From Phenology and Habitat Preferences to Climate Change: Importance of Citizen Science in Studying Insect Ecology in the Continental Scale with American Red Flat Bark Beetle, Cucujus clavipes, as a Model Species
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33924259
PubMed Central
PMC8074780
DOI
10.3390/insects12040369
PII: insects12040369
Knihovny.cz E-zdroje
- Klíčová slova
- Canada, Coleoptera, Cucujidae, North America, USA, citizen scientific data, habitat loss, iNaturalist, macrohabitat preferences, phenological activity,
- Publikační typ
- časopisecké články MeSH
The American red flat bark beetle, Cucujus clavipes, is a wide distributed saproxylic species divided into two subspecies: ssp. clavipes restricted to eastern regions of North America and ssp. puniceus occurring only in western regions of this continent. Unique morphological features, including body shape and body coloration, make this species easy to recognize even for amateurs. Surprisingly, except some studies focused on physiological adaptations of the species, the ecology of C. clavipes was almost unstudied. Based on over 500 records collected by citizen scientists and deposited in the iNaturalist data base, we studied phenological activity of adult beetles, habitat preferences and impact of future climate change for both subspecies separately. The results clearly show that spp. clavipes and ssp. puniceus can be characterized by differences in phenology and macrohabitat preferences, and their ranges do not overlap at any point. Spp. clavipes is found as more opportunistic taxon occurring in different forests as well as in urban and agricultural areas with tree vegetation always in elevations below 500 m, while elevational distribution of ssp. puniceus covers areas up to 2300 m, and the beetle was observed mainly in forested areas. Moreover, we expect that climate warming will have negative influence on both subspecies with the possible loss of proper niches at level even up to 47-70% of their actual ranges during next few decades. As the species is actually recognized as unthreatened and always co-occurs with many other species, we suggest, because of its expected future habitat loss, to pay more attention to conservationists for possible negative changes in saproxylic insects and/or forest fauna in North America. In addition, as our results clearly show that both subspecies of C. clavipes differ ecologically, which strongly supports earlier significant morphological and physiological differences noted between them, we suggest that their taxonomical status should be verified by molecular data, because very probably they represent separate species.
Zobrazit více v PubMed
Gura T. Citizen science: Amateur experts. Nature. 2013;496:259–261. doi: 10.1038/nj7444-259a. PubMed DOI
Hand E. Citizen science: People power. Nature. 2010;466:685–687. doi: 10.1038/466685a. PubMed DOI
Miller-Rushing A., Primack R., Bonney R. The history of public participation in ecological research. Front. Ecol. Environ. 2012;10:285–290. doi: 10.1890/110278. DOI
Kobori H., Dickinson J.L., Washitani I., Sakurai R., Amano T., Komatsu N., Kitamura W., Takagawa S., Koyama K., Ogawara T., et al. Citizen science: A new approach to advance ecology, education and conservation. Ecol. Res. 2016;31:1–19. doi: 10.1007/s11284-015-1314-y. DOI
Richter C.F., Lortie C.J., Kelly T.L., Filazzola A., Nunes K.A., Sarkar R. Online but not remote: Adapting field-based ecology laboratories for online learning. Ecol. Evol. 2020 doi: 10.1002/ece3.7008. PubMed DOI PMC
Unger S., Rollins M., Tietz A., Dumais H. iNaturalist as an engaging tool for identifying organisms in outdoor activities. J. Biol. Educ. 2020 doi: 10.1080/00219266.2020.1739114. DOI
Wilson J., Jisming-See S., Brandon-Mong G., Lim A., Lim V., Lee P., Sing K. Citizen science: The first peninsular Malaysia butterfly count. Biodivers. Data J. 2015;3:e7159. doi: 10.3897/BDJ.3.e7159. PubMed DOI PMC
Gardiner L.M., Bachman S.P. The role of citizen science in a global assessment of extinction risk in palms (Arecaceae) Bot. J. Linn. Soc. 2016;182:543–550. doi: 10.1111/boj.12402. DOI
Sumner S., Bevan P., Hart A.G., Isaac N.J.B. Mapping species distributions in 2 weeks using citizen science. Insect Conserv. Divers. 2019;12:382–388. doi: 10.1111/icad.12345. DOI
Girardello M., Chapman A., Dennis R., Kaila L., Borges P.A.V., Santangeli A. Gaps in butterfly inventory data: A global analysis. Biol. Conserv. 2019;236:289–295. doi: 10.1016/j.biocon.2019.05.053. DOI
Skejo J., Gupta S.K., Chandra K., Panhwar W.A., Franjević D. Oriental macropterous leaf-mimic pygmy grasshoppers—genera Oxyphyllum and Paraphyllum (Orthoptera: Tetrigidae) and their taxonomic assignment. Zootaxa. 2019;4590:546–560. doi: 10.11646/zootaxa.4590.5.3. PubMed DOI
La Sorte F.A., Somveille M. The island biogeography of the eBird citizen-science programme. J. Biogeogr. 2020;48:628–638. doi: 10.1111/jbi.14026. DOI
Rose K., Franjević D. Online social media tells a story of Anaselina, Paraselina, and Selivinga (Orthoptera, Tetrigidae), rare Australian pygmy grasshoppers. ZooKeys. 2020;948:107–119. doi: 10.3897/zookeys.948.52910. PubMed DOI PMC
Webster R.P., de Tonnancour P., Sweeney J.D., Webster V.L., Kostanowicz C.A., Hughes C., Anderson R.S., Klymko J., Chantal C., Vigneault R. New Coleoptera records from eastern Canada, with additions to the fauna of Manitoba, British Columbia, and Yukon Territory. ZooKeys. 2020;946:53–112. doi: 10.3897/zookeys.946.52489. PubMed DOI PMC
Silva D.P., Hall H.G., Ascher J.S. Predicting the distribution range of a recently described, habitat specialist bee. J. Insect Conserv. 2020;24:671–680. doi: 10.1007/s10841-020-00241-3. DOI
Jesus M.D., Zapelini C., Schiavetti A. Can citizen science help delimit the geographical distribution of a species? The case of the Callistoctopus sp. (eastern octopus) on the Brazilian coast. Ethnobiol. Conserv. 2021;10:03. doi: 10.15451/ec2020-09-10.03-1-15. DOI
