Enhancing Data Collection Through Optimization of Laser Line Triangulation Sensor Settings and Positioning

. 2025 Mar 12 ; 25 (6) : . [epub] 20250312

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40292859

Grantová podpora
CZ.10.03.01/00/22_003/0000048 REFRESH - Research Excellence For REgion Sustainability and High-tech Industries
CZ.02.01.01/00/22_008/0004631 Materials and technologies for sustainable development
SP2025/042 Specific research project

This study proposes a new approach to improving laser sensor data collection through optimised sensor settings. Specifically, it examines the influence of laser sensor configurations on laser scanning measurements obtained by using a laser line triangulation sensor for transparent and non-transparent plastics, as well as aluminium alloys. Distance data were acquired with a three-degree-of-freedom positioning device and the laser sensor under both manual and automatic settings. Measurements were performed at the sensor's reference distance and across a wide range of positional configurations. The results of extensive experimental tests highlight optimal sensor configurations for various materials and sensor orientations relative to the scanned surface, including both in-plane and out-of-plane angles, to enhance the reliability and accuracy of distance data collection.

Zobrazit více v PubMed

Camburu G., Zemba M., Tătaru C.P., Purcărea V.L. The measurement of Central Corneal Thickness. Rom. J. Ophthalmol. 2023;67:168–174. doi: 10.22336/rjo.2023.29. PubMed DOI PMC

Kaushik A., Gahletia S., Garg R.K., Sharma P., Chhabra D., Yadav M. Advanced 3D body scanning techniques and its clinical applications; Proceedings of the 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO); Pathum Thani, Thailand. 23–25 December 2022; pp. 352–358. DOI

Jiang N., Li H.-B., Li C.-J., Xiao H.-X., Zhou J.-W. A Fusion Method Using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry for Landslide Deformation Monitoring Under Complex Terrain Conditions. IEEE Trans. Geosci. Remote Sens. 2022;60:1–14. doi: 10.1109/TGRS.2022.3181258. DOI

Blair J.B., Rabine D.L., Hofton M.A. The Laser Vegetation Imaging Sensor: A medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J. Photogramm. Remote Sens. 1999;54:115–122. doi: 10.1016/S0924-2716(99)00002-7. DOI

Andaru R., Cahyono B.K., Riyadi G., Istarno, Djurdjani, Ramadhan G.R., Tuntas S. The Combination of Terrestrial Lidar and UAV Photogrammetry for Interactive Architectural Heritage Visualization Using Unity 3D Game Engine. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019;XLII-2/W17:39–44. doi: 10.5194/isprs-archives-XLII-2-W17-39-2019. DOI

López A., Ogayar C.J., Jurado J.M., Feito F.R. A GPU-Accelerated Framework for Simulating LiDAR Scanning. IEEE Trans. Geosci. Remote Sens. 2022;60:1–18. doi: 10.1109/TGRS.2022.3165746. DOI

Gan C., Schwartz J., Alter S., Schrimpf M., Traer J., De Freitas J., Kubilius J., Bhandwaldar A., Haber N., Sano M., et al. 3D World: A Platform for Interactive Multi-Modal Physical Simulation; Proceedings of the Annual Conference on Neural Information Processing Systems; Online. 6 December 2021; [(accessed on 20 May 2024)]. Available online: https://research.ibm.com/publications/threedworld-a-platform-for-interactive-multi-modal-physical-simulation.

Dupuis J., Holst C., Kuhlmann H. Laser Scanning Based Growth Analysis of Plants as a New Challenge for Deformation Monitoring. J. Appl. Geodesy. 2016;10:37–44. doi: 10.1515/jag-2015-0028. DOI

Williams S.R., Baniya A.A., Islam M.S., Murphy K. A Data Ecosystem for Orchard Research and Early Fruit Traceability. Horticulturae. 2023;9:1013. doi: 10.3390/horticulturae9091013. DOI

Rofalis N., Olesen A.S., Jakobsen M.L., Krüger V. Fast Visual Part Inspection for Bin Picking; Proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST); Chania, Greece. 4–6 October 2016; pp. 412–417. DOI

Phan N.D.M., Quinsat Y., Lartigue C. Optimal scanning strategy for on-machine inspection with laser-plane sensor. Int. J. Adv. Manuf. Technol. 2019;103:4563–4576. doi: 10.1007/s00170-019-03877-x. DOI

Yu Z., Wang T., Wang P., Tian Y., Li H. Rapid and Precise Reverse Engineering of Complex Geometry Through Multi-Sensor Data Fusion. IEEE Access. 2019;7:165793–165813. doi: 10.1109/ACCESS.2019.2948124. DOI

Bao-qing D., Yu-shu W. Research on Welding Seam Tracking Technology Based on Linear Laser CCD Robot; Proceedings of the 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS); Wuhan, China. 1–3 June 2019; pp. 54–57. DOI

Vandone A., Baraldo S., Valente A., Mazzucato F. Vision-based melt pool monitoring system setup for additive manufacturing. Procedia CIRP. 2019;81:747–752. doi: 10.1016/j.procir.2019.03.188. DOI

Delli U., Chang S. Automated Process Monitoring in 3D Printing Using Supervised Machine Learning. Procedia Manuf. 2018;26:865–870. doi: 10.1016/j.promfg.2018.07.111. DOI

