scanner, out of plane, reliability, sensor placement, triangulation,
- Publikační typ
- časopisecké články MeSH
This study proposes a new approach to improving laser sensor data collection through optimised sensor settings. Specifically, it examines the influence of laser sensor configurations on laser scanning measurements obtained by using a laser line triangulation sensor for transparent and non-transparent plastics, as well as aluminium alloys. Distance data were acquired with a three-degree-of-freedom positioning device and the laser sensor under both manual and automatic settings. Measurements were performed at the sensor's reference distance and across a wide range of positional configurations. The results of extensive experimental tests highlight optimal sensor configurations for various materials and sensor orientations relative to the scanned surface, including both in-plane and out-of-plane angles, to enhance the reliability and accuracy of distance data collection.
Zobrazit více v PubMed
Camburu G., Zemba M., Tătaru C.P., Purcărea V.L. The measurement of Central Corneal Thickness. Rom. J. Ophthalmol. 2023;67:168–174. doi: 10.22336/rjo.2023.29. PubMed DOI PMC
Kaushik A., Gahletia S., Garg R.K., Sharma P., Chhabra D., Yadav M. Advanced 3D body scanning techniques and its clinical applications; Proceedings of the 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO); Pathum Thani, Thailand. 23–25 December 2022; pp. 352–358. DOI
Jiang N., Li H.-B., Li C.-J., Xiao H.-X., Zhou J.-W. A Fusion Method Using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry for Landslide Deformation Monitoring Under Complex Terrain Conditions. IEEE Trans. Geosci. Remote Sens. 2022;60:1–14. doi: 10.1109/TGRS.2022.3181258. DOI
Blair J.B., Rabine D.L., Hofton M.A. The Laser Vegetation Imaging Sensor: A medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J. Photogramm. Remote Sens. 1999;54:115–122. doi: 10.1016/S0924-2716(99)00002-7. DOI
Andaru R., Cahyono B.K., Riyadi G., Istarno, Djurdjani, Ramadhan G.R., Tuntas S. The Combination of Terrestrial Lidar and UAV Photogrammetry for Interactive Architectural Heritage Visualization Using Unity 3D Game Engine. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019;XLII-2/W17:39–44. doi: 10.5194/isprs-archives-XLII-2-W17-39-2019. DOI
López A., Ogayar C.J., Jurado J.M., Feito F.R. A GPU-Accelerated Framework for Simulating LiDAR Scanning. IEEE Trans. Geosci. Remote Sens. 2022;60:1–18. doi: 10.1109/TGRS.2022.3165746. DOI
Gan C., Schwartz J., Alter S., Schrimpf M., Traer J., De Freitas J., Kubilius J., Bhandwaldar A., Haber N., Sano M., et al. 3D World: A Platform for Interactive Multi-Modal Physical Simulation; Proceedings of the Annual Conference on Neural Information Processing Systems; Online. 6 December 2021; [(accessed on 20 May 2024)]. Available online: https://research.ibm.com/publications/threedworld-a-platform-for-interactive-multi-modal-physical-simulation.
Dupuis J., Holst C., Kuhlmann H. Laser Scanning Based Growth Analysis of Plants as a New Challenge for Deformation Monitoring. J. Appl. Geodesy. 2016;10:37–44. doi: 10.1515/jag-2015-0028. DOI
Williams S.R., Baniya A.A., Islam M.S., Murphy K. A Data Ecosystem for Orchard Research and Early Fruit Traceability. Horticulturae. 2023;9:1013. doi: 10.3390/horticulturae9091013. DOI
Rofalis N., Olesen A.S., Jakobsen M.L., Krüger V. Fast Visual Part Inspection for Bin Picking; Proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST); Chania, Greece. 4–6 October 2016; pp. 412–417. DOI
Phan N.D.M., Quinsat Y., Lartigue C. Optimal scanning strategy for on-machine inspection with laser-plane sensor. Int. J. Adv. Manuf. Technol. 2019;103:4563–4576. doi: 10.1007/s00170-019-03877-x. DOI
Yu Z., Wang T., Wang P., Tian Y., Li H. Rapid and Precise Reverse Engineering of Complex Geometry Through Multi-Sensor Data Fusion. IEEE Access. 2019;7:165793–165813. doi: 10.1109/ACCESS.2019.2948124. DOI
Bao-qing D., Yu-shu W. Research on Welding Seam Tracking Technology Based on Linear Laser CCD Robot; Proceedings of the 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS); Wuhan, China. 1–3 June 2019; pp. 54–57. DOI
Vandone A., Baraldo S., Valente A., Mazzucato F. Vision-based melt pool monitoring system setup for additive manufacturing. Procedia CIRP. 2019;81:747–752. doi: 10.1016/j.procir.2019.03.188. DOI