Bathori F., Pfliegler W., Zimmerman C.-U., Tartally A. Online image databases as multi-purpose resources: Discovery of a new host ant of Rickia wasmannii Cavara (Ascomycota, Laboulbeniales) by screening AntWeb.org. J. Hymenopt. Res. 2017;61:85–94. doi: 10.3897/jhr.61.20255. DOI
Sheard J.K., Sanders N.J., Gundlach C., Schär S., Larsen R.S. Monitoring the influx of new species through citizen science: The first introduced ant in Denmark. PeerJ. 2020;8:e8850. doi: 10.7717/peerj.8850. PubMed DOI PMC
Skejo J., Deranja M., Adžić K. Pygmy hunchback of New Caledonia: Notredamia dora gen. n. et sp. n.—A New Cladonotin (Caelifera: Tetrigidae) genus and species from Oceania. Entomol. News. 2020;129:170–185. doi: 10.3157/021.129.0206. DOI
Hadjiconstantis M., Zoumides C. First records of the pest leaf beetle Chrysolina (Chrysolinopsis) americana (Linnaeus, 1758) (Coleoptera, Chrysomelidae) in Cyprus—A study initiated from social media. Biodivers. Data J. 2021;9:e61349. doi: 10.3897/BDJ.9.e61349. PubMed DOI PMC
Hartop E.A., Brown B.V., Disney R.H.L. Opportunity in our ignorance: Urban biodiversity study reveals 30 new species and one new nearctic record for Megaselia (Diptera: Phoridae) in Los Angeles (California, USA) Zootaxa. 2015;3941:451–484. doi: 10.11646/zootaxa.3941.4.1. PubMed DOI
Hiller T., Haelewaters D. A case of silent invasion: Citizen science confirms the presence of Harmonia axyridis (Coleoptera, Coccinellidae) in Central America. PLoS ONE. 2019;14:e0220082. doi: 10.1371/journal.pone.0220082. PubMed DOI PMC
Jaskuła R., Michalski M., Marris J.W.M. First records of the Palaestes abruptus Sharp, 1899 and P. nicaraguae Sharp, 1899 (Coleoptera: Cucujidae) from South America, with a checklist of flat bark beetles from the continent. Biodivers. Data J. 2021;9:e62576. doi: 10.3897/BDJ.9.e62576. PubMed DOI PMC
Alvarado-Cardenas L.O., Chavez-Hernandez M.G., Leon J.F.P. Gonolobus naturalistae (Apocynaceae; Asclepiadoideae; Gonolobeae; Gonolobinae), a new species from Mexico. Phytotaxa. 2020;472:249–258. doi: 10.11646/phytotaxa.472.3.3. DOI
Amorim D.D., Brown B.V. Urban Scatopsidae (Diptera) of Los Angeles, California, United States. Insect Syst. Divers. 2020;4:1. doi: 10.1093/isd/ixaa001. DOI
Adhikari B., Wood J.R.I. Thunbergia kasajuana, a new species of Acanthaceae from Nepal. Kew Bull. 2020;75:26. doi: 10.1007/s12225-020-9883-5. DOI
Cadena-Castañeda O.J., Díaz C.J.A., Rodríguez N.O.P., García A.G. Studies on raspy crickets: New Triaenogryllacris species (Orthoptera: Gryllacrididae) Zootaxa. 2020;4896:239–250. doi: 10.11646/zootaxa.4896.2.5. PubMed DOI
Moonlight P., Hollands R., Cano A., Purvis D. A new species of tuberosus Begonia (Begoniaceae) from Andean Peru. Edinb. J. Bot. 2020;77:145–159. doi: 10.1017/S0960428619000301. DOI
Winterton S.L. A new bee-mimicking stiletto fly (Therevidae) from China discovered on iNaturalist. Zootaxa. 2020;4816:361–369. doi: 10.11646/zootaxa.4816.3.6. PubMed DOI
Coxen C.L., Frey J.K., Carleton S.A., Collins D.P. Species distribution models for a migratory bird based on citizen science and satellite tracking data. Glob. Ecol. Conserv. 2017;11:298–311. doi: 10.1016/j.gecco.2017.08.001. DOI
Schubert S.C., Manica L.T., Guaraldo A.D. Revealing the potential of a huge citizen-science platform to study bird migration. EMU Austral Ornithol. 2019;119:364–373. doi: 10.1080/01584197.2019.1609340. DOI
DeGroote L.W., Hingst-Zaher E., Moreira-Lima L., Whitacre J.V., Slyder J.B., Wenzel J. Citizen science data reveals the cryptic migration of the Common Potoo Nyctibius griseus in Brazil. Ibis. 2020;163:380–389. doi: 10.1111/ibi.12904. DOI
Weisshaupt N., Lehtiniemi T., Koistinen J. Combining citizen science and weather radar data to study large-scale bird movements. Ibis. 2020;193:728–736. doi: 10.1111/ibi.12906. DOI
de Camargo Barbosa K.V., Develey P.F., Ribeiro M.C., Jahn A.E. The contribution of citizen science to research on migratory and urban birds in Brazil. Ornithol. Res. 2021 doi: 10.1007/s43388-020-00031-0. DOI
Katušić L., Jelaska S.D., Šerić Jelaska L. Monitoring of saproxylic beetles in Croatia: Following the path of the stag beetle. Nat. Conserv. 2017;19:39–56. doi: 10.3897/natureconservation.19.12683. DOI
Méndez M., de Jaime C., Alcántara M.A. Habitat description and interannual variation in abundance and phenology of the endangered beetle Lucanus cervus L. (Coleoptera) using citizen science monitoring. J. Insect. Conserv. 2017;21:907–915. doi: 10.1007/s10841-017-0030-z. DOI
Zapponi L., Cini A., Bardiani M., Hardersen S., Maura M., Maurizi E., Redolfi De Zan L., Audisio P., Bologna M.A., Carpaneto G.M., et al. Citizen science data as an efficient tool for mapping protected saproxylic beetles. Biol. Conserv. 2017;208:139–145. doi: 10.1016/j.biocon.2016.04.035. DOI
Wilson J.S., Pan A.D., General D.E.M., Koch J.B. More eyes on the prize: An observation of a very rare, threatened species of Philippine Bumble bee, Bombus irisanensis, on iNaturalist and the importance of citizen science in conservation biology. J. Insect Conserv. 2020;24:727–729. doi: 10.1007/s10841-020-00233-3. DOI
Pawson S.M., Sullivan J.J., Grant A. Expanding general surveillance of invasive species by integrating citizens as both observers and identifiers. J. Pest Sci. 2020;93:1155–1166. doi: 10.1007/s10340-020-01259-x. DOI
Purkart A., Depa Ł., Kollár J., Suvák M., Holecová M., Goffová K., Országhová Z. Citizen science reveals the current distribution of the new plant pest Aphis nerii in Slovakia. Plant Prot. Sci. 2020;56:101–106. doi: 10.17221/46/2019-PPS. DOI
Crall A.W., Newan G.J., Jarnevich C.S., Stohlgren T.J., Waller D.M., Graham J. Improving and integrating data on invasive species collected by citizen scientists. Biol. Invasions. 2010;12:3419–3428. doi: 10.1007/s10530-010-9740-9. DOI
Gallo T., Waitt D. Creating a successful citizen science model to detect and report invasive species. BioScience. 2011;61:459–465. doi: 10.1525/bio.2011.61.6.8. DOI
