Melatonin-Induced Protection Against Plant Abiotic Stress: Mechanisms and Prospects
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35755707
PubMed Central
PMC9218792
DOI
10.3389/fpls.2022.902694
Knihovny.cz E-zdroje
- Klíčová slova
- ROS, abiotic stress, anti-oxidant defence, genes regulation, growth, melatonin, signalling crosstalk,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Global warming in this century increases incidences of various abiotic stresses restricting plant growth and productivity and posing a severe threat to global food production and security. The plant produces different osmolytes and hormones to combat the harmful effects of these abiotic stresses. Melatonin (MT) is a plant hormone that possesses excellent properties to improve plant performance under different abiotic stresses. It is associated with improved physiological and molecular processes linked with seed germination, growth and development, photosynthesis, carbon fixation, and plant defence against other abiotic stresses. In parallel, MT also increased the accumulation of multiple osmolytes, sugars and endogenous hormones (auxin, gibberellic acid, and cytokinins) to mediate resistance to stress. Stress condition in plants often produces reactive oxygen species. MT has excellent antioxidant properties and substantially scavenges reactive oxygen species by increasing the activity of enzymatic and non-enzymatic antioxidants under stress conditions. Moreover, the upregulation of stress-responsive and antioxidant enzyme genes makes it an excellent stress-inducing molecule. However, MT produced in plants is not sufficient to induce stress tolerance. Therefore, the development of transgenic plants with improved MT biosynthesis could be a promising approach to enhancing stress tolerance. This review, therefore, focuses on the possible role of MT in the induction of various abiotic stresses in plants. We further discussed MT biosynthesis and the critical role of MT as a potential antioxidant for improving abiotic stress tolerance. In addition, we also addressed MT biosynthesis and shed light on future research directions. Therefore, this review would help readers learn more about MT in a changing environment and provide new suggestions on how this knowledge could be used to develop stress tolerance.
Biology Department Collage of Science Jouf University Sakaka Saudi Arabia
Department of Agriculture Guru Nanak Dev University Amritsar India
Department of Agronomy Faculty of Agriculture Kafrelsheikh University Kafr El Sheikh Egypt
Department of Agronomy University of Agriculture Faisalabad Faisalabad Pakistan
Department of Biology Al Jumum University College Umm Al Qura University Makkah Saudi Arabia
Department of Field Crops Faculty of Agriculture Siirt University Siirt Turkey
Department of Plant Physiology Slovak University of Agriculture Nitra Slovakia
Research Center on Ecological Sciences Jiangxi Agricultural University Nanchang China
Zobrazit více v PubMed
Abbasi H., Jamil M., Haq A., Ali S., Ahmad R., Malik Z., et al. (2016). Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste Agricul. 103 229–238.
Ahammed G. J., Wu M., Wang Y., Yan Y., Mao Q., Ren J., et al. (2020). Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Sci. Hortic. 265:109205. 10.1016/j.scienta.2020.109205 DOI
Ahammed G. J., Xu W., Liu A., Chen S. (2018). COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Front. Plant Sci. 9:998. 10.3389/fpls.2018.00998 PubMed DOI PMC
Ahmad S., Kamran M., Ding R., Meng X., Wang H., Ahmad I., et al. (2019). Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ 7:e7793. 10.7717/peerj.7793 PubMed DOI PMC
Ahmad S., Muhammad I., Wang G. Y., Zeeshan M., Yang L., Ali I., et al. (2021). Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biol. 21:368. 10.1186/s12870-021-03160-w PubMed DOI PMC
Alharbi B. M., Elhakem A. H., Alnusairi G. S., Soliman M. H., Hakeem K. R., Hasan M. M., et al. (2021). Exogenous application of melatonin alleviates salt stress-induced decline in growth and photosynthesis in Glycine max (L.) seedlings by improving mineral uptake, antioxidant and glyoxalase system. Plant Soil Environ. 67 208–220. 10.17221/659/2020-pse DOI
Ali S., Eum H.-I., Cho J., Dan L., Khan F., Dairaku K., et al. (2019). Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmosph. Res. 222 114–133.
Antoniou C., Chatzimichail G., Xenofontos R., Pavlou J. J., Panagiotou E., Christou A., et al. (2017). Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J. Pineal Res. 62:e12401. 10.1111/jpi.12401 PubMed DOI
Arif N., Yadav V., Singh S., Kushwaha B. K., Singh S., Tripathi D. K., et al. (2016). “Assessment of antioxidant potential of plants in response to heavy metals,” in Plant Esponses to Xenobiotics, eds Singh A., Prasad S. M., Singh R. P. (Berlin: Springer; ), 97–125. 10.1007/978-981-10-2860-1_5 DOI
Arnao M. B., Hernández-Ruiz J. (2006). The physiological function of melatonin in plants. Plant Signal. Behav. 1 89–95. 10.4161/psb.1.3.2640 PubMed DOI PMC
Arnao M. B., Hernández-Ruiz J. (2014). Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci. 19 789–797. 10.1016/j.tplants.2014.07.006 PubMed DOI
Arnao M. B., Hernández-Ruiz J. (2018). Melatonin and its relationship to plant hormones. Ann. Bot. 121 195–207. 10.1093/aob/mcx114 PubMed DOI PMC
Arnao M. B., Hernández-Ruiz J. (2013). Growth conditions determine different melatonin levels in Lupinus albus L. J. Pineal Res. 55 149–155. 10.1111/jpi.12055 PubMed DOI
Asif M., Pervez A., Irshad U., Mehmood Q., Ahmad R. (2020). Melatonin and plant growth-promoting rhizobacteria alleviate the cadmium and arsenic stresses and increase the growth of Spinacia oleracea L. Plant Soil Environ. 66 234–241. 10.17221/135/2020-pse DOI
Back K., Tan D. X., Reiter R. J. (2016). Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J. Pineal Res. 61 426–437. 10.1111/jpi.12364 PubMed DOI
Bajwa V. S., Shukla M. R., Sherif S. M., Murch S. J., Saxena P. K. (2014). Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J. Pineal Res. 56 238–245. 10.1111/jpi.12115 PubMed DOI
Barand A., Nasibi F., Manouchehri Kalantari K., Moradi M. (2020). The effects of foliar application of melatonin on some physiological and biochemical characteristics and expression of fatty acid desaturase gene in pistachio seedlings (Pistacia vera L.) under freezing stress. J. Plant Interact. 15 257–265. 10.1080/17429145.2020.1781271 DOI
Barman D., Ghimire O., Chinnusamy V., Kumar R., Arora A. (2019). Amelioration of heat stress during reproductive stage in rice by melatonin. Ind. J. Agric. Sci. 89 1151–1156.
