Hostile Environments: Modifying Surfaces to Block Microbial Adhesion and Biofilm Formation
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
LasApp CZ.02.01.01/00/22_008/0004573
European Union and the state budget of the Czech Republic
RVO 61388971
Czech Academy of Sciences
PubMed
40563396
PubMed Central
PMC12190938
DOI
10.3390/biom15060754
PII: biom15060754
Knihovny.cz E-resources
- Keywords
- antimicrobial modifications of materials, microbial biofilms, modified surfaces, yeast and bacterial adhesion,
- MeSH
- Bacterial Adhesion * drug effects MeSH
- Biofilms * growth & development drug effects MeSH
- Extracellular Matrix metabolism MeSH
- Humans MeSH
- Surface Properties MeSH
- Quorum Sensing drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Since the first observations of biofilm formation by microorganisms on various surfaces more than 50 years ago, it has been shown that most "unicellular" microorganisms prefer to grow in multicellular communities that often adhere to surfaces. The microbes in these communities adhere to each other, produce an extracellular matrix (ECM) that protects them from drugs, toxins and the host's immune system, and they coordinate their development and differentiate into different forms via signaling molecules and nutrient gradients. Biofilms are a serious problem in industry, agriculture, the marine environment and human and animal health. Many researchers are therefore investigating ways to disrupt biofilm formation by killing microbes or disrupting adhesion to a surface, quorum sensing or ECM production. This review provides an overview of approaches to altering various surfaces through physical, chemical or biological modifications to reduce/prevent microbial cell adhesion and biofilm development and maintenance. It also discusses the advantages and disadvantages of each approach and the challenges faced by researchers in this field.
Faculty of Science Charles University BIOCEV 128 00 Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences BIOCEV 142 00 Prague Czech Republic
See more in PubMed
Cheng K., Akin D., Costerton J. Rumen bacteria: Interaction with particulate dietary components and response to dietary variation. Fed. Proc. 1977;36:193–197. PubMed
Costerton J.W., Geesey G.G., Cheng K.-J. How bacteria stick. Sci. Am. 1978;238:86–95. doi: 10.1038/scientificamerican0178-86. PubMed DOI
McCowan R., Cheng K., Bailey C., Costerton J. Adhesion of bacteria to epithelial cell surfaces within the reticulo-rumen of cattle. Appl. Environ. Microbiol. 1978;35:149–155. doi: 10.1128/aem.35.1.149-155.1978. PubMed DOI PMC
Lappin-Scott H., Burton S., Stoodley P. Revealing a world of biofilms—The pioneering research of Bill Costerton. Nat. Rev. Microbiol. 2014;12:781–787. doi: 10.1038/nrmicro3343. PubMed DOI
Geesey G., Richardson W., Yeomans H., Irvin R., Costerton J. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can. J. Microbiol. 1977;23:1733–1736. doi: 10.1139/m77-249. PubMed DOI
Geesey G., Mutch R., Costerton J., Green R. Sessile bacteria: An important component of the microbial population in small mountain streams 1. Limnol. Oceanogr. 1978;23:1214–1223. doi: 10.4319/lo.1978.23.6.1214. DOI
Costerton J., Gessey G. Surface Contamination: Genesis, Detection, and Control. Springer; Berlin/Heidelberg, Germany: 1979. Microbial contamination of surfaces; pp. 211–221.
Lam J., Chan R., Lam K., Costerton J. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun. 1980;28:546–556. doi: 10.1128/iai.28.2.546-556.1980. PubMed DOI PMC
Marrie T.J., Lam J., Costerton J.W. Bacterial adhesion to uroepithelial cells: A morphologic study. J. Infect. Dis. 1980;142:239–246. doi: 10.1093/infdis/142.2.239. PubMed DOI
Costerton J.W., Irvin R.T., Cheng K. The bacterial glycocalyx in nature and disease. Ann. Rev. Microbiol. 1981;35:299–324. doi: 10.1146/annurev.mi.35.100181.001503. PubMed DOI
Gristina A.G., Costerton J. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. JBJS. 1985;67:264–273. doi: 10.2106/00004623-198567020-00014. PubMed DOI
Costerton J.W., Cheng K.-J., Geesey G.G., Ladd T.I., Nickel J.C., Dasgupta M., Marrie T.J. Bacterial biofilms in nature and disease. Ann. Rev. Microbiol. 1987;41:435–464. doi: 10.1146/annurev.mi.41.100187.002251. PubMed DOI
Shapiro J.A. Bacteria as multicellular organisms. Sci. Am. 1988;258:82–89. doi: 10.1038/scientificamerican0688-82. DOI
Palková Z. Multicellular microorganisms: Laboratory versus nature. EMBO Rep. 2004;5:470–476. doi: 10.1038/sj.embor.7400145. PubMed DOI PMC
Flemming H.-C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 2010;8:623–633. doi: 10.1038/nrmicro2415. PubMed DOI
Fleet G.H. Yeasts in foods and beverages: Impact on product quality and safety. Curr. Opin. Biotechnol. 2007;18:170–175. doi: 10.1016/j.copbio.2007.01.010. PubMed DOI
Robertson S.R., McLean R.J. Beneficial biofilms. AIMS Bioeng. 2015;2:437–448. doi: 10.3934/bioeng.2015.4.437. DOI
Ünal Turhan E., Erginkaya Z., Korukluoğlu M., Konuray G. Health and Safety Aspects of Food Processing Technologies. Springer; Berlin/Heidelberg, Germany: 2019. Beneficial biofilm applications in food and agricultural industry; pp. 445–469.