Maistrello L., Dioli P., Bariselli M., Mazzoli G.L., Giacalone-Forini I. Citizen science and early detection of invasive species: Phenology of first occurrences of Halyomorpha halys in Southern Europe. Biol. Invasions. 2016;18:3109–3116. doi: 10.1007/s10530-016-1217-z. DOI
Goczał K., Rossa R., Sweeney J., Tofilski A. Citizen monitoring of invasive species: Wing morphometry as a tool for detection of alien Tetropium species. J. Appl. Entomol. 2017;141:496–506. doi: 10.1111/jen.12370. DOI
Mannino A.M., Balistreri P. Citizen science: A successful tool for monitoring invasive alien species (IAS) in Marine Protected Areas. The case study of the Egadi Islands MPA (Tyrrhenian Sea, Italy) Biodiversity. 2018;19:42–48. doi: 10.1080/14888386.2018.1468280. DOI
Roy-Dufresne E., Saltré F., Cooke B.D., Mellin C., Mutze G., Cox T., Fordham D.A. Modeling the distribution of a wide-ranging invasive species using the sampling efforts of expert and citizen scientists. Ecol. Evol. 2019;9:11053–11063. doi: 10.1002/ece3.5609. PubMed DOI PMC
Chen J.Y., McQuillan P.B., McDonald E., Hawkins C. Citizen science reveals the Palaearctic poison hemlock moth Agonopterix alstroemeriana (Clerck) (Lepidoptera: Depressariidae) has established in Australia. N. Z. Entomol. 2020;43:86–92. doi: 10.1080/00779962.2020.1820125. DOI
Johnson B.A., Mader A.D., Dasgupta R., Kumar P. Citizen science and invasive alien species: An analysis of citizen science initiatives using information and communications technology (ICT) to collect invasive alien species observations. Glob. Ecol. Conserv. 2020;21:e00812. doi: 10.1016/j.gecco.2019.e00812. DOI
Werenkraut V., Baudino F., Roy H.E. Citizen science reveals the distribution of the invasive harlequin ladybird (Harmonia axyridis Pallas) in Argentina. Biol. Invasions. 2020;22:2915–2921. doi: 10.1007/s10530-020-02312-7. DOI
Encarnação J., Teodósio M.A., Morais P. Citizen Science and Biological Invasions: A Review. Front. Environ. Sci. 2021;8:602980. doi: 10.3389/fenvs.2020.602980. DOI
Johansson F., Heino J., Coiffard P., Svanbäck R., Wester J., Bini L.M. Can information from citizen science data be used to predict biodiversity in stormwater ponds? Sci. Rep. 2020;10:9380. doi: 10.1038/s41598-020-66306-0. PubMed DOI PMC
Kagawa O., Uchida S., Yamazaki D., Osawa Y., Ito S., Chiba S. Citizen science via social media revealed conditions of symbiosis between a marine gastropod and an epibiotic alga. Sci. Rep. 2020;10:19647. doi: 10.1038/s41598-020-74946-5. PubMed DOI PMC
Nowak K., Berger J., Panikowski A., Reid D.G., Jacob A.L., Newman G., Young N.E., Beckmann J.P., Richards S.A. Using community photography to investigate phenology: A case study of coat molt in the mountain goat (Oreamnos americanus) with missing data. Ecol. Evol. 2020;10:13488–13499. doi: 10.1002/ece3.6954. PubMed DOI PMC
Taylor P.J., Vise C., Krishnamoorthy M.A., Kingston T., Venter S. Citizen science confirms the rarity of fruit bat pollination of baobab (Adansonia digitata) flowers in Southern Africa. Diversity. 2020;12:106. doi: 10.3390/d12030106. DOI
Schultz C.B., Brown L.M., Pelton E., Crone E.E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North America. Biol. Conserv. 2017;214:343–346. doi: 10.1016/j.biocon.2017.08.019. DOI
Bried J., Ries L., Smith B., Patten M., Abbott J., Ball-Damerow J., Cannings R., Cordero-Rivera A., Córdoba-Aguilar A., De Marco P., Jr., et al. Towards global volunteer monitoring of odonate abundance. BioScience. 2020;70:914–923. doi: 10.1093/biosci/biaa092. DOI
Michielini J.P., Dopman E.B., Crone E.E. Changes in flight period predict trends in abundance of Massachusetts butterflies. Ecol. Lett. 2021;24:249–257. doi: 10.1111/ele.13637. PubMed DOI
Young B.E., Dodge N., Hunt P.D., Ormes M., Schlesinger M.D., Shaw H.Y. Using citizen science data to support conservation in environmental regulatory contexts. Biol. Conserv. 2019;237:57–62. doi: 10.1016/j.biocon.2019.06.016. DOI
Brown B.B., Hunter L., Santos S. Bird-window collisions: Different fall and winter risk and protective factors. PeerJ. 2020;8:e9401. doi: 10.7717/peerj.9401. PubMed DOI PMC
Duan H., Xia S., Yu X., Liu Y., Teng J., Dou Y. Using citizen science data to inform the relative sensitivity of waterbirds to natural versus human-dominated landscapes in China. Ecol. Evol. 2020;10:7233–7241. doi: 10.1002/ece3.6449. PubMed DOI PMC
Irga P.J., Dominici L., Torpy F.R. The mycological social network a way forward for conservation of fungal biodiversity. Environ. Conserv. 2020;47:243–250. doi: 10.1017/S0376892920000363. DOI
Margules C., Boedhihartono A.K., Langston J.D., Riggs R.A., Sari D.A., Sarkar S., Sayer J.A., Supriatna J., Winarni N.L. Transdisciplinary science for improved conservation outcomes. Environ. Conserv. 2020;47:224–233. doi: 10.1017/S0376892920000338. DOI
Papafitsoros K., Panagopoulou A., Schofield G. Social media reveals consistently disproportionate tourism pressure on a threatened marine vertebrate. Anim. Conserv. 2020 doi: 10.1111/acv.12656. DOI
Grol M.G.G., Vercelloni J., Kenyon T.M., Bayraktarov E., van den Berg C.P., Harris D., Loder J.A., Mihaljević M., Rowland P.I., Roelfsema C.M. Conservation value of a subtropical reef in south-eastern Queensland, Australia, highlighted by citizen-science efforts. Mar. Freshw. Res. 2021;72:1–13. doi: 10.1071/MF19170. DOI
Kirchhoff C., Callaghan C.T., Keith D.A., Indiarto D., Taseski G., Ooi M.K.I., Le Breton T.D., Mesaglio T., Kingsford R.T., Cornwell W.K. Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. Sci. Total Environ. 2021;755:142348. doi: 10.1016/j.scitotenv.2020.142348. PubMed DOI
Reed M. Scientific citizens, smartphones and social media—Reshaping the socio-spatial networks of participation: Insects, soil and food. Morav. Geogr. Rep. 2020;28:61–67. doi: 10.2478/mgr-2020-0005. DOI
Ciceoi R., Bǎdulescu L.-A., Gutue M., Mardare E.Ş., Pomohaci C.M. Citizen-generated data on invasive alien species in Romania: Trends and challenges. Acta Zool. Bulg. 2017;9:255–260.