Bastam N., Baninasab B., Ghobadi C. (2013). Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Reg. 69 275–284.
Batool M., El-Badri A. M., Hassan M. U., Haiyun Y., Chunyun W., Zhenkun Y., et al. (2022a). Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies. J. Plant Growth Reg. 1–25.
Batool M., El-Badri A. M., Wang Z., Mohamed I. A., Yang H., Ai X., et al. (2022b). Rapeseed morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy 12:579.
Beebe S., Ramirez J., Jarvis A., Rao I. M., Mosquera G., Bueno J. M., et al. (2011). “Genetic improvement of common beans and the challenges of climate change,” in Crop Adaptation to Climate Change, eds Yadav S. S., Redden R., Hatfield J. L., Lotze-Campen H., Hall A. (Oxford, GB: John Wiley & Sons, Inc; ), 356–369. 10.1002/9780470960929.ch25 DOI
Burg M. B., Ferraris J. D. (2008). Intracellular organic osmolytes: function and regulation. J. Biol. Chem. 283 7309–7313. 10.1074/jbc.R700042200 PubMed DOI PMC
Buttar Z. A., Wu S. N., Arnao M. B., Wang C., Ullah I., Wang C. (2020). Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 9:809. 10.3390/plants9070809 PubMed DOI PMC
Byeon Y., Back K. (2015). Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa). J. Pineal Res. 58 343–351. 10.1111/jpi.12220 PubMed DOI
Byeon Y., Lee H. Y., Hwang O. J., Lee H. J., Lee K., Back K. (2015). Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment. J. Pineal Res. 58 470–478. 10.1111/jpi.12232 PubMed DOI
Cai S. Y., Zhang Y., Xu Y. P., Qi Z. Y., Li M. Q., Ahammed G. J., et al. (2017). HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J. Pineal Res. 62:e12387. 10.1111/jpi.12387 PubMed DOI
Campos C. N., Ávila R. G., De Souza K. R. D., Azevedo L. M., Alves J. D. (2019). Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants. Agric. Water Manag. 211 37–47.
Çelik Ö, Naziroǧlu M. (2012). Melatonin modulates apoptosis and TRPM2 channels in transfected cells activated by oxidative stress. Physiol. Behav. 107 458–465. 10.1016/j.physbeh.2012.09.013 PubMed DOI
Chattha M. U., Arif W., Khan I., Soufan W., Bilal Chattha M., Hassan M. U., et al. (2021). mitigation of cadmium induced oxidative stress by using organic amendments to improve the growth and yield of mash beans [Vigna mungo (L.)]. Agronomy 11:2152.
Chen L., Lu B., Liu L., Duan W., Jiang D., Li J., et al. (2021). Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. 162 506–516. 10.1016/j.plaphy.2021.03.029 PubMed DOI
Chen Q., Qi W.-B., Reiter R. J., Wei W., Wang B.-M. (2009). Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J. Plant Physiol. 166 324–328. 10.1016/j.jplph.2008.06.002 PubMed DOI
Chen Y. E., Mao J. J., Sun L. Q., Huang B., Ding C. B., Gu Y., et al. (2018). Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol. Plant. 164 349–363. 10.1111/ppl.12737 PubMed DOI
Cherono S., Ntini C., Wassie M., Mollah M. D., Belal M. A., Ogutu C., et al. (2021). Exogenous application of melatonin improves drought tolerance in coffee by regulating photosynthetic efficiency and oxidative damage. J. Am. Soc. Hortic. Sci. 146 24–32. 10.21273/jashs04964-20 PubMed DOI
Choi G. H., Lee H. Y., Back K. (2017). Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants. J. Pineal Res. 63:e12412. 10.1111/jpi.12412 PubMed DOI
Corpas F. J., Barroso J. B. (2015). Functions of nitric oxide (NO) in roots during development and under adverse stress conditions. Plants 4 240–252. 10.3390/plants4020240 PubMed DOI PMC
Cui G., Zhao X., Liu S., Sun F., Zhang C., Xi Y. (2017). Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol. Biochem. 118 138–149. 10.1016/j.plaphy.2017.06.014 PubMed DOI
Debnath B., Hussain M., Irshad M., Mitra S., Li M., Liu S., et al. (2018). Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential. Molecules 23:388. 10.3390/molecules23020388 PubMed DOI PMC
Debnath B., Islam W., Li M., Sun Y., Lu X., Mitra S., et al. (2019). Melatonin mediates enhancement of stress tolerance in plants. Int. J. Mol. Sci. 20:1040. 10.3390/ijms20051040 PubMed DOI PMC
Ding F., Liu B., Zhang S. (2017). Exogenous melatonin ameliorates cold-induced damage in tomato plants. Sci. Hortic. 219 264–271.