Senthilnathan S., Raphael B. Using Computer Vision for Monitoring the Quality of 3D-Printed Concrete Structures. Sustainability. 2022;14:15682. doi: 10.3390/su142315682. DOI

Castellazzi G., D’Altri A.M., Bitelli G., Selvaggi I., Lambertini A. From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure. Sensors. 2015;15:18360–18380. doi: 10.3390/s150818360. PubMed DOI PMC

Tallavajhula A., Meriçli Ç., Kelly A. Off-Road Lidar Simulation with Data-Driven Terrain Primitives; Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA); Brisbane, QLD, Australia. 21–25 May 2018; pp. 7470–7477. DOI

Bickel G., Häusler G., Maul M. Triangulation with expanded range of depth. Opt. Eng. 1985;24:975–977. doi: 10.1117/12.7973610. DOI

Buzinski M., Levine A., Stevenson W.H. International Congress on Applications of Lasers & Electro-Optics. AIP Publishing; Melville, NY, USA: 1991. Laser Triangulation Range Sensors: A Study of Performance Limitations; pp. 1–15. DOI

Wen X., Wang J., Zhang G., Niu L. Three-Dimensional Morphology and Size Measurement of High-Temperature Metal Components Based on Machine Vision Technology: A Review. Sensors. 2021;21:4680. doi: 10.3390/s21144680. PubMed DOI PMC

Wu S., Feng Q., Gao Z., Han Q. SAE 2011 World Congress & Exhibition. SAE International; Warrendale, PA, USA: 2011. A Novel Laser Triangulation Sensor with Wide Dynamic Range. DOI

Nayar S., Ikeuchi K., Kanade T. Surface Reflection—Physical and Geometrical Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 1991;13:611–634. doi: 10.1109/34.85654. DOI

Oren M., Nayar S.K. Generalization of the Lambertian model and implications for machine vision. Int. J. Comput. Vis. 1995;14:227–251. doi: 10.1007/BF01679684. DOI

Tsitsas N.L., Valagiannopoulos C.A. Anomalous reflection of visible light by all-dielectric gradient metasurfaces. J. Opt. Soc. Am. B. 2017;34:D1–D8. doi: 10.1364/JOSAB.34.0000D1. DOI

Qi C., Wong A.M.H. Broadband efficient anomalous reflection using an aggressively discretized metasurface. Opt. Express. 2022;30:15735–15746. doi: 10.1364/OE.455617. PubMed DOI

Heczko D., Oščádal P., Kot T., Huczala D., Semjon J., Bobovský Z. Increasing the Reliability of Data Collection of Laser Line Triangulation Sensor by Proper Placement of the Sensor. Sensors. 2021;21:2890. doi: 10.3390/s21082890. PubMed DOI PMC

Yu Q., Zhang Y., Shang W., Dong S., Wang C., Wang Y., Liu T., Cheng F. Thickness Measurement for Glass Slides Based on Chromatic Confocal Microscopy with Inclined Illumination. Photonics. 2021;8:170. doi: 10.3390/photonics8050170. DOI

Heczko D., Oščádal P., Kot T., Boleslavský A., Krys V., Bém J., Virgala I., Bobovský Z. Finding the Optimal Pose of 2D LLT Sensors to Improve Object Pose Estimation. Sensors. 2022;22:1536. doi: 10.3390/s22041536. PubMed DOI PMC

Van Gestel N., Cuypers S., Bleys P., Kruth J.-P. A performance evaluation test for laser line scanners on CMMs. Opt. Lasers Eng. 2009;47:336–342. doi: 10.1016/j.optlaseng.2008.06.001. DOI

Vlaeyen M., Haitjema H., Dewulf W. Error compensation for laser line scanners. Measurement. 2021;175:109085. doi: 10.1016/j.measurement.2021.109085. DOI

Vocetka M., Bobovský Z., Babjak J., Suder J., Grushko S., Mlotek J., Krys V., Hagara M. Influence of Drift on Robot Repeatability and Its Compensation. Appl. Sci. 2021;11:10813. doi: 10.3390/app112210813. DOI

LJ-X, S.H.8080. KEYENCE UK & Ireland. [(accessed on 21 December 2023)]. Available online: https://www.keyence.co.uk/products/measure/laser-2d/lj-x8000/models/lj-x8080/

Suder J., Bobovsky Z., Mlotek J., Vocetka M., Zeman Z., Safar M. Experimental Analysis of Temperature Resistance of 3D Printed PLA Components. MMSJ. 2021;1:4322–4327. doi: 10.17973/MMSJ.2021_03_2021004. DOI

Vlaeyen M., Haitjema H., Dewulf W. Digital Twin of an Optical Measurement System. Sensors. 2021;21:6638. doi: 10.3390/s21196638. PubMed DOI PMC

Kot T., Bobovský Z., Heczko D., Vysocký A., Virgala I., Prada E. Using Virtual Scanning to Find Optimal Configuration of a 3D Scanner Turntable for Scanning of Mechanical Parts. Sensors. 2021;21:5343. doi: 10.3390/s21165343. PubMed DOI PMC

Ružarovský R., Skýpala R. A general take on a Tecnomatix Process Simulate’s Digital Twin creation and its exchange of information with the TIA Portal and PLC SIM Advanced. J. Phys. Conf. Ser. 2022;2212:012010. doi: 10.1088/1742-6596/2212/1/012010. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...