Spear D.M., Pauly G.B., Kaiser K. Citizen science as a tool for augmenting museum collection data from urban areas. Front. Ecol. Evol. 2017;5:86. doi: 10.3389/fevo.2017.00086. DOI
Heberling J.M., Isaac B.L. iNaturalist as a tool to expand the research value of museum specimens. Appl. Plant Sci. 2018;6:e1193. doi: 10.1002/aps3.1193. PubMed DOI PMC
Brooks D.R., Nocera J.J. Bumble bee (Bombus spp.) diversity differs between forested wetlands and clearcuts in the Acadian forest. Can. J. For. Res. 2020;50:1399–1404. doi: 10.1139/cjfr-2020-0094. DOI
Marshall B.M., Freed P., Vitt L., Bernardo P., Vogel G., Lotzkat S., Franzen M., Hallermann J., Sage R.D., Bush B., et al. An inventory of online reptile images. Zootaxa. 2020;4896:251–264. doi: 10.11646/zootaxa.4896.2.6. PubMed DOI
Seregin A.P., Bochkov D.A., Shner J.V., Garin E.V., Pospelov I.N., Prokhorov V.E., Golyakov P.V., Mayorov S.R., Svirin S.A., Khimin A.N., et al. “Flora of Russia” on iNaturalist: A dataset. Biodivers. Data J. 2020;8:e59249. doi: 10.3897/BDJ.8.e59249. PubMed DOI PMC
Thomas M.C. A revision of Pediacus Shuckard (Coleoptera: Cucujidae) for America north of Mexico, with notes on other species. Insecta Mundi. 2003;17:157–177.
Lee C.F., Satô M. A review of the genus Cucujus Fabricius (Insecta: Cucujoidea: Cucujidae) from Taiwan, Japan, and China, with descriptions of two new species and the larvae of Cucujus mniszechi Grouvelle. Zool. Stud. 2007;46:311–321.
Lee C.F., Pütz A. A new species of Cucujus Fabricius, 1775 from China and key to the east–Palaearctic species of the genus (Coleoptera: Cucujidae) Entomol. Z. 2008;118:211–213.
Horák J., Chobot K. Worldwide distribution of saproxylic beetles of the genus Cucujus Fabricius, 1775 (Coleoptera: Cucujidae) In: Buse J., Alexander K., Ranius T., Assmann T., editors. Proceedings of the 5th Symposium and Workshop on the Conservation of Saproxylic Beetles, Lüneberg, Germany, 14–16 June 2008. Pensoft Publishers; Moscow, Russia: 2009. pp. 189–206.
Lee J., Thomas M.C. Clarification of the taxonomic status of Cucujus clavipes with descriptions of the larvae of C. c. clavipes and C. c. puniceus (Coleoptera: Cucujidae) Fla. Entomol. 2011;94:145–150. doi: 10.1653/024.094.0204. DOI
Bonacci T., Mazzei A., Horák J., Brandmayr P. Cucujus tulliae sp. n.—An endemic Mediterranean saproxylic beetle from genus Cucujus Fabricius, 1775 (Coleoptera, Cucujidae), and keys for identification of adults and larvae native to Europe. ZooKeys. 2012;212:63–79. doi: 10.3897/zookeys.212.3254. PubMed DOI PMC
Marris J.W.M., Ślipiński A. A revision of the Pediacus Shuckard 1839 (Coleoptera: Cucujidae) of Asia and Australasia. Zootaxa. 2014;3754:32–58. doi: 10.11646/zootaxa.3754.1.2. PubMed DOI
Bussler H. Cucujus muelleri sp. n. aus den kaspischen Gebirgswaldern des Iran (Coleoptera: Cucujidae) Nachr. Der Bayer. Entomol. 2017;66:54–58.
Marris J.W.M. A revision of the flat bark beetle genus Platisus Erichson, 1842 (Coleoptera: Cucujidae) Austral Entomol. 2017;56:277–295. doi: 10.1111/aen.12232. DOI
Háva J., Zahradník P., Růžička T. A new species of genus Cucujus Fabricius, 1775 (Coleoptera: Cucujidae) from China. Nat. Som. 2019;33:129–134. doi: 10.24394/NatSom.2019.33.129. DOI
Zhao M.-Z., Zhang J.-K. Contribution to the knowledge of the genus Cucujus Fabricius (Coleoptera, Cucujidae) from China. Zootaxa. 2019;4544:144–150. doi: 10.11646/zootaxa.4544.1.10. PubMed DOI
Jin M., Zwick A., Ślipiński A., Marris J.W.M., Thomas M.C., Pang H. A comprehensive phylogeny of flat bark beetles (Coleoptera: Cucujidae) with a revised classification and a new South American genus. Syst. Entomol. 2020;45:248–268. doi: 10.1111/syen.12392. DOI
Jaskuła R., Michalski M., Acal D.A. First record of the family Cucujidae (Insecta: Coleoptera) from Vietnam with a checklist and a key to species currently known from Indochinese Peninsula. Orient. Insects. 2020 doi: 10.1080/00305316.2020.1839589. DOI
Fabricius J.C. Species Insectorum, Exhibentes Eorum Differentias Specificas, Synonyma Auctorum, Loca Natalia, Metamorphosin, Adjectis Observationibus, Descriptionibus. NCSU Libraries; Raleigh, NC, USA: 1781. p. 566. Tom. 1. C. E. Bohnii, Hamburg-Kiel. DOI
Mannercheim G.C.G. Beitrag zur Kaefer-Fauna der Aleutischen Inseln, der Inseln Sitkha und Neu-Californiens. Bull. De La Société Impériale Des Nat. De Moscou. 1843;16:175–314.