Dustgeer Z., Seleiman M. F., Imran K., Chattha M., Alhammad B. A., Jalal R. S., et al. (2021). Glycine-betaine induced salinity tolerance in maize by regulating the physiological attributes, antioxidant defense system and ionic homeostasis. Not. Bot. Horti Agrobot. Cluj Napoca 49 12248–12248. 10.15835/nbha49112248 DOI
Fu J., Wu Y., Miao Y., Xu Y., Zhao E., Wang J., et al. (2017). Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci. Rep. 7 1–11. 10.1038/srep39865 PubMed DOI PMC
Galano A., Tan D. X., Reiter R. J. (2013). On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J. Pineal Res. 54 245–257. 10.1111/jpi.12010 PubMed DOI
Gao W., Feng Z., Bai Q., He J., Wang Y. (2019). Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress. Int. J. Mol. Sci. 20:1176. 10.3390/ijms20051176 PubMed DOI PMC
Gao W., Zhang Y., Feng Z., Bai Q., He J., Wang Y. (2018). Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules 23:1580. 10.3390/molecules23071580 PubMed DOI PMC
Gong X., Shi S., Dou F., Song Y., Ma F. (2017). Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Molecules 22:1542. PubMed PMC
Gu Q., Chen Z., Yu X., Cui W., Pan J., Zhao G., et al. (2017). Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Sci. 261 28–37. 10.1016/j.plantsci.2017.05.001 PubMed DOI
Gu X., Xue L., Lu L., Xiao J., Song G., Xie M., et al. (2021). Melatonin enhances the waterlogging tolerance of Prunus persica by modulating antioxidant metabolism and anaerobic respiration. J. Plant Growth Reg. 40 2178–2190. 10.1007/s00344-020-10263-5 DOI
Han Q.-H., Huang B., Ding C.-B., Zhang Z.-W., Chen Y.-E., Hu C., et al. (2017). Effects of melatonin on antioxidative systems and photosystem II in cold-stressed rice seedlings. Front. Plant Sci. 8:785. 10.3389/fpls.2017.00785 PubMed DOI PMC
Hardeland R. (2013). Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J. Pineal Res. 55 325–356. 10.1111/jpi.12090 PubMed DOI
Hasan M., Ahammed G. J., Yin L., Shi K., Xia X., Zhou Y., et al. (2015). Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front. Plant Sci. 6:601. 10.3389/fpls.2015.00601 PubMed DOI PMC
Hasan M., Liu C.-X., Pan Y.-T., Ahammed G. J., Qi Z.-Y., Zhou J. (2018). Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants. Sci. Rep. 8 1–12. 10.1038/s41598-018-28561-0 PubMed DOI PMC
Hassan M. U., Aamer M., Chattha M. U., Ullah M. A., Sulaman S., Nawaz M., et al. (2017). The role of potassium in plants under drought stress: mini review. J. Basic Appl. Sci. 13 268–271. 10.6000/1927-5129.2017.13.44 DOI
Hassan M. U., Aamer M., Umer Chattha M., Haiying T., Shahzad B., Barbanti L., et al. (2020). The critical role of zinc in plants facing the drought stress. Agriculture 10:396.
Hassan M. U., Chattha M. U., Khan I., Chattha M. B., Aamer M., Nawaz M., et al. (2019). Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ. Sci. Pollut. Res. 26 12673–12688. 10.1007/s11356-019-04892-x PubMed DOI
Hassan M. U., Chattha M. U., Khan I., Chattha M. B., Barbanti L., Aamer M., et al. (2021). Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies—a review. Plant Biosyst. 155 211–234. 10.1080/11263504.2020.1727987 DOI
Hu Z., Fan J., Xie Y., Amombo E., Liu A., Gitau M. M., et al. (2016). Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin. Plant Physiol. Biochem. 100 94–104. 10.1016/j.plaphy.2016.01.008 PubMed DOI
Huang Y.-H., Liu S.-J., Yuan S., Guan C., Tian D.-Y., Cui X., et al. (2017). Overexpression of ovine AANAT and HIOMT genes in switchgrass leads to improved growth performance and salt-tolerance. Sci. Rep. 7 1–13. 10.1038/s41598-017-12566-2 PubMed DOI PMC
Imran K., Zafar H., Chattha M. U., Mahmood A., Maqbool R., Athar F., et al. (2022). Seed priming with different agents mitigate alkalinity induced oxidative damage and improves maize growth. Not. Bot. Horti Agrobot. Cluj Napoca 50 12615–12615. 10.15835/nbha50112615 DOI
Imran K. H. A. N., Seleiman M. F., Chattha M. U., Jalal R. S., Mahmood F., Hassan F. A., et al. (2021a). Enhancing antioxidant defense system of mung bean with a salicylic acid exogenous application to mitigate cadmium toxicity. Not. Bot. Horti Agrobot. Cluj Napoca 49 12303–12303.