Delli U., Chang S. Automated Process Monitoring in 3D Printing Using Supervised Machine Learning. Procedia Manuf. 2018;26:865–870. doi: 10.1016/j.promfg.2018.07.111. DOI
Senthilnathan S., Raphael B. Using Computer Vision for Monitoring the Quality of 3D-Printed Concrete Structures. Sustainability. 2022;14:15682. doi: 10.3390/su142315682. DOI
Castellazzi G., D’Altri A.M., Bitelli G., Selvaggi I., Lambertini A. From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure. Sensors. 2015;15:18360–18380. doi: 10.3390/s150818360. PubMed DOI PMC
Tallavajhula A., Meriçli Ç., Kelly A. Off-Road Lidar Simulation with Data-Driven Terrain Primitives; Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA); Brisbane, QLD, Australia. 21–25 May 2018; pp. 7470–7477. DOI
Bickel G., Häusler G., Maul M. Triangulation with expanded range of depth. Opt. Eng. 1985;24:975–977. doi: 10.1117/12.7973610. DOI
Buzinski M., Levine A., Stevenson W.H. International Congress on Applications of Lasers & Electro-Optics. AIP Publishing; Melville, NY, USA: 1991. Laser Triangulation Range Sensors: A Study of Performance Limitations; pp. 1–15. DOI
Wen X., Wang J., Zhang G., Niu L. Three-Dimensional Morphology and Size Measurement of High-Temperature Metal Components Based on Machine Vision Technology: A Review. Sensors. 2021;21:4680. doi: 10.3390/s21144680. PubMed DOI PMC
Wu S., Feng Q., Gao Z., Han Q. SAE 2011 World Congress & Exhibition. SAE International; Warrendale, PA, USA: 2011. A Novel Laser Triangulation Sensor with Wide Dynamic Range. DOI
Nayar S., Ikeuchi K., Kanade T. Surface Reflection—Physical and Geometrical Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 1991;13:611–634. doi: 10.1109/34.85654. DOI
Oren M., Nayar S.K. Generalization of the Lambertian model and implications for machine vision. Int. J. Comput. Vis. 1995;14:227–251. doi: 10.1007/BF01679684. DOI
Tsitsas N.L., Valagiannopoulos C.A. Anomalous reflection of visible light by all-dielectric gradient metasurfaces. J. Opt. Soc. Am. B. 2017;34:D1–D8. doi: 10.1364/JOSAB.34.0000D1. DOI
Qi C., Wong A.M.H. Broadband efficient anomalous reflection using an aggressively discretized metasurface. Opt. Express. 2022;30:15735–15746. doi: 10.1364/OE.455617. PubMed DOI
Heczko D., Oščádal P., Kot T., Huczala D., Semjon J., Bobovský Z. Increasing the Reliability of Data Collection of Laser Line Triangulation Sensor by Proper Placement of the Sensor. Sensors. 2021;21:2890. doi: 10.3390/s21082890. PubMed DOI PMC
Yu Q., Zhang Y., Shang W., Dong S., Wang C., Wang Y., Liu T., Cheng F. Thickness Measurement for Glass Slides Based on Chromatic Confocal Microscopy with Inclined Illumination. Photonics. 2021;8:170. doi: 10.3390/photonics8050170. DOI
Heczko D., Oščádal P., Kot T., Boleslavský A., Krys V., Bém J., Virgala I., Bobovský Z. Finding the Optimal Pose of 2D LLT Sensors to Improve Object Pose Estimation. Sensors. 2022;22:1536. doi: 10.3390/s22041536. PubMed DOI PMC
Van Gestel N., Cuypers S., Bleys P., Kruth J.-P. A performance evaluation test for laser line scanners on CMMs. Opt. Lasers Eng. 2009;47:336–342. doi: 10.1016/j.optlaseng.2008.06.001. DOI
Vlaeyen M., Haitjema H., Dewulf W. Error compensation for laser line scanners. Measurement. 2021;175:109085. doi: 10.1016/j.measurement.2021.109085. DOI
Vocetka M., Bobovský Z., Babjak J., Suder J., Grushko S., Mlotek J., Krys V., Hagara M. Influence of Drift on Robot Repeatability and Its Compensation. Appl. Sci. 2021;11:10813. doi: 10.3390/app112210813. DOI
LJ-X, S.H.8080. KEYENCE UK & Ireland. [(accessed on 21 December 2023)]. Available online: https://www.keyence.co.uk/products/measure/laser-2d/lj-x8000/models/lj-x8080/
Suder J., Bobovsky Z., Mlotek J., Vocetka M., Zeman Z., Safar M. Experimental Analysis of Temperature Resistance of 3D Printed PLA Components. MMSJ. 2021;1:4322–4327. doi: 10.17973/MMSJ.2021_03_2021004. DOI
Vlaeyen M., Haitjema H., Dewulf W. Digital Twin of an Optical Measurement System. Sensors. 2021;21:6638. doi: 10.3390/s21196638. PubMed DOI PMC
Kot T., Bobovský Z., Heczko D., Vysocký A., Virgala I., Prada E. Using Virtual Scanning to Find Optimal Configuration of a 3D Scanner Turntable for Scanning of Mechanical Parts. Sensors. 2021;21:5343. doi: 10.3390/s21165343. PubMed DOI PMC
Ružarovský R., Skýpala R. A general take on a Tecnomatix Process Simulate’s Digital Twin creation and its exchange of information with the TIA Portal and PLC SIM Advanced. J. Phys. Conf. Ser. 2022;2212:012010. doi: 10.1088/1742-6596/2212/1/012010. DOI