DeLeon D. An annotated list of the parasites, predators, and other associated fauna of the mountain pine beetle in western white pine and lodgepole pine. Can. Entomol. 1934;66:51–61. doi: 10.4039/Ent6651-3. DOI
Smith D.B., Sears M.K. Mandibular structure and feeding habits of the morphologically similar coleopterous larvae: Cucujus clavipes (Cucujidae), Dendroides canadensis (Pyrochroidae) and Pytho depressus (Salpingidae) Can. Entomol. 1982;114:173–175. doi: 10.4039/Ent114173-2. DOI
Duman J.G. Chance in overwintering mechanism of the cucujid beetle, Cucujus clavipes. J. Insect Physiol. 1984;30:235–239. doi: 10.1016/0022-1910(84)90008-8. DOI
Kukal J.G., Duman J.G. Switch in the overwintering strategy of two insect species and latitudinal differences in cold hardiness. Can. J. Zool. 1989;67:825–827. doi: 10.1139/z89-121. DOI
Hammond H.E.J. Arthropod biodiversity from Populus coarse woody material in north-central Alberta: A review of taxa and collection methods. Can. Entomol. 1997;129:1009–1033. doi: 10.4039/Ent1291009-6. DOI
Hammond J.H.E., Langor D.W., Spence J.R. Early colonization of Populus wood by saproxylic beetles (Coleoptera) Can. J. For. Res. 2001;31:1175–1183. doi: 10.1139/x01-057. DOI
Kennedy A.A., McCullough D.G. Phenology of the larger European pine shoot beetle Tomicus piniperda (L.) (Coleoptera: Scolytidae) in relation to native bark beetles and natural enemies in pine stands. Environ. Entomol. 2002;31:261–272. doi: 10.1603/0046-225X-31.2.261. DOI
Bennett V.A., Sformo T., Walters K., Toien O., Jeannet K., Hochstrasser R., Pan Q., Serianni A.S., Barnes B.M., Duman J.G. Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): Roles of antifreeze proteins, polyols, dehydration and diapause. J. Exp. Biol. 2005;208:4467–4477. doi: 10.1242/jeb.01892. PubMed DOI
Jacobs J.M., Spence J.R., Langor D.W. Influence of boreal forest succession and dead wood qualities on saproxylic beetles. Agric. For. Entomol. 2007;9:3–16. doi: 10.1111/j.1461-9563.2006.00310.x. DOI
Dollin P.E., Majka C.G., Duinker P.N. Saproxylic beetle (Coleoptera) communities and forest management practices in coniferous stands in southwestern Nova Scotia, Canada. ZooKeys. 2008;2:291–336. doi: 10.3897/zookeys.2.15. DOI
Majka C.G. The flat bark beetles (Coleoptera: Silvanidae, Cucujidae, Laemophloeidae) of Atlantic Canada. ZooKeys. 2008;2:221–238. doi: 10.3897/zookeys.2.14. DOI
Sformo T., Walters K., Jeannet K., Wowk B., Fahy G.M., Barnes B.M., Duman J.G. Deep supercooling, vitrification and limited survival to −100 °C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J. Exp. Biol. 2010;213:502–509. doi: 10.1242/jeb.035758. PubMed DOI
Carrasco M.A., Buechler S.A., Arnold R.A., Sformo T., Barnes B.M., Duman J.G. Elucidating the biochemical overwintering adaptations of larval Cucujus clavipes puniceus, a nonmodel organism, via high throughput proteomics. J. Proteome Res. 2011;10:4634–4646. doi: 10.1021/pr200518y. PubMed DOI
Sformo T., McIntyre J., Walters K.R., Jr., Barnes B.M., Duman J. Probability of freezing in the freeze-avoiding beetle larvae Cucujus clavipes puniceus (Coleoptera: Cucujidae) from interior Alaska. J. Insect Physiol. 2011;57:1170–1177. doi: 10.1016/j.jinsphys.2011.04.011. PubMed DOI
Carrasco M.A., Buechler S.A., Arnold R.A., Sformo T., Barnes B.M., Duman J.G. Investigating the deep supercooling ability of an Alaskan beetle, Cucujus clavipes puniceus, via high throughput proteomics. J. Proteome Res. 2012;75:1220–1234. doi: 10.1016/j.jprot.2011.10.034. PubMed DOI
Vu H.M., Duman J.G. Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer. J. Exp. Biol. 2017;220:2726–2732. doi: 10.1242/jeb.161331. PubMed DOI
Hsiao Y. A taxonomic study of Cucujus Fabricius, 1775 from Asia (Coleoptera: Cucujidae), with descriptions of new species and notes on morphological classification. Insect Syst. Evol. 2020 doi: 10.1163/1876312X-bja10012. DOI
Tozer B., Sandwell D.T., Smith W.H.F., Olson C., Beale J.R., Wessel P. Global bathymetry and topography at 15 arc sec: SRTM15+ Earth Space Sci. 2019;6:1847–1864. doi: 10.1029/2019EA000658. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 20 January 2021)]. Available online: https://www.R-project.org/
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016. [(accessed on 20 January 2021)]. Available online: https://ggplot2.tidyverse.org.
Ter Braak C.J.F. CANOCO—A FORTRAN Program for Canonical Community Ordination by [Partial][Detrended][Canonical] Correspondence Analysis, Principal Components Analysis and Redundancy Analysis (Version 2.1) DLO Agricultural Mathematics Group; Wageningen, The Netherlands: 1987. p. 95.
Ter Braak C.J.F., Šmilauer P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5) Microcomputer Power; Ithaca, NY, USA: 2002. p. 499.
Brown J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014;5:694–700. doi: 10.1111/2041-210X.12200. PubMed DOI PMC
Phillips S.J., Dudík M., Schapire R.E. Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Canada, 4–8 July 2004. ACM; New York, NY, USA: 2004. A maximum entropy approach to species distribution modeling. ICML ’04; pp. 655–662. DOI
Phillips S.J., Anderson R., Schapire R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI
Elith J., Phillips S.J., Hastie T., Dudík M., Chee Y.E., Yates C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011;17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x. DOI
Fick S.E., Hijmans R.J. WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Hengl T., de Jesus J.M., MacMillan R.A., Batjes N.H., Heuvelink G.B.M., Ribeiro E., Samuel-Rosa A., Kempen B., Leenaars J.G.B., Walsh M.G., et al. SoilGrids1km—Global Soil Information Based on Automated Mapping. PLoS ONE. 2014;9:e105992. doi: 10.1371/journal.pone.0105992. PubMed DOI PMC
Barve N., Barve V., Jimenez-Valverde A., Lira-Noriega A., Maher S.P., Peterson A.T., Soberón J., Villalobos F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Mod. 2011;222:1810–1819. doi: 10.1016/j.ecolmodel.2011.02.011. DOI
O’Neill B.C., Kriegler E., Riahi K., Ebi K.L., Hallegatte S., Carter T.R., Mathur R., van Vuuren D.P. A new scenario frame-work for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014;122:387–400. doi: 10.1007/s10584-013-0905-2. DOI
Phillips S.B., Aneja V.P., Kang D., Arya S.P. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Int. J. Glob. Environ. Issues. 2006;6:231–252. doi: 10.1504/IJGENVI.2006.010156. DOI
Mason S.J., Graham N.E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves statistical significance and interpretation. Q. J. R. Meteorol. Soc. 2002;128:2145–2166. doi: 10.1256/003590002320603584. DOI
Evangelista P.H., Kumar S., Stohlgren T.J., Jarnevich C.S., Crall A.W., Norman III J.B., Barnett D.T. Modelling invasion for a habitat generalist and a specialist plant species. Divers Distrib. 2008;14:808–817. doi: 10.1111/j.1472-4642.2008.00486.x. DOI
Allouche O., Tsoar A., Kadmon R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS) J. Appl. Ecol. 2006;43:1223–1232. doi: 10.1111/j.1365-2664.2006.01214.x. DOI
Horák J., Chobot K. Phenology and notes on the behaviour of Cucujus cinnaberinus: Points for understanding the conservation of the saproxylic beetle. North-West. J. Zool. 2011;7:352–355.