Ghiasian M. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; Amsterdam, The Netherlands: 2020. Microbial biofilms: Beneficial applications for sustainable agriculture; pp. 145–155.
Clarke R., Bauchop T. Microbial Ecology of the Gut. Academic Press; Cambridge, MA, USA: 1977.
Percival S.L., Emanuel C., Cutting K.F., Williams D.W. Microbiology of the skin and the role of biofilms in infection. Int. Wound J. 2012;9:14–32. doi: 10.1111/j.1742-481X.2011.00836.x. PubMed DOI PMC
Rastelli M., Knauf C., Cani P.D. Gut microbes and health: A focus on the mechanisms linking microbes, obesity, and related disorders. Obesity. 2018;26:792–800. doi: 10.1002/oby.22175. PubMed DOI PMC
Álvarez J., Real J.M.F., Guarner F., Gueimonde M., Rodríguez J.M., de Pipaon M.S., Sanz Y. Gut microbes and health. Gastroenterol. Hepatol. (Engl. Ed.) 2021;44:519–535. doi: 10.1016/j.gastrohep.2021.01.009. PubMed DOI
Pasmore M., Costerton J.W. Biofilms, bacterial signaling, and their ties to marine biology. J. Ind. Microbiol. Biotechnol. 2003;30:407–413. doi: 10.1007/s10295-003-0069-6. PubMed DOI
Lewis K. Persister cells and the riddle of biofilm survival. Biochemistry. 2005;70:267–274. doi: 10.1007/s10541-005-0111-6. PubMed DOI
Kim S.-K., Lee J.-H. Biofilm dispersion in Pseudomonas aeruginosa. J. Microbiol. 2016;54:71–85. doi: 10.1007/s12275-016-5528-7. PubMed DOI
Bu F., Liu M., Xie Z., Chen X., Li G., Wang X. Targeted anti-biofilm therapy: Dissecting targets in the biofilm life cycle. Pharmaceuticals. 2022;15:1253. doi: 10.3390/ph15101253. PubMed DOI PMC
Yu J.-L., Andersson R., Ljungh Å. Protein adsorption and bacterial adhesion to biliary stent materials. J. Surg. Res. 1996;62:69–73. doi: 10.1006/jsre.1996.0175. PubMed DOI
Hou W., Liu Y., Wu S., Zhang H., Guo B., Zhang B., Qin X.-J., Li H. Preadsorption of serum proteins regulates bacterial infections and subsequent macrophage phagocytosis on biomaterial surfaces. ACS Appl. Bio Mater. 2019;2:5957–5964. doi: 10.1021/acsabm.9b00890. PubMed DOI
Zegans M.E., Wozniak D., Griffin E., Toutain-Kidd C.M., Hammond J.H., Garfoot A., Lam J.S. Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob. Agents Chemother. 2012;56:4112–4122. doi: 10.1128/AAC.00373-12. PubMed DOI PMC
Pierce C.G., Vila T., Romo J.A., Montelongo-Jauregui D., Wall G., Ramasubramanian A., Lopez-Ribot J.L. The Candida albicans biofilm matrix: Composition, structure and function. J. Fungi. 2017;3:14. doi: 10.3390/jof3010014. PubMed DOI PMC
Arafa S.H., Elbanna K., Osman G.E., Abulreesh H.H. Candida diagnostic techniques: A review. J. Umm Al-Qura Uni Appl. Sci. 2023;9:360–377. doi: 10.1007/s43994-023-00049-2. DOI
Bruchmann J., Pini I., Gill T.S., Schwartz T., Levkin P.A. Patterned SLIPS for the formation of arrays of biofilm microclusters with defined geometries. Adv. Healthc. Mater. 2017;6:1601082. doi: 10.1002/adhm.201601082. PubMed DOI
Grande R., Puca V., Muraro R. Antibiotic resistance and bacterial biofilm. Expert. Opin. Ther. Pat. 2020;30:897–900. doi: 10.1080/13543776.2020.1830060. PubMed DOI
Jahagirdar V.L., Davane M.S., Aradhye S.C., Nagoba B.S. Candida species as potential nosocomial pathogens—A review. Electron. J. Gen. Med. 2018;15
Wuyts J., Van Dijck P., Holtappels M. Fungal persister cells: The basis for recalcitrant infections? PLoS Pathog. 2018;14:e1007301. doi: 10.1371/journal.ppat.1007301. PubMed DOI PMC
Chandra J., Kuhn D.M., Mukherjee P.K., Hoyer L.L., McCormick T., Ghannoum M.A. Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance. J. Bacteriol. 2001;183:5385–5394. doi: 10.1128/JB.183.18.5385-5394.2001. PubMed DOI PMC
Trautner B.W., Darouiche R.O. Role of biofilm in catheter-associated urinary tract infection. Am. J. Infect. Control. 2004;32:177–183. doi: 10.1016/j.ajic.2003.08.005. PubMed DOI PMC
Váchová L., Šťovíček V., Hlaváček O., Chernyavskiy O., Štěpánek L., Kubínová L., Palková Z. Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J. Cell Biol. 2011;194:679–687. doi: 10.1083/jcb.201103129. PubMed DOI PMC
Fanning S., Mitchell A.P. Fungal biofilms. PLoS Pathog. 2012;8:e1002585. doi: 10.1371/journal.ppat.1002585. PubMed DOI PMC
Galie S., García-Gutiérrez C., Miguélez E.M., Villar C.J., Lombó F. Biofilms in the food industry: Health aspects and control methods. Front. Microbiol. 2018;9:898. doi: 10.3389/fmicb.2018.00898. PubMed DOI PMC
Eboigbodin K.E. Biophysical Investigation of Bacterial Aggregation. University of Sheffield; Sheffield, UK: 2008.