Imran M., Aaqil Khan M., Shahzad R., Bilal S., Khan M., Yun B.-W., et al. (2021b). Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules 26:5116. 10.3390/molecules26175116 PubMed DOI PMC
Iqbal N., Fatma M., Gautam H., Umar S., Sofo A., D’ippolito I., et al. (2021). The crosstalk of melatonin and hydrogen sulfide determines photosynthetic performance by regulation of carbohydrate metabolism in wheat under heat stress. Plants 10:1778. 10.3390/plants10091778 PubMed DOI PMC
Jackson M., Colmer T. (2005). Response and adaptation by plants to flooding stress. Ann. Bot. 96 501–505. 10.1093/aob/mci205 PubMed DOI PMC
Jahan M. S., Guo S., Baloch A. R., Sun J., Shu S., Wang Y., et al. (2020). Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol. Environ Saf. 197:110593. 10.1016/j.ecoenv.2020.110593 PubMed DOI
Jahan M. S., Guo S., Sun J., Shu S., Wang Y., Abou El-Yazied A., et al. (2021). Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiol. Biochem. 167 309–320. 10.1016/j.plaphy.2021.08.002 PubMed DOI
Jahan M. S., Shu S., Wang Y., Chen Z., He M., Tao M., et al. (2019). Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol. 19:414. 10.1186/s12870-019-1992-7 PubMed DOI PMC
Jeandroz S., Lamotte O. (2017). Plant responses to biotic and abiotic stresses: lessons from cell signaling. Front. Plant Sci. 8:1772. 10.3389/fpls.2017.01772 PubMed DOI PMC
Jiang C., Cui Q., Feng K., Xu D., Li C., Zheng Q. (2016). Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol. Plant. 38 1–9.
Jiang D., Lu B., Liu L., Duan W., Chen L., Li J., et al. (2020). Exogenous melatonin improves salt stress adaptation of cotton seedlings by regulating active oxygen metabolism. PeerJ 8:e10486. 10.7717/peerj.10486 PubMed DOI PMC
Jiao J., Ma Y., Chen S., Liu C., Song Y., Qin Y., et al. (2016). Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Front. Plant Sci. 7:1387. 10.3389/fpls.2016.01387 PubMed DOI PMC
Kabiri R., Hatami A., Oloumi H., Naghizadeh M., Nasibi F., Tahmasebi Z. (2018). Foliar application of melatonin induces tolerance to drought stress in Moldavian balm plants (Dracocephalum moldavica) through regulating the antioxidant system. Folia Hortic. 30 155. 10.2478/fhort-2018-0016 DOI
Kang K., Kim Y. S., Park S., Back K. (2009a). Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant physiol. 150 1380–1393. 10.1104/pp.109.138552 PubMed DOI PMC
Kang K., Park S., Kim Y. S., Lee S., Back K. (2009b). Biosynthesis and biotechnological production of serotonin derivatives. Appl. Microbiol. Biotech. 83 27–34. 10.1007/s00253-009-1956-1 PubMed DOI
Kang K., Lee K., Park S., Kim Y. S., Back K. (2010). Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings. J. Pineal Res. 49 176–182. 10.1111/j.1600-079X.2010.00783.x PubMed DOI
Karaca P., Cekic F. Ö. (2019). Exogenous melatonin-stimulated defense responses in tomato plants treated with polyethylene glycol. Int. J. Veg. Sci. 25 601–609.
Kaur H., Mukherjee S., Baluska F., Bhatla S. C. (2015). Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants. Plant Signal. Behav. 10:e1049788. 10.1080/15592324.2015.1049788 PubMed DOI PMC
Ke Q., Ye J., Wang B., Ren J., Yin L., Deng X., et al. (2018). Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front. Plant Sci. 9:914. 10.3389/fpls.2018.00914 PubMed DOI PMC
Khan A., Numan M., Khan A. L., Lee I.-J., Imran M., Asaf S., et al. (2020a). Melatonin: awakening the defense mechanisms during plant oxidative stress. Plants 9:407. 10.3390/plants9040407 PubMed DOI PMC
Khan M. N., Khan Z., Luo T., Liu J., Rizwan M., Zhang J., et al. (2020b). Seed priming with gibberellic acid and melatonin in rapeseed: consequences for improving yield and seed quality under drought and non-stress conditions. Ind. Crops Prod. 156:112850.
Kobyliñska A., Reiter R. J., Posmyk M. M. (2017). Melatonin protects cultured tobacco cells against lead-induced cell death via inhibition of cytochrome c translocation. Front. Plant Sci. 8:1560. 10.3389/fpls.2017.01560 PubMed DOI PMC
Lee H. Y., Byeon Y., Back K. (2014). Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J. Pineal Res. 57 262–268. 10.1111/jpi.12165 PubMed DOI
Lee K., Back K. (2017). Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J. Pineal Res. 62:e12392. 10.1111/jpi.12392 PubMed DOI
Lee K., Zawadzka A., Czarnocki Z., Reiter R. J., Back K. (2016). Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa). J. Pineal Res. 61 470–478. 10.1111/jpi.12361 PubMed DOI
Lerner A. B., Case J. D., Takahashi Y., Lee T. H., Mori W. (1958). Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J. Am. Chem. Soc. 80 2587–2587.