Marczak D. Zgniotek cynobrowy Cucujus cinnaberinus w Kampinoskim Parku Narodowym i uwagi do jego monitoringu. Studia i Materiały CEPL w Rogowie. 2016;49A:142–152.
Bale J.S., Masters G.J., Hodkinson I.D., Amack C., Bezemer T.M., Brown V.K., Butterfield J., Buse A., Coulson J.C., Farrar J., et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 2002;8:1–16. doi: 10.1046/j.1365-2486.2002.00451.x. DOI
Menéndez R. How are insects responding to global warming. Tijdschr. Voor Entomol. 2007;150:355–365.
Lieth H., editor. Phenology and Seasonality Modeling. Ecological Studies Series. Springer; New York, NY, USA: 1974. p. 444.
Tauber M.J., Tauber C.A. Insect seasonality: Diapause maintenance, termination, and postdiapause development. Annu. Rev. Entomol. 1976;21:81–107. doi: 10.1146/annurev.en.21.010176.000501. DOI
Denno R.F., Dingle H. Insect Life History Patterns: Habitat and Geographic Variation. Springer; New York, NY, USA: 1981. p. 225.
Brown V.K., Hodek I., editors. Diapause and Life Cycle Strategies in Insects. W. Junk Publisher; Berlin, Germany: 1983. p. 283.
Scott J.A., Epstein M.E. Factors affecting phenology in a temperate insect community. Am. Midl. Nat. 1987;117:103–118. doi: 10.2307/2425712. DOI
Alonso C. Variation in herbivory by Yponomeuta mahalebella on its only host plant Prunus mahaleb along an elevational gradient. Ecol. Entomol. 1999;24:371–379. doi: 10.1046/j.1365-2311.1999.00211.x. DOI
Hodkinson I.D. Terrestrial insects along elevations gradients. Biol. Rev. 2005;80:489–513. doi: 10.1017/S1464793105006767. PubMed DOI
Lazzari S.M.N., Lazzarotto C.M. Distribuição altitudinal e sazonal de afídeos (Hemiptera, Aphididae) na Serra do Mar, Paraná, Brasil. Rev. Bras. De Zool. 2005;22:891–897. doi: 10.1590/S0101-81752005000400013. DOI
Merrill R.M., Gutiérrez D., Lewis O.T., Gutiérrez J., Díez S.B., Wilson R.J. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. J. Anim. Ecol. 2008;77:145–155. doi: 10.1111/j.1365-2656.2007.01303.x. PubMed DOI
Buchholz L. Zgniotek cynobrowy Cucujus cinnaberinus (Scopoli, 1763) In: Makomaska-Juchewicz M., Baran P., editors. Monitoring Gatunków Zwierząt. Przewodnik Metodyczny. Część Druga. Biblioteka Monitoringu Środowiska, Inspekcja Ochrony Środowiska; Kraków, Poland: 2012. pp. 419–446, 522.
Parmesan C., Ryrholm N., Stefanescu C., Hill J.K., Thomas C.D., Descimon H., Huntley B., Kaila L., Kullberg J., Tammaru T., et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature. 1999;399:579–583. doi: 10.1038/21181. DOI
Roy D.B., Sparks T.H. Phenology of British butterflies and climate change. Glob. Chang. Biol. 2000;6:407–416. doi: 10.1046/j.1365-2486.2000.00322.x. DOI
Forister M.L., Shapiro A.M. Climatic trends and advancing spring flight of butterflies in lowland California. Glob. Chang. Biol. 2003;9:1130–1135. doi: 10.1046/j.1365-2486.2003.00643.x. DOI
Bartomeus I., Ascher J.S., Wagner D., Danforth B.N., Colla S., Kornbluth S., Winfree R. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl. Acad. Sci. USA. 2011;108:20654–20659. doi: 10.1073/pnas.1115559108. PubMed DOI PMC
Diamond S.E., Frame A.M., Martin R.A., Buckley L.B. Species’ traits predict phenological responses to climate change in butterflies. Ecology. 2011;92:1005–1012. doi: 10.1890/10-1594.1. PubMed DOI
Guo K., Sun O.J., Kang L. The responses of insects to global warming. In: Liu T., Kang L., editors. Recent Advances in Entomological Research. Springer; Berlin/Heidelberg, Germany: 2011. DOI
Brooks S.J., Self A., Toloni F., Sparks T. Natural history museum collections provide information on phenological change in British butterflies since the late-nineteenth century. Int. J. Biometeorol. 2014;58:1749–1758. doi: 10.1007/s00484-013-0780-6. PubMed DOI
Kharouba H.M., Paquette S.R., Kerr J.T., Vellend M. Predicting the sensitivity of butterfly phenology to temperature over the past century. Glob. Chang. Biol. 2014;20:504–514. doi: 10.1111/gcb.12429. PubMed DOI
Bell J.R., Alderson L., Izera D., Kruger T., Parker S., Pickup J., Shortall C.R., Taylor M.S., Verrier P., Harrington R. Long-term phenological trends, species accumulation rates, aphid traits and climate: Five decades of change in migrating aphids. J. Anim. Ecol. 2015;84:21–34. doi: 10.1111/1365-2656.12282. PubMed DOI PMC
Sato Y., Sato S. Spring Temperature Predicts the Long-term Molting Phenology of Two Cicadas, Cryptotympana facialis and Graptopsaltria nigrofuscata (Hemiptera: Cicadidae) Ann. Entomol. Soc. Am. 2015;108:494–500. doi: 10.1093/aesa/sav036. DOI
Forrest J.R.K. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 2016;17:49–54. doi: 10.1016/j.cois.2016.07.002. PubMed DOI
Thomsen P.F., Jørgensen P.S., Bruun H.H., Pedersen J., Riis-Nielsen T., Jonko K., Słowińska I., Rahbek C., Karsholt O. Resource specialists lead local insect community turnover associated with temperature—Analysis of an 18-year full-seasonal record of moths and beetles. J. Anim. Ecol. 2016;85:251–261. doi: 10.1111/1365-2656.12452. PubMed DOI
Pureswaran D.S., Roques A., Battisti A. Forest Insects and Climate Change. Curr. For. Rep. 2018;4:35–50. doi: 10.1007/s40725-018-0075-6. DOI
Lehmann P., Ammunét T., Barton M., Battisti A., Eigenbrode S.D., Jepsen J.U., Kalinkat G., Neuvonen S., Niemelä P., Terblanche J.S., et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 2020;18:141–150. doi: 10.1002/fee.2160. DOI
Thomas M.C. Family 82. Cucujidae Latreille 1802. In: Arnett R.H. Jr., Thomas M.C., Skelley P.E., Frank J.H., editors. American Beetles: Polyphaga: Scarabaeoidea through Cuculionoidea. Volume 2. CRC Press; Boca Raton, FL, USA: 2002. pp. 329–330.