Speth C., Rambach G., Lass-Flörl C., Howell P.L., Sheppard D.C. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis. Virulence. 2019;10:976–983. doi: 10.1080/21505594.2019.1568174. PubMed DOI PMC
Kernien J.F., Johnson C.J., Bayless M.L., Chovanec J.F., Nett J.E. Neutrophils from patients with invasive candidiasis are inhibited by Candida Albicans biofilms. Front. Immunol. 2020;11:587956. doi: 10.3389/fimmu.2020.587956. PubMed DOI PMC
Mannan M., Nabeela S., Mishra R., Uppuluri P. Host immune response against fungal biofilms. Curr. Opin. Microbiol. 2024;81:102520. doi: 10.1016/j.mib.2024.102520. PubMed DOI PMC
Ferriol-González C., Domingo-Calap P. Phages for biofilm removal. Antibiotics. 2020;9:268. doi: 10.3390/antibiotics9050268. PubMed DOI PMC
Al-Madboly L.A., Aboulmagd A., El-Salam M.A., Kushkevych I., El-Morsi R.M. Microbial enzymes as powerful natural anti-biofilm candidates. Microb. Cell Fact. 2024;23:343. doi: 10.1186/s12934-024-02610-y. PubMed DOI PMC
Topka-Bielecka G., Dydecka A., Necel A., Bloch S., Nejman-Faleńczyk B., Węgrzyn G., Węgrzyn A. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics. 2021;10:175. doi: 10.3390/antibiotics10020175. PubMed DOI PMC
Liu S., Lu H., Zhang S., Shi Y., Chen Q. Phages against pathogenic bacterial biofilms and biofilm-based infections: A review. Pharmaceutics. 2022;14:427. doi: 10.3390/pharmaceutics14020427. PubMed DOI PMC
Wille J., Coenye T. Biofilm dispersion: The key to biofilm eradication or opening Pandora’s box? Biofilm. 2020;2:100027. doi: 10.1016/j.bioflm.2020.100027. PubMed DOI PMC
Veerachamy S., Yarlagadda T., Manivasagam G., Yarlagadda P.K. Bacterial adherence and biofilm formation on medical implants: A review. Proc. Inst. Mech. Eng. Part. H J. Eng. Med. 2014;228:1083–1099. doi: 10.1177/0954411914556137. PubMed DOI
Bazaka K., Jacob M.V., Crawford R.J., Ivanova E.P. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011;7:2015–2028. doi: 10.1016/j.actbio.2010.12.024. PubMed DOI
Kingshott P., Griesser H.J. Surfaces that resist bioadhesion. Curr. Opin. Solid. State Mater. Sci. 1999;4:403–412. doi: 10.1016/S1359-0286(99)00018-2. DOI
Chandra J., Patel J.D., Li J., Zhou G., Mukherjee P.K., McCormick T.S., Anderson J.M., Ghannoum M.A. Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. Appl. Environ. Microbiol. 2005;71:8795–8801. doi: 10.1128/AEM.71.12.8795-8801.2005. PubMed DOI PMC
Balazs D., Triandafillu K., Chevolot Y., Aronsson B.O., Harms H., Descouts P., Mathieu H. Surface modification of PVC endotracheal tubes by oxygen glow discharge to reduce bacterial adhesion. Surf. Interface Anal. 2003;35:301–309. doi: 10.1002/sia.1533. DOI
Nouri A., Wen C. Surface Coating and Modification of Metallic Biomaterials. Elsevier; Amsterdam, The Netherlands: 2015. Introduction to surface coating and modification for metallic biomaterials; pp. 3–60.
Waugh D.G., Toccaceli C., Gillett A.R., Ng C.-H., Hodgson S.D., Lawrence J. Surface Treatments to Modulate Bioadhesion: A Critical Review. Wiley; Hoboken, NJ, USA: 2016.