Li C., Tan D.-X., Liang D., Chang C., Jia D., Ma F. (2015). Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J. Exp. Bot. 66 669–680. 10.1093/jxb/eru476 PubMed DOI
Li C., Wang P., Wei Z., Liang D., Liu C., Yin L., et al. (2012). The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J. Pineal Res. 53 298–306. 10.1111/j.1600-079X.2012.00999.x PubMed DOI
Li G. Z., Liu J., Chen S. J., Wang P. F., Liu H. T., Dong J., et al. (2021a). Melatonin promotes potassium deficiency tolerance by regulating HAK1 transporter and its upstream transcription factor NAC71 in wheat. J. Pineal Res. 70 e12727. 10.1111/jpi.12727 PubMed DOI
Li X., Ahammed G. J., Zhang X.-N., Zhang L., Yan P., Zhang L.-P., et al. (2021b). Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. J. Hazard. Mater. 403:123922. 10.1016/j.jhazmat.2020.123922 PubMed DOI
Li H., Chang J., Chen H., Wang Z., Gu X., Wei C., et al. (2017). Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front. Plant Sci. 8:295. 10.3389/fpls.2017.00295 PubMed DOI PMC
Li J., Yang Y., Sun K., Chen Y., Chen X., Li X. (2019). Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules 24:1826. 10.3390/molecules24091826 PubMed DOI PMC
Li X., Tan D. X., Jiang D., Liu F. (2016b). Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. J. Pineal Res. 61 328–339. 10.1111/jpi.12350 PubMed DOI
Li M. Q., Hasan M. K., Li C. X., Ahammed G. J., Xia X. J., Shi K., et al. (2016a). Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J. Pineal Res. 61 291–302. 10.1111/jpi.12346 PubMed DOI
Li X., Wei J.-P., Scott E. R., Liu J.-W., Guo S., Li Y., et al. (2018). Exogenous melatonin alleviates cold stress by promoting antioxidant defense and redox homeostasis in Camellia sinensis L. Molecules 23:165. 10.3390/molecules23010165 PubMed DOI PMC
Liang D., Gao F., Ni Z., Lin L., Deng Q., Tang Y., et al. (2018). Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione S-transferase transcription. Molecules 23 584. 10.3390/molecules23030584 PubMed DOI PMC
Liang D., Ni Z., Xia H., Xie Y., Lv X., Wang J., et al. (2019). Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci. Horticu. 246 34–43.
Liang X., Zhang L., Natarajan S. K., Becker D. F. (2013). Proline mechanisms of stress survival. Antioxid. Redox Signal. 19 998–1011. 10.1089/ars.2012.5074 PubMed DOI PMC
Liu C., Kang H., Wang Y., Yao Y., Gao Z., Du Y. (2021). Melatonin relieves ozone stress in grape leaves by inhibiting ethylene biosynthesis. Front. Plant Sci. 12:702874. 10.3389/fpls.2021.702874 PubMed DOI PMC
Liu D.-D., Sun X.-S., Liu L., Shi H.-D., Chen S.-Y., Zhao D.-K. (2019). Overexpression of the melatonin synthesis-related gene SlCOMT1 improves the resistance of tomato to salt stress. Molecules 24:1514. 10.3390/molecules24081514 PubMed DOI PMC
Liu N., Gong B., Jin Z., Wang X., Wei M., Yang F., et al. (2015b). Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal. J. Plant Physiol. 186 68–77. 10.1016/j.jplph.2015.07.012 PubMed DOI
Liu J., Wang W., Wang L., Sun Y. (2015a). Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Reg. 77 317–326. 10.1007/s10725-015-0066-6 DOI
Ma Y., Jiao J., Fan X., Sun H., Zhang Y., Jiang J., et al. (2017). Endophytic bacterium Pseudomonas fluorescens RG11 may transform tryptophan to melatonin and promote endogenous melatonin levels in the roots of four grape cultivars. Front. Plant Sci. 7:2068. 10.3389/fpls.2016.02068 PubMed DOI PMC
Marta B., Szafrañska K., Posmyk M. M. (2016). Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front. Plant Sci. 7:575. 10.3389/fpls.2016.00575 PubMed DOI PMC
Mehmood M., Khan I., Chattha M. U., Hussain S., Ahmad N., Aslam M. T., et al. (2021). Thiourea application protects maize from drought stress by regulating growth and physiological traits. Pak. J. Sci. 73 355–363.
Meloni D. A., Oliva M. A., Martinez C. A., Cambraia J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 49 69–76. 10.1186/s12870-020-02624-9 PubMed DOI PMC
Meng J. F., Xu T. F., Wang Z. Z., Fang Y. L., Xi Z. M., Zhang Z. W. (2014). The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. J. Pineal Res. 57 200–212. 10.1111/jpi.12159 PubMed DOI
Meng J. F., Yu Y., Shi T.-C., Fu Y.-S., Zhao T., Zhang Z. W. (2018). Melatonin treatment of pre-veraison grape berries modifies phenolic components and antioxidant activity of grapes and wine. Food Sci. Technol. 39 35–42.
Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33 453–467. 10.1111/j.1365-3040.2009.02041.x PubMed DOI
Mishra A., Mishra K. B., Höermiller I. I., Heyer A. G., Nedbal L. (2011). Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signal. 6 301–310. 10.4161/psb.6.2.15278 PubMed DOI PMC
Moustafa-Farag M., Mahmoud A., Arnao M. B., Sheteiwy M. S., Dafea M., Soltan M., et al. (2020). Melatonin-induced water stress tolerance in plants: Recent advances. Antioxidants 9:809. 10.3390/antiox9090809 PubMed DOI PMC
Nawaz M. A., Huang Y., Bie Z., Ahmed W., Reiter R. J., Niu M., et al. (2016). Melatonin: current status and future perspectives in plant science. Front. Plant Sci. 6:1230. 10.3389/fpls.2015.01230 PubMed DOI PMC
Nawaz M. A., Jiao Y., Chen C., Shireen F., Zheng Z., Imtiaz M., et al. (2018). Melatonin pre-treatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J. Plant Physiol. 220 115–127. 10.1016/j.jplph.2017.11.003 PubMed DOI
Nazir M., Asad Ullah M., Mumtaz S., Siddiquah A., Shah M., Drouet S., et al. (2020). Interactive effect of melatonin and UV-C on phenylpropanoid metabolite production and antioxidant potential in callus cultures of purple basil (Ocimum basilicum L. var purpurascens). Molecules 25:1072. 10.3390/molecules25051072 PubMed DOI PMC
Ni J., Wang Q., Shah F. A., Liu W., Wang D., Huang S., et al. (2018). Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings. Molecules 23:799. 10.3390/molecules23040799 PubMed DOI PMC
Pelagio-Flores R., Muñoz-Parra E., Ortiz-Castro R., López-Bucio J. (2012). Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J. Pineal Res. 53 279–288. 10.1111/j.1600-079X.2012.00996.x PubMed DOI
Posmyk M. M., Janas K. M. (2009). Melatonin in plants. Acta Physiol. Plant 31 1–11.