Evans A.V., Hogue J.N. Field Guide to Beetles of California, Flat Bark Beetles (Cucujidae) University of California Press; Berkeley, CA, USA: Los Angeles, CA, USA: London, UK: 2006.
Horák J., Chobot K., Kohutka A., Gebauer R. Possible factors influencing distribution of a threatened saproxylic beetle Cucujus cinnaberinus (Scopoli, 1763) (Coleoptera: Cucujidae) Coleopt. Bull. 2008;62:437–440. doi: 10.1649/1119.1. DOI
Horák J., Vávrová E., Chobot K. Habitat preferences influencing populations, distribution and conservation of the endangered saproxylic beetle Cucujus cinnaberinus (Coleoptera: Cucujidae) at the landscape level. Eur. J. Entomol. 2010;107:81–88. doi: 10.14411/eje.2010.011. DOI
Mazzei A., Bonacci T., Contarini E., Zetto T., Brandmayr P. Rediscovering the ‘umbrella species’ candidate Cucujus cinnaberinus (Scopoli, 1763) in Southern Italy (Coleoptera Cucujidae), and notes on bionomy. Ital. J. Zool. 2011;78:264–270. doi: 10.1080/11250003.2010.485210. DOI
Horák J., Chumanová E., Hilszczański J. Saproxylic beetle thrives on the openness in management: A case study on the ecological requirements of Cucujus cinnaberinus from Central Europe. Insect Conserv. Divers. 2012;5:403–413. doi: 10.1111/j.1752-4598.2011.00173.x. DOI
Goczał J., Rossa R. Dead wood complexity shapes the pattern of the occurrence of threatened saproxylic beetle Cucujus cinnaberinus. Pol. J. Ecol. 2017;65:158–165. doi: 10.3161/15052249PJE2017.65.1.014. DOI
Vrezec A., Ambrožič S., Kobler A., Kapla A., de Groot M. Cucujus cinnaberinus (Scopoli, 1763) at its terra typica in Slovenia: Historical overview, distribution patterns and habitat selection. Nat. Conserv. 2017;19:219–229. doi: 10.3897/natureconservation.19.12645. DOI
Bełcik M., Goczał L., Ciach M. Large-scale habitat model reveals a key role of large trees and protected areas in the metapopulation survival of the saproxylic specialist Cucujus Cinnaberinus. Biodivers. Conserv. 2018;28:3851–3871. doi: 10.1007/s10531-019-01854-0. DOI
Bonacci T., Mazzei A., Naccarato A., Elliani R., Tagarelli A., Brandmayr P. Beetles “in red”: Are the endangered flat bark beetles Cucujus cinnaberinus and C. haematodes chemically protected? (Coleoptera: Cucujidae) Eur. Zool. J. 2018;85:129–137. doi: 10.1080/24750263.2018.1449906. DOI
Bonacci T., Rovito M., Horák J., Brandmayr P. Artificial Feeding and Laboratory Rearing of Endangered Saproxylic Beetles as a Tool for Insect Conservation. J. Insect Sci. 2020;20:1–7. doi: 10.1093/jisesa/ieaa098. PubMed DOI PMC
Barnosky A.D., Matzke N., Tomiya S., Wogan G.O.U., Swarts B., Quental T.B., Marshall C., McGuire J.L., Lindsey E.L., Maguire K.C., et al. Has the Earth’s sixth mass extinction already arrived? Nature. 2011;471:51–57. doi: 10.1038/nature09678. PubMed DOI
Ceballos G., Ehrlich P.R., Barnosky A.D., García A., Pringle R.M., Palmer T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015;1:e1400253. doi: 10.1126/sciadv.1400253. PubMed DOI PMC
Ceballos G., Ehrlich P.R., Dirzo R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. USA. 2017;114:E6089–E6096. doi: 10.1073/pnas.1704949114. PubMed DOI PMC
Hughes L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000;15:56–61. doi: 10.1016/S0169-5347(99)01764-4. PubMed DOI
Walther G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J.-M., Hoegh-Guldberg O., Bairlein F. Ecological responses to recent climate change. Nature. 2002;416:389–395. doi: 10.1038/416389a. PubMed DOI
Parmesan C., Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42. doi: 10.1038/nature01286. PubMed DOI
Root T.L., Price J.T., Hall K.R., Schneider S.H., Rosenzweig C., Pounds J.A. Fingerprints of global warming on wild animals and plants. Nature. 2003;421:57–60. doi: 10.1038/nature01333. PubMed DOI
Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., de Siqueira M.F., Grainger A., Hannah L., et al. Extinction risk from climate change. Nature. 2004;427:145–148. doi: 10.1038/nature02121. PubMed DOI
Walther G.-R., Beißner S., Burga C.A. Trends in the upward shift of alpine plants. J. Veg. Sci. 2005;16:541–548. doi: 10.1111/j.1654-1103.2005.tb02394.x. DOI
Menzel A., Sparks T.H., Estrella N., Koch E., Aasa A., Ahas R., Alm-Kübler K., Bissolli P., Braslavská O., Briede A., et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006;12:1969–1976. doi: 10.1111/j.1365-2486.2006.01193.x. DOI
Parmesan C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 2006;37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100. DOI
Lenoir J., Gégout J.C., Marquet P.A., de Ruffray P., Brisse H. A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. Science. 2008;320:1768–1771. doi: 10.1126/science.1156831. PubMed DOI
Schweiger O., Biesmeijer J.C., Bommarco R., Hickler T., Hulme P.E., Klotz S., Kühn I., Moora M., Nielsen A., Ohlemüller R., et al. Multiple stressors on biotic interactions: How climate change and alien species interact to affect pollination. Biol. Rev. 2010;85:777–795. doi: 10.1111/j.1469-185X.2010.00125.x. PubMed DOI
Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012;15:365–377. doi: 10.1111/j.1461-0248.2011.01736.x. PubMed DOI PMC
Rasmont P., Franzén M., Lecocq T., Harpke A., Roberts S., Biesmeijer J., Castro L., Cederberg B., Dvorak L., Fitzpatrick Ú., et al. Climatic risk and distribution atlas of European bumblebees. BioRisk. 2015;10:1–236. doi: 10.3897/biorisk.10.4749. DOI
Pecl G.T., Araújo M.B., Bell J.D., Blanchard J., Bonebrake T.C., Chen I.-C., Clark T.D., Colwell R.K., Danielsen F., Evengård B., et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science. 2017;355:eaai9214. doi: 10.1126/science.aai9214. PubMed DOI