Adlhart C., Verran J., Azevedo N.F., Olmez H., Keinänen-Toivola M.M., Gouveia I., Melo L.F., Crijns F. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. J. Hosp. Infect. 2018;99:239–249. doi: 10.1016/j.jhin.2018.01.018. PubMed DOI
Chouirfa H., Bouloussa H., Migonney V.-U., Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37–54. doi: 10.1016/j.actbio.2018.10.036. PubMed DOI
Ghilini F., Pissinis D.E., Minan A., Schilardi P.L., Diaz C. How functionalized surfaces can inhibit bacterial adhesion and viability. ACS Biomater. Sci. Eng. 2019;5:4920–4936. doi: 10.1021/acsbiomaterials.9b00849. PubMed DOI
Uneputty A., Dávila-Lezama A., Garibo D., Oknianska A., Bogdanchikova N., Hernández-Sánchez J., Susarrey-Arce A. Strategies applied to modify structured and smooth surfaces: A step closer to reduce bacterial adhesion and biofilm formation. Colloid. Interface Sci. Commun. 2022;46:100560. doi: 10.1016/j.colcom.2021.100560. DOI
Hauschwitz P., Palkova Z., Vachova L., Bicistova R., Prochazka M., Plocek V., Tarant I., Pathak S., Brajer J., Muzik J. Rapid laser-induced nanostructuring for yeast adhesion-reducing surfaces using beam shaping with SLM. J. Mater. Res. Technol. 2025;35:193–198. doi: 10.1016/j.jmrt.2025.01.034. DOI
Schwibbert K., Menzel F., Epperlein N., Bonse J., Krüger J. Bacterial adhesion on femtosecond laser-modified polyethylene. Materials. 2019;12:3107. doi: 10.3390/ma12193107. PubMed DOI PMC
Arango-Santander S., Pelaez-Vargas A., Freitas S.C., García C. Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion. J. Nanotechnol. 2018;2018:8624735. doi: 10.1155/2018/8624735. PubMed DOI PMC
Ivanova E.P., Hasan J., Webb H.K., Gervinskas G., Juodkazis S., Truong V.K., Wu A.H., Lamb R.N., Baulin V.A., Watson G.S. Bactericidal activity of black silicon. Nat. Commun. 2013;4:2838. doi: 10.1038/ncomms3838. PubMed DOI PMC
Puckett S.D., Taylor E., Raimondo T., Webster T.J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31:706–713. doi: 10.1016/j.biomaterials.2009.09.081. PubMed DOI
Szymczyk-Ziółkowska P., Hoppe V., Rusińska M., Gąsiorek J., Ziółkowski G., Dydak K., Czajkowska J., Junka A. The impact of EBM-manufactured Ti6Al4V ELI alloy surface modifications on cytotoxicity toward eukaryotic cells and microbial biofilm formation. Materials. 2020;13:2822. doi: 10.3390/ma13122822. PubMed DOI PMC
Diaz C., Salvarezza R.C., Fernandez Lorenzo de Mele M.A., Schilardi P.L. Organization of Pseudomonas fluorescens on chemically different nano/microstructured surfaces. ACS Appl. Mater. Interfaces. 2010;2:2530–2539. doi: 10.1021/am100313z. PubMed DOI
Roosjen A., Kaper H.J., Van Der Mei H.C., Norde W., Busscher H.J. Inhibition of adhesion of yeasts and bacteria by poly (ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology. 2003;149:3239–3246. doi: 10.1099/mic.0.26519-0. PubMed DOI
Ziemba C., Khavkin M., Priftis D., Acar H., Mao J., Benami M., Gottlieb M., Tirrell M., Kaufman Y., Herzberg M. Antifouling properties of a self-assembling glutamic acid-lysine zwitterionic polymer surface coating. Langmuir. 2018;35:1699–1713. doi: 10.1021/acs.langmuir.8b00181. PubMed DOI
Masotti E., Poma N., Guazzelli E., Fiaschi I., Glisenti A., Vivaldi F., Bonini A., Di Francesco F., Tavanti A., Galli G. Fluorinated vs. zwitterionic-polymer grafted surfaces for adhesion prevention of the fungal pathogen Candida albicans. Polymers. 2020;12:398. doi: 10.3390/polym12020398. PubMed DOI PMC
Holban A.-M., Farcasiu C., Andrei O.-C., Grumezescu A.M., Farcasiu A.-T. Surface modification to modulate microbial biofilms—Applications in dental medicine. Materials. 2021;14:6994. doi: 10.3390/ma14226994. PubMed DOI PMC
Astasov-Frauenhoffer M., Glauser S., Fischer J., Schmidli F., Waltimo T., Rohr N. Biofilm formation on restorative materials and resin composite cements. Dent. Mater. 2018;34:1702–1709. doi: 10.1016/j.dental.2018.08.300. PubMed DOI
Jansen B., Kohnen W. Prevention of biofilm formation by polymer modification. J. Ind. Microbiol. Biotechnol. 1995;15:391–396. doi: 10.1007/BF01569996. PubMed DOI
Alcheikh A., Pavon-Djavid G., Helary G., Petite H., Migonney V., Anagnostou F. PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion. J. Mater. Sci. Mater. Med. 2013;24:1745–1754. doi: 10.1007/s10856-013-4932-3. PubMed DOI
Majumdar P., Lee E., Patel N., Stafslien S.J., Daniels J., Chisholm B.J. Development of environmentally friendly, antifouling coatings based on tethered quaternary ammonium salts in a crosslinked polydimethylsiloxane matrix. J. Coat. Technol. Res. 2008;5:405–417. doi: 10.1007/s11998-008-9098-4. DOI
Schaer T.P., Stewart S., Hsu B.B., Klibanov A.M. Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection. Biomaterials. 2012;33:1245–1254. doi: 10.1016/j.biomaterials.2011.10.038. PubMed DOI