Posmyk M. M., Kuran H., Marciniak K., Janas K. M. (2008). Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J. Pineal Res. 45 24–31. 10.1111/j.1600-079X.2007.00552.x PubMed DOI
Qari S. H., Hassan M. U., Chattha M. U., Mahmood A., Naqve M., Nawaz M., et al. (2022). Melatonin induced cold tolerance in plants: physiological and molecular responses. Front. Plant Sci. 13:843071. 10.3389/fpls.2022.843071 PubMed DOI PMC
Qiu Y., An K., Sun J., Chen X., Gong X., Ma L., et al. (2019). Investigating the effect of methyl jasmonate and melatonin on resistance of Malus crabapple ‘Hong Jiu’to ozone stress. Environ. Sci. Pollut. Res. 26 27761–27768. 10.1007/s11356-019-05946-w PubMed DOI
Rasheed A., Fahad S., Aamer M., Hassan M., Tahir M., Wu Z. (2020a). Role of genetic factors in regulating cadmium uptake, transport and accumulation mechanisms and quantitative trait loci mapping in rice. a review. Appl. Ecol. Environ. Res. 18 4005–4023.
Rasheed A., Fahad S., Hassan M., Tahir M., Aamer M., Wu Z. (2020b). A review on aluminum toxicity and quantitative trait loci maping in rice (Oryza sativa L). Appl. Ecol. Environ. Res. 18 3951–3964.
Rasheed A., Gill R. A., Hassan M. U., Mahmood A., Qari S., Zaman Q. U., et al. (2021a). A critical review: recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. Curr. Issues Mol. Biol. 43 1950–1976. 10.3390/cimb43030135 PubMed DOI PMC
Rasheed A., Hassan M. U., Fahad S., Aamer M., Batool M., Ilyas M., et al. (2021b). “Heavy metals stress and plants defense responses,” in Sustainable Soil and Land Management and Climate Change, eds Fahad S., Sonmez O., Saud S., Wang D., Wu C., Adnan M., et al. (Boca Raton, FL: CRC Press; ), 57–82.
Rehman S., Chattha M. U., Khan I., Mahmood A., Hassan M. U., Al-Huqail A. A., et al. (2022). Exogenously applied trehalose augments cadmium stress tolerance and yield of mung bean (Vigna radiata L.) grown in soil and hydroponic systems through reducing cd uptake and enhancing photosynthetic efficiency and antioxidant defense systems. Plants 11:822. 10.3390/plants11060822 PubMed DOI PMC
Reiter R. J., Tan D. X., Burkhardt S., Manchester L. C. J. N. R. (2001). Melatonin in plants. Nutr. Rev. 59 286–290. PubMed
Reiter R. J. J. E. R. (1991). Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12 151–180. 10.1210/edrv-12-2-151 PubMed DOI
Sadak M. S., Abdalla A. M., Abd Elhamid E. M., Ezzo M. (2020). Role of melatonin in improving growth, yield quantity and quality of Moringa oleifera L. plant under drought stress. Bull. Nat. Res. Cent. 44 1–13.
Santofimia-Castaño P., Ruy D. C., Fernandez-Bermejo M., Salido G. M., Gonzalez A. (2014). Pharmacological dose of melatonin reduces cytosolic calcium load in response to cholecystokinin in mouse pancreatic acinar cells. Mol. Cell. Biochem. 397 75–86. 10.1007/s11010-014-2174-4 PubMed DOI
Seleiman M. F., Ali S., Refay Y., Rizwan M., Alhammad B. A., El-Hendawy S. E. (2020). Chromium resistant microbes and melatonin reduced Cr uptake and toxicity, improved physio-biochemical traits and yield of wheat in contaminated soil. Chemosphere 250:126239. 10.1016/j.chemosphere.2020.126239 PubMed DOI
Seleiman M. F., Aslam M. T., Alhammad B. A., Hassan M. U., Maqbool R., Chattha M. U., et al. (2022). Salinity stress in wheat: Effects, mechanisms and management strategies. Phyton Int. J. Exp. Bot. 91 667–694. 10.3389/fpls.2016.00957 PubMed DOI PMC
Serengil Y., Augustaitis A., Bytnerowicz A., Grulke N., Kozovitz A., Matyssek R., et al. (2011). Adaptation of forest ecosystems to air pollution and climate change: a global assessment on research priorities. For. Biogeosci. 4:44. 10.1016/j.envpol.2016.01.075 PubMed DOI
Sharma A., Shahzad B., Kumar V., Kohli S. K., Sidhu G. P. S., Bali A. S., et al. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:285. 10.3390/biom9070285 PubMed DOI PMC
Shi H., Tan D. X., Reiter R. J., Ye T., Yang F., Chan Z. (2015b). Melatonin induces class A1 heat-shock factors (HSFA 1s) and their possible involvement of thermotolerance in Arabidopsis. J. Pineal Res. 58 335–342. 10.1111/jpi.12219 PubMed DOI
Shi H., Jiang C., Ye T., Tan D.-X., Reiter R. J., Zhang H., et al. (2015a). Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J. Exp. Bot. 66 681–694. 10.1093/jxb/eru373 PubMed DOI PMC
Silalert P., Pattanagul W. (2021). Foliar application of melatonin alleviates the effects of drought stress in rice (Oryza sativa L.) seedlings. Not. Bot. Horti Agrobot. Cluj Napoca 49 12417–12417. 10.15835/nbha49312417 DOI
Simopoulos A. P., Tan D.-X., Manchester L. C., Reiter R. J. (2005). Purslane: a plant source of omega-3 fatty acids and melatonin. J. Pineal Res. 39 331–332. 10.1111/j.1600-079X.2005.00269.x PubMed DOI
Singh S., Tripathi D. K., Singh S., Sharma S., Dubey N. K., Chauhan D. K., et al. (2017). Toxicity of aluminium on various levels of plant cells and organism: a review. Environ. Exp. Bot. 137 177–193. 10.1016/j.envexpbot.2017.01.005 DOI
Sultan I., Khan I., Chattha M. U., Hassan M. U., Barbanti L., Calone R., et al. (2021). Improved salinity tolerance in early growth stage of maize through salicylic acid foliar application. Ital. J. Agron. 16:1810.