Varela S., Lobo J.M., Hortal J. Using species distribution models in paleobiogeography: A matter of data, predictors and concepts. Palaeogeogr. Palaeoclim.. Palaeoecol. 2011;310:451–463. doi: 10.1016/j.palaeo.2011.07.021. DOI
Lima-Ribeiro M.S., Varela S., Nógues-Bravo D., Diniz-Filho J.A.F. Potential suitable areas of Giant Ground Sloths dropped before its extinction in South America: The evidences from bioclimatic envelope modelling. Nat. Conserv. 2012;10:145–151. doi: 10.4322/natcon.2012.022. DOI
Barrientos R., Kvist L., Barbosa A., Valera F., Khoury F., Varela S., Moreno E. Refugia, colonization and diversification of an arid-adapted bird: Coincident patterns between genetic data and ecological niche modelling. Mol. Ecol. 2014;23:390–407. doi: 10.1111/mec.12588. PubMed DOI
Kukwa M., Kolanowska M. Glacial refugia and the prediction of future habitat coverage of the South American lichen species Ochrolechia austroamericana. Sci. Rep. 2016;6:38779. doi: 10.1038/srep38779. PubMed DOI PMC
Biella P., Bogliani G., Cornalba M., Manino A., Neumayer J., Porporato M., Rasmont P., Milanesi P. Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae) J. Insect Conserv. 2017;21:357–366. doi: 10.1007/s10841-017-9983-1. DOI
Wilson C.D., Roberts D., Reid N. Applying species distribution modeling to identify areas of high conservation value for endangered species: A case study using Margaritifera margaritifera (L.) Biol. Conserv. 2011;144:821–829. doi: 10.1016/j.biocon.2010.11.014. DOI
Koch R., Almeida-Cortez J.S., Kleinschmit B. Revealing areas of high nature conservation importance in a seasonally dry tropical forest in Brazil: Combination of modelled plant diversity hot spots and threat patterns. J. Nat. Conserv. 2017;35:24–39. doi: 10.1016/j.jnc.2016.11.004. DOI
Spiers J.A., Oatham M.P., Rostant L.V., Farrell A.D. Applying species distribution modelling to improving conservation based decisions: A gap analysis of Trinidad and Tobago’s endemic vascular plants. Biodivers. Conserv. 2018;27:2931–2949. doi: 10.1007/s10531-018-1578-y. DOI
Nóbrega C.C., De Marco P., Jr. Unprotecting the rare species: A niche-based gap analysis for odonates in a core Cerrado area. Divers. Distrib. 2011;17:491–505. doi: 10.1111/j.1472-4642.2011.00749.x. DOI
Silva D.P., Aguiar A.J.C., Melo G.A.R., Anjos-Silva E.J., De Marco P., Jr. Amazonian species within the Cerrado savanna: New records and potential distribution for Aglae caerulea (Apidae: Euglossini) Apidologie. 2013;44:673–683. doi: 10.1007/s13592-013-0216-7. DOI
Estay S.A., Labra F.A., Sepulveda R.D., Bacigalupe L.D. Evaluating Habitat Suitability for the Establishment of Monochamus spp. through Climate-Based Niche Modeling. PLoS ONE. 2014;9:e102592. doi: 10.1371/journal.pone.0102592. PubMed DOI PMC
Pérez-De la O.N.B., Espinosa-Zaragoza S., López-Martínez V., Hight S.D., Varone L. Ecological niche modeling to calculate ideal sites to introduce a natural enemy: The case of Apanteles opuntiarum (Hymenoptera: Braconidae) to control Cactoblastis cactorum (Lepidoptera: Pyralidae) in North America. Insects. 2020;11:454. doi: 10.3390/insects11070454. PubMed DOI PMC
Raxworthy C., Martinez-Meyer E., Horning N., Nussbaum R.A., Schneider G.E., Ortega-Huerta M.A., Peterson A.T. Predicting distributions of known and unknown reptile species in Madagascar. Nature. 2003;426:837–841. doi: 10.1038/nature02205. PubMed DOI
Silva D.P., Andrade A.F.A., Oliveira J.P.J., Morais D.M., Vieira J.E.A., Engel M.S. Current and future ranges of an elusive North American insect using species distribution models. J. Insect Conserv. 2019;23:175–186. doi: 10.1007/s10841-019-00131-3. DOI
Rödder D., Schmidtlein S., Veith M., Lötters S. Alien invasive slider turtle in unpredicted habitat: A matter of niche shift or of predictors studied? PLoS ONE. 2009;4:e7843. doi: 10.1371/journal.pone.0007843. PubMed DOI PMC
Gallien L., Muenkemueller T., Albert C.H., Boulangeat I., Thuiller W. Predicting potential distributions of invasive species: Where to go from here? Divers. Distrib. 2010;16:331–342. doi: 10.1111/j.1472-4642.2010.00652.x. DOI
Hortal J., Roura-Pascual N., Sanders N.J., Rahbek C. Understanding (insect) species distributions across spatial scales. Ecography. 2010;33:51–53. doi: 10.1111/j.1600-0587.2009.06428.x. DOI
Kolanowska M., Konowalik K. Niche conservatism and future changes in the potential area coverage of Arundina graminifolia, an invasive orchid species from Southeast Asia. Biotropica. 2014;46:157–165. doi: 10.1111/btp.12089. DOI
Olivera L., Minghetti E., Montemayor S. Ecological niche modeling (ENM) of Leptoglossus clypealis a new potential global invader: Following in the footsteps of Leptoglossus occidentalis? Bull. Entomol. Res. 2020:1–12. doi: 10.1017/S0007485320000656. PubMed DOI
Martins A.C., Silva D.P., De Marco Jr P., Melo G.A.R. Species conservation under future climate change: The case of Bombus bellicosus, a potentially threatened South American bumblebee species. J. Insect Conserv. 2015;19:33–43. doi: 10.1007/s10841-014-9740-7. DOI
LeConte J.L. Synopsis of the Cucujides of the United States. Proc. Acad. Nat. Sci. Phila. 1854;7:73–79.
LeConte J.L. Classification of the Coleoptera of North America. Prepared for the Smithsonian Institution. Part 1. Smithson. Misc. Collect. 1861;136:286.
LeConte J.L. List of the Coleoptera of North America. Prepared for the Smithsonian Institution. Part 1. Smithson. Misc. Collect. 1863;140:77.