Tarabal V.S., Abud Y.K., da Silva F.G., da Cruz L.F., Fontes G.N., da Silva J.A., Filho C.B., Sinisterra R.D., Granjeiro J.M., Granjeiro P.A. Effect of DMPEI coating against biofilm formation on PVC catheter surface. World J. Microbiol. Biotechnol. 2024;40:6. doi: 10.1007/s11274-023-03799-7. PubMed DOI
Lampé I., Beke D., Biri S., Csarnovics I., Csik A., Dombrádi Z., Hajdu P., Hegedűs V., Rácz R., Varga I. Investigation of silver nanoparticles on titanium surface created by ion implantation technology. Int. J. Nanomed. 2019;14:4709–4721. doi: 10.2147/IJN.S197782. PubMed DOI PMC
Kulkarni M., Junkar I., Humpolíček P., Capáková Z., Radaszkiewicz K.A., Mikušová N., Pacherník J., Lehocký M., Iglič A., Hanáčková M. Interaction of nanostructured TiO2 biointerfaces with stem cells and biofilm-forming bacteria. Mater. Sci. Eng C. 2017;77:500–507. doi: 10.1016/j.msec.2017.03.174. PubMed DOI
Braem A., De Cremer K., Delattin N., De Brucker K., Neirinck B., Vandamme K., Martens J.A., Michiels J., Vleugels J., Cammue B.P. Novel anti-infective implant substrates: Controlled release of antibiofilm compounds from mesoporous silica-containing macroporous titanium. Colloids Surf. B Biointerfaces. 2015;126:481–488. doi: 10.1016/j.colsurfb.2014.12.054. PubMed DOI
Gerits E., Kucharíková S., Van Dijck P., Erdtmann M., Krona A., Lövenklev M., Fröhlich M., Dovgan B., Impellizzeri F., Braem A. Antibacterial activity of a new broad-spectrum antibiotic covalently bound to titanium surfaces. J. Orthop. Res.®. 2016;34:2191–2198. doi: 10.1002/jor.23238. PubMed DOI
Alt V., Bitschnau A., Österling J., Sewing A., Meyer C., Kraus R., Meissner S.A., Wenisch S., Domann E., Schnettler R. The effects of combined gentamicin–hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials. 2006;27:4627–4634. doi: 10.1016/j.biomaterials.2006.04.035. PubMed DOI
Humblot V., Yala J.-F., Thebault P., Boukerma K., Héquet A., Berjeaud J.-M., Pradier C.-M. The antibacterial activity of Magainin I immobilized onto mixed thiols Self-Assembled Monolayers. Biomaterials. 2009;30:3503–3512. doi: 10.1016/j.biomaterials.2009.03.025. PubMed DOI
Gabriel M., Nazmi K., Veerman E.C., Nieuw Amerongen A.V., Zentner A. Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjugate Chem. 2006;17:548–550. doi: 10.1021/bc050091v. PubMed DOI
Godoy-Gallardo M., Mas-Moruno C., Yu K., Manero J.M., Gil F.J., Kizhakkedathu J.N., Rodriguez D. Antibacterial properties of hLf1–11 peptide onto titanium surfaces: A comparison study between silanization and surface initiated polymerization. Biomacromolecules. 2015;16:483–496. doi: 10.1021/bm501528x. PubMed DOI
Chen R., Willcox M.D., Ho K.K.K., Smyth D., Kumar N. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models. Biomaterials. 2016;85:142–151. doi: 10.1016/j.biomaterials.2016.01.063. PubMed DOI
Cado G., Aslam R., Séon L., Garnier T., Fabre R., Parat A., Chassepot A., Voegel J.C., Senger B., Schneider F. Self-defensive biomaterial coating against bacteria and yeasts: Polysaccharide multilayer film with embedded antimicrobial peptide. Adv. Funct. Mater. 2013;23:4801–4809. doi: 10.1002/adfm.201300416. DOI
Kligman S., Ren Z., Chung C.-H., Perillo M.A., Chang Y.-C., Koo H., Zheng Z., Li C. The impact of dental implant surface modifications on osseointegration and biofilm formation. J. Clin. Med. 2021;10:1641. doi: 10.3390/jcm10081641. PubMed DOI PMC
Brüggemann D., Wolfrum B., de Silva J.P. Handbook of Nanomaterials Properties. Springer; Berlin/Heidelberg, Germany: 2014. Fabrication, properties and applications of gold nanopillars; pp. 317–354.
McFadden R., Quinn J., Buchanan F., Carson L., Acheson J.G., McKillop S., Chan C.-W. An effective laser surface treatment method to reduce biofilm coverage of multiple bacterial species associated with medical device infection. Surf. Coat. Tech. 2023;453:129092. doi: 10.1016/j.surfcoat.2022.129092. DOI
Fu C.C., Grimes A., Long M., Ferri C.G., Rich B.D., Ghosh S., Ghosh S., Lee L.P., Gopinathan A., Khine M. Tunable nanowrinkles on shape memory polymer sheets. Adv. Mater. 2009;21:4472–4476. doi: 10.1002/adma.200902294. DOI
Freschauf L.R., McLane J., Sharma H., Khine M. Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics. PLos ONE. 2012;7:e40987. doi: 10.1371/journal.pone.0040987. PubMed DOI PMC
Lorenzetti M., Dogša I., Stošicki T.a., Stopar D., Kalin M., Kobe S., Novak S.a. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl. Mater. Interfaces. 2015;7:1644–1651. doi: 10.1021/am507148n. PubMed DOI
Ivanova E.P., Linklater D.P., Werner M., Baulin V.A., Xu X., Vrancken N., Rubanov S., Hanssen E., Wandiyanto J., Truong V.K. The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces. Proc. Natl. Acad. Sci. USA. 2020;117:12598–12605. doi: 10.1073/pnas.1916680117. PubMed DOI PMC
Peterdi G.F. Printmaking. Chapter: Lithography. In Encyclopedia Britannica; Encyclopedia Britannica; Edinburgh, UK: 2021.