Sun C., Liu L., Wang L., Li B., Jin C., Lin X. (2021). Melatonin: a master regulator of plant development and stress responses. J. Integrat. Plant Biol. 63 126–145. 10.1111/jipb.12993 PubMed DOI
Tan D. X., Hardeland R., Back K., Manchester L. C., Alatorre-Jimenez M. A., Reiter R. J. (2016). On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J. Pineal Res. 61 27–40. 10.1111/jpi.12336 PubMed DOI
Tan D. X., Reiter R. J. (2019). Mitochondria: the birth place, battle ground and site of melatonin metabolism in cells. Melatonin Res. 2 44–66.
Tan D. X., Xu B., Zhou X., Reiter R. J. (2018). Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules 23:301. 10.3390/molecules23020301 PubMed DOI PMC
Turk H., Erdal S. (2015). Melatonin alleviates cold-induced oxidative damage in maize seedlings by upregulating mineral elements and enhancing antioxidant activity. J. Plant Nutr. Soil Sci. 178 433–439.
Turk H., Erdal S., Genisel M., Atici O., Demir Y., Yanmis D. (2014). The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Reg. 74 139–152.
Ullah M. A., Tungmunnithum D., Garros L., Drouet S., Hano C., Abbasi B. H. (2019). Effect of ultraviolet-C radiation and melatonin stress on biosynthesis of antioxidant and antidiabetic metabolites produced in in vitro callus cultures of Lepidium sativum L. Int. J. Mol. Sci. 20:1787. 10.3390/ijms20071787 PubMed DOI PMC
Vafadar F., Amooaghaie R., Ehsanzadeh P., Ghanati F., Sajedi R. H. (2020). Crosstalk between melatonin and Ca2+/CaM evokes systemic salt tolerance in Dracocephalum kotschyi. J. Plant Physiol. 252:153237. 10.1016/j.jplph.2020.153237 PubMed DOI
Wang Q., An B., Wei Y., Reiter R. J., Shi H., Luo H., et al. (2016b). Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis. Front Plant Sci. 7:1882. 10.3389/fpls.2016.01882 PubMed DOI PMC
Wang L., Liu J., Wang W., Sun Y. (2016a). Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54 19–27.
Wang L., Zhao Y., Reiter R. J., He C., Liu G., Lei Q., et al. (2014). Changes in melatonin levels in transgenic ‘Micro-Tom’tomato overexpressing ovine AANAT and ovine HIOMT genes. J. Pineal Res. 56 134–142. 10.1111/jpi.12105 PubMed DOI
Wang P., Sun X., Li C., Wei Z., Liang D., Ma F. (2013). Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J. Pineal Res. 54 292–302. 10.1111/jpi.12017 PubMed DOI
Wang P., Sun X., Wang N., Tan D. X., Ma F. (2015). Melatonin enhances the occurrence of autophagy induced by oxidative stress in Arabidopsis seedlings. J. Pineal Res. 58 479–489. 10.1111/jpi.12233 PubMed DOI
Wei Y., Liu G., Chang Y., Lin D., Reiter R. J., He C., et al. (2018). Melatonin biosynthesis enzymes recruit WRKY transcription factors to regulate melatonin accumulation and transcriptional activity on W-box in cassava. J. Pineal Res. 65:e12487. 10.1111/jpi.12487 PubMed DOI
Wei Z., Li C., Gao T., Zhang Z., Liang B., Lv Z., et al. (2019). Melatonin increases the performance of Malus hupehensis after UV-B exposure. Plant Physiol. Biochem. 139 630–641. 10.1016/j.plaphy.2019.04.026 PubMed DOI
Wen D., Gong B., Sun S., Liu S., Wang X., Wei M., et al. (2016). Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front. Plant Sci. 7:718. 10.3389/fpls.2016.00718 PubMed DOI PMC
Wu S., Wang Y., Zhang J., Gong X., Zhang Z., Sun J., et al. (2021a). Exogenous melatonin improves physiological characteristics and promotes growth of strawberry seedlings under cadmium stress. Hortic. Plant J. 7 13–22. 10.1016/j.hpj.2020.06.002 DOI
Wu Y., Fan X., Zhang Y., Jiang J., Sun L., Rahman F. U., et al. (2021b). VvSNAT1 overexpression enhances melatonin production and salt tolerance in transgenic Arabidopsis. Plant Physiol. Biochem. 166 485–494. 10.1016/j.plaphy.2021.06.025 PubMed DOI
Wu X., Li H., Luo H., Lin D., Zhou X. (2019). “Effect of exogenous melatonin on photosynthetic characteristics in cucumber seedlings under cadmium stress: a rapid detection method for the cadmium resistance,” in Proceedings of the E3S Web of Conferences, (Les Ulis: EDP Sciences; ), 07023. 10.1051/e3sconf/201913607023 DOI