Ginger D.S., Zhang H., Mirkin C.A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. 2004;43:30–45. doi: 10.1002/anie.200300608. PubMed DOI
Piner R.D., Zhu J., Xu F., Hong S., Mirkin C.A. “Dip-pen” nanolithography. Science. 1999;283:661–663. doi: 10.1126/science.283.5402.661. PubMed DOI
Benčina M., Rawat N., Paul D., Kovač J., Iglič A., Junkar I. Surface Modification of Stainless Steel for Enhanced Antibacterial Activity. ACS Omega. 2025;10:13361–13369. doi: 10.1021/acsomega.4c11424. PubMed DOI PMC
Paiwand S., Schäfer S., Kopp A., Beikler T., Fiedler I., Gosau M., Fuest S., Smeets R. Antibacterial potential of silver and zinc loaded plasma-electrolytic oxidation coatings for dental titanium implants. Int. J. Implant. Dent. 2025;11:12. doi: 10.1186/s40729-025-00595-w. PubMed DOI PMC
Mrsic I., Baeuerle T., Ulitzsch S., Lorenz G., Rebner K., Kandelbauer A., Chasse T. Oxygen plasma surface treatment of polymer films—Pellethane 55DE and EPR-g-VTMS. Appl. Surf. Sci. 2021;536:147782. doi: 10.1016/j.apsusc.2020.147782. DOI
Valkov S., Ormanova M., Petrov P. Electron-beam surface treatment of metals and alloys: Techniques and trends. Metals. 2020;10:1219. doi: 10.3390/met10091219. DOI
Díaz C., Schilardi P.L., Salvarezza R.C., Fernández Lorenzo de Mele M. Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir. 2007;23:11206–11210. doi: 10.1021/la700650q. PubMed DOI
Marzullo P., Gruttadauria M., D’Anna F. Quaternary ammonium salts-based materials: A review on environmental toxicity, anti-fouling mechanisms and applications in marine and water treatment industries. Biomolecules. 2024;14:957. doi: 10.3390/biom14080957. PubMed DOI PMC
Chiang W.-C., Schroll C., Hilbert L.R., Møller P., Tolker-Nielsen T. Silver-palladium surfaces inhibit biofilm formation. Appl. Environ. Microbiol. 2009;75:1674–1678. doi: 10.1128/AEM.02274-08. PubMed DOI PMC
Scarano A., Assenza B., Piattelli M., Iezzi G., Leghissa G.C., Quaranta A., Tortora P., Piattelli A. A 16–year study of the microgap between 272 human titanium implants and their abutments. J. Oral. Implantol. 2005;31:269–275. doi: 10.1563/753.1. PubMed DOI
Coad B.R., Kidd S.E., Ellis D.H., Griesser H.J. Biomaterials surfaces capable of resisting fungal attachment and biofilm formation. Biotechnol. Adv. 2014;32:296–307. doi: 10.1016/j.biotechadv.2013.10.015. PubMed DOI
Hazen K.C., Hazen B.W. Surface hydrophobic and hydrophilic protein alterations in Candida albicans. FEMS Microbiol. Lett. 1993;107:83–87. doi: 10.1111/j.1574-6968.1993.tb06008.x. PubMed DOI
Goswami R.R., Pohare S.D., Raut J.S., Karuppayil S.M. Cell surface hydrophobicity as a virulence factor in Candida albicans. Biosci. Biotechnol. Res. Asia. 2017;14:1503. doi: 10.13005/bbra/2598. DOI
Desai N.P., Hubbell J.A. Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials. 1991;12:144–153. doi: 10.1016/0142-9612(91)90193-E. PubMed DOI
Zhou L.-Y., Zhu Y.-H., Wang X.-Y., Shen C., Wei X.-W., Xu T., He Z.-Y. Novel zwitterionic vectors: Multi-functional delivery systems for therapeutic genes and drugs. Comput. Struct. Biotechnol. J. 2020;18:1980–1999. doi: 10.1016/j.csbj.2020.07.015. PubMed DOI PMC
Camagay A.V., Kendall N., Connolly M.K. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2023. Quaternary Ammonium Compound Toxicity. PubMed
Wang Y., Ge-Zhang S., Mu P., Wang X., Li S., Qiao L., Mu H. Advances in sol-gel-based superhydrophobic coatings for wood: A review. Int. J. Mol. Sci. 2023;24:9675. doi: 10.3390/ijms24119675. PubMed DOI PMC
Wang Y., Jin Y., Chen Y., Han T., Chen Y., Wang C. A preliminary study on surface bioactivation of polyaryletherketone by UV-grafting with PolyNaSS: Influence on osteogenic and antibacterial activities. J. Biomater. Sci. Polym. Ed. 2022;33:1845–1865. doi: 10.1080/09205063.2022.2088524. PubMed DOI
Winnicka K., Wroblewska M., Wieczorek P., Sacha P.T., Tryniszewska E. Hydrogel of ketoconazole and PAMAM dendrimers: Formulation and antifungal activity. Molecules. 2012;17:4612–4624. doi: 10.3390/molecules17044612. PubMed DOI PMC
Alfei S., Schito A.M. From nanobiotechnology, positively charged biomimetic dendrimers as novel antibacterial agents: A review. Nanomaterials. 2020;10:2022. doi: 10.3390/nano10102022. PubMed DOI PMC
Paul S., Verma S., Chen Y.-C. Peptide dendrimer-based antibacterial agents: Synthesis and applications. ACS Infect. Dis. 2024;10:1034–1055. doi: 10.1021/acsinfecdis.3c00624. PubMed DOI PMC
Stallard C.P., McDonnell K., Onayemi O., O’gara J., Dowling D. Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases. 2012;7:31. doi: 10.1007/s13758-012-0031-0. PubMed DOI
Lam M., Moris V., Humblot V., Migonney V., Falentin-Daudre C. A simple way to graft a bioactive polymer–Polystyrene sodium sulfonate on silicone surfaces. Eur. Polym. J. 2020;128:109608. doi: 10.1016/j.eurpolymj.2020.109608. DOI
Hélary G., Noirclère F., Mayingi J., Migonney V. A new approach to graft bioactive polymer on titanium implants: Improvement of MG 63 cell differentiation onto this coating. Acta Biomater. 2009;5:124–133. doi: 10.1016/j.actbio.2008.07.037. PubMed DOI
Felgueiras H.P., Aissa I.B., Evans M.D., Migonney V. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: Case of poly (sodium styrene sulfonate) grafted titanium surfaces. J. Mater. Sci. Mater. Med. 2015;26:261. doi: 10.1007/s10856-015-5596-y. PubMed DOI
Sánchez-Bodón J., Andrade del Olmo J., Alonso J.M., Moreno-Benítez I., Vilas-Vilela J.L., Pérez-Álvarez L. Bioactive coatings on titanium: A review on hydroxylation, self-assembled monolayers (SAMs) and surface modification strategies. Polymers. 2021;14:165. doi: 10.3390/polym14010165. PubMed DOI PMC
Gerba C.P. Quaternary ammonium biocides: Efficacy in application. Appl. Environ. Microbiol. 2015;81:464–469. doi: 10.1128/AEM.02633-14. PubMed DOI PMC
Bertrand C.D., Martins R., Quintas-Nunes F., Reynolds-Brandão P., Crespo M.T.B., Nascimento F.X. Exploring the functional and genomic features of Cellulophaga lytica NFXS1, a zeaxanthin and lytic enzyme-producing marine bacterium that promotes microalgae growth. Microbe. 2024;4:100142. doi: 10.1016/j.microb.2024.100142. DOI
Smith S.A., Choi S.H., Collins J.N., Travers R.J., Cooley B.C., Morrissey J.H. Inhibition of polyphosphate as a novel strategy for preventing thrombosis and inflammation. Blood J. Am. Soc. Hematol. 2012;120:5103–5110. doi: 10.1182/blood-2012-07-444935. PubMed DOI PMC
Fail C., Evenson S., Ward L., Schofield W., Badyal J. Controlled attachment of PAMAM dendrimers to solid surfaces. Langmuir. 2002;18:264–268. doi: 10.1021/la0111598. DOI
Lai Z., Jian Q., Li G., Shao C., Zhu Y., Yuan X., Chen H., Shan A. Self-assembling peptide dendron nanoparticles with high stability and a multimodal antimicrobial mechanism of action. ACS Nano. 2021;15:15824–15840. doi: 10.1021/acsnano.1c03301. PubMed DOI
Wang G., Jin W., Qasim A.M., Gao A., Peng X., Li W., Feng H., Chu P.K. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. Biomaterials. 2017;124:25–34. doi: 10.1016/j.biomaterials.2017.01.028. PubMed DOI
Carmo P.H.F.d., Garcia M.T., Figueiredo-Godoi L.M.A., Lage A.C.P., Silva N.S.d., Junqueira J.C. Metal nanoparticles to combat Candida albicans infections: An update. Microorganisms. 2023;11:138. doi: 10.3390/microorganisms11010138. PubMed DOI PMC
Zhang J., Tang W., Zhang X., Song Z., Tong T. An overview of stimuli-responsive intelligent antibacterial nanomaterials. Pharmaceutics. 2023;15:2113. doi: 10.3390/pharmaceutics15082113. PubMed DOI PMC
Mwangi V.N., Madivoli E.S., Kangogo M., Wanakai S.I., Waudo W., Nzilu D.M. Antimicrobial surface coating as a pathway to curb resistance: Preparation, mode of action and future perspective. J. Coat. Technol. Res. 2024;21:799–810. doi: 10.1007/s11998-023-00879-z. DOI
Gerits E., Defraine V., Vandamme K., De Cremer K., De Brucker K., Thevissen K., Cammue B.P., Beullens S., Fauvart M., Verstraeten N. Repurposing toremifene for treatment of oral bacterial infections. Antimicrob. Agents Chemother. 2017;61:e01846-16. doi: 10.1128/AAC.01846-16. PubMed DOI PMC
Gerits E., Blommaert E., Lippell A., O’Neill A.J., Weytjens B., De Maeyer D., Fierro A.C., Marchal K., Marchand A., Chaltin P. Elucidation of the mode of action of a new antibacterial compound active against Staphylococcus aureus and Pseudomonas aeruginosa. PLoS ONE. 2016;11:e0155139. doi: 10.1371/journal.pone.0155139. PubMed DOI PMC
Andrea A., Molchanova N., Jenssen H. Antibiofilm peptides and peptidomimetics with focus on surface immobilization. Biomolecules. 2018;8:27. doi: 10.3390/biom8020027. PubMed DOI PMC
Mba I.E., Nweze E.I. Antimicrobial peptides therapy: An emerging alternative for treating drug-resistant bacteria. Yale J. Biol. Med. 2022;95:445. PubMed PMC
Baharin N.H.Z., Mokhtar N.F.K., Desa M.N.M., Gopalsamy B., Zaki N.N.M., Yuswan M.H., Muthanna A., Dzaraly N.D., Abbasiliasi S., Hashim A.M. The characteristics and roles of antimicrobial peptides as potential treatment for antibiotic-resistant pathogens: A review. PeerJ. 2021;9:e12193. doi: 10.7717/peerj.12193. PubMed DOI PMC
Weledji E.P., Weledji E.K., Assob J.C., Nsagha D.S. Pros, cons and future of antibiotics. New Horiz. Transl. Med. 2017;4:9–14. doi: 10.1016/j.nhtm.2017.08.001. DOI
Brogden K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005;3:238–250. doi: 10.1038/nrmicro1098. PubMed DOI
Nicolas M., Beito B., Oliveira M., Tudela Martins M., Gallas B., Salmain M., Boujday S., Humblot V. Strategies for antimicrobial peptides immobilization on surfaces to prevent biofilm growth on biomedical devices. Antibiotics. 2021;11:13. doi: 10.3390/antibiotics11010013. PubMed DOI PMC
Swidergall M., Ernst J.F. Interplay between Candida albicans and the antimicrobial peptide armory. Eukaryot. Cell. 2014;13:950–957. doi: 10.1128/EC.00093-14. PubMed DOI PMC
Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA. 1987;84:5449–5453. doi: 10.1073/pnas.84.15.5449. PubMed DOI PMC
McMillan K.A., Coombs M.R.P. Examining the natural role of amphibian antimicrobial peptide magainin. Molecules. 2020;25:5436. doi: 10.3390/molecules25225436. PubMed DOI PMC
Madeira F., Madhusoodanan N., Lee J., Eusebi A., Niewielska A., Tivey A.R., Lopez R., Butcher S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024;52:W521–W525. doi: 10.1093/nar/gkae241. PubMed DOI PMC
Ridyard K.E., Overhage J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiotics. 2021;10:650. doi: 10.3390/antibiotics10060650. PubMed DOI PMC
Jenssen H., Hancock R.E. Antimicrobial properties of lactoferrin. Biochimie. 2009;91:19–29. doi: 10.1016/j.biochi.2008.05.015. PubMed DOI
Willcox M., Hume E., Aliwarga Y., Kumar N., Cole N. A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J. Appl. Microbiol. 2008;105:1817–1825. doi: 10.1111/j.1365-2672.2008.03942.x. PubMed DOI
Yasir M., Dutta D., Willcox M.D. Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa. Sci. Rep. 2019;9:7063. PubMed PMC
Etienne O., Gasnier C., Taddei C., Voegel J.-C., Aunis D., Schaaf P., Metz-Boutigue M.-H., Bolcato-Bellemin A.-L., Egles C. Antifungal coating by biofunctionalized polyelectrolyte multilayered films. Biomaterials. 2005;26:6704–6712. doi: 10.1016/j.biomaterials.2005.04.068. PubMed DOI
Patil R., Ajagunde J., Khan S., Kannuri S., Gandham N., Mukhida S. Rhino-orbital cerebral mycosis: A case series of non-mucorales in COVID patients. Access Microbiol. 2023;5:000575.v4. doi: 10.1099/acmi.0.000575.v4. PubMed DOI PMC
Lu Y., Mo Y., Weng Y., Li X. Fungal keratitis caused by Neurospora: A case report. Front. Med. 2024;11:1496010. doi: 10.3389/fmed.2024.1496010. PubMed DOI PMC
Siedenbiedel F., Tiller J.C. Antimicrobial polymers in solution and on surfaces: Overview and functional principles. Polymers. 2012;4:46–71. doi: 10.3390/polym4010046. DOI
Ristić T., Zemljič L.F., Novak M., Kunčič M.K., Sonjak S., Cimerman N.G., Strnad S. Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011;6:36–51.
Zhao L., Chu P.K., Zhang Y., Wu Z. Antibacterial coatings on titanium implants. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2009;91:470–480. doi: 10.1002/jbm.b.31463. PubMed DOI
Stigter M., Bezemer J., De Groot K., Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J. Control Release. 2004;99:127–137. doi: 10.1016/j.jconrel.2004.06.011. PubMed DOI
Manna U., Raman N., Welsh M.A., Zayas-Gonzalez Y.M., Blackwell H.E., Palecek S.P., Lynn D.M. Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: A controlled release approach. Adv. Funct. Mater. 2016;26:3599–3611. doi: 10.1002/adfm.201505522. PubMed DOI PMC
Huo D., Wang F., Yang F., Lin T., Zhong Q., Deng S.-P., Zhang J., Tan S., Huang L. Medical titanium surface-modified coatings with antibacterial and anti-adhesive properties for the prevention of implant-associated infections. J. Mater. Sci. Technol. 2024;179:208–223. doi: 10.1016/j.jmst.2023.09.016. DOI
Chang Y., Yandi W., Chen W.-Y., Shih Y.-J., Yang C.-C., Chang Y., Ling Q.-D., Higuchi A. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly (N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules. 2010;11:1101–1110. doi: 10.1021/bm100093g. PubMed DOI
Chow J.Y., Yang Y., Tay S.B., Chua K.L., Yew W.S. Disruption of biofilm formation by the human pathogen Acinetobacter baumannii using engineered quorum-quenching lactonases. Antimicrob. Agents Chemother. 2014;58:1802–1805. doi: 10.1128/AAC.02410-13. PubMed DOI PMC
Üstükarcı H., Ozyilmaz G., Ozyilmaz A.T. Marine antifouling properties of enzyme modified polyaniline coated stainless steel surface. Enzyme Microb. Technol. 2024;172:110340. doi: 10.1016/j.enzmictec.2023.110340. PubMed DOI