Xie C., Xiong X., Huang Z., Sun L., Ma J., Cai S., et al. (2018). Exogenous melatonin improves lead tolerance of bermudagrass through modulation of the antioxidant defense system. Int. J. Phytoremed. 20 1408–1417. 10.1080/15226514.2018.1488813 PubMed DOI
Xing X., Ding Y., Jin J., Song A., Chen S., Chen F., et al. (2021). Physiological and transcripts analyses reveal the mechanism by which melatonin alleviates heat stress in chrysanthemum seedlings. Front. Plant Sci. 12:673236. 10.3389/fpls.2021.673236 PubMed DOI PMC
Xu W., Cai S. Y., Zhang Y., Wang Y., Ahammed G. J., Xia X. J., et al. (2016). Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J. Pineal Res. 61 457–469. 10.1111/jpi.12359 PubMed DOI
Yan F., Wei H., Li W., Liu Z., Tang S., Chen L., et al. (2020). Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotoxicol. Environ. Saf. 206:111358. 10.1016/j.ecoenv.2020.111358 PubMed DOI
Yan F., Zhang J., Li W., Ding Y., Zhong Q., Xu X., et al. (2021). Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. Plant Physiol. Biochem. 163 367–375. 10.1016/j.plaphy.2021.03.058 PubMed DOI
Yan Y., Sun S., Zhao N., Yang W., Shi Q., Gong B. (2019). COMT1 overexpression resulting in increased melatonin biosynthesis contributes to the alleviation of carbendazim phytotoxicity and residues in tomato plants. Environ. Pollut. 252 51–61. 10.1016/j.envpol.2019.05.052 PubMed DOI
Yancey P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208 2819–2830. 10.1242/jeb.01730 PubMed DOI
Yang W.-J., Du Y.-T., Zhou Y.-B., Chen J., Xu Z.-S., Ma Y.-Z., et al. (2019). Overexpression of TaCOMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis. Int. J. Mol. Sci. 20:652. 10.3390/ijms20030652 PubMed DOI PMC
Yang X., Xu H., Li D., Gao X., Li T., Wang R. (2018). Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 56 884–892. 10.1007/s11099-017-0748-6 DOI
Yao J. W., Ma Z., Ma Y. Q., Zhu Y., Lei M. Q., Hao C. Y., et al. (2021). Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana. Plant Cell Environ. 44 114–129. 10.1111/pce.13879 PubMed DOI
Ye J., Wang S., Deng X., Yin L., Xiong B., Wang X. (2016). Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol. Plant. 38 1–13.
Yin Z., Lu J., Meng S., Liu Y., Mostafa I., Qi M., et al. (2019). Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle. J. Plant Interact. 14 453–463.
Yu Y., Teng Z., Mou Z., Lv Y., Li T., Chen S., et al. (2021). Melatonin confers heavy metal-induced tolerance by alleviating oxidative stress and reducing the heavy metal accumulation in Exophiala pisciphila, a dark septate endophyte (DSE). BMC Microbiol. 21:40. 10.1186/s12866-021-02098-1 PubMed DOI PMC
Zhang H. J., Zhang N., Yang R. C., Wang L., Sun Q. Q., Li D. B., et al. (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA 4 interaction in cucumber (Cucumis sativus L.). J. Pineal Rse. 57 269–279. 10.1111/jpi.12167 PubMed DOI
Zhang J., Shi Y., Zhang X., Du H., Xu B., Huang B. (2017a). Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ. Exp. Bot. 138 36–45.
Zhang Y., Yang S., Chen Y. J. B. P. (2017d). Effects of melatonin on photosynthetic performance and antioxidants in melon during cold and recovery. Biol. Plant. 61 571–578.
Zhang J., Zeng B., Mao Y., Kong X., Wang X., Yang Y., et al. (2017b). Melatonin alleviates aluminium toxicity through modulating antioxidative enzymes and enhancing organic acid anion exudation in soybean. Funct. Plant Biol. 44 961–968. 10.1071/FP17003 PubMed DOI
Zhang Y., Yang S., Chen Y. (2017c). Effects of melatonin on photosynthetic performance and antioxidants in melon during cold and recovery. Biol. Plant. 61 571–578.
Zhang L., Jia J., Xu Y., Wang Y., Hao J., Li T. J. I. V. C. (2012). Production of transgenic Nicotiana sylvestris plants expressing melatonin synthetase genes and their effect on UV-B-induced DNA damage. In Vitro Cell Dev. Biol. Plant 48 275–282. 10.1007/s11627-011-9413-0 DOI
Zhang N., Zhao B., Zhang H. J., Weeda S., Yang C., Yang Z. C., et al. (2013). Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J. Pineal Res. 54 15–23. 10.1111/j.1600-079X.2012.01015.x PubMed DOI
Zhang P., Liu L., Wang X., Wang Z., Zhang H., Chen J., et al. (2021a). Beneficial effects of exogenous melatonin on overcoming salt stress in sugar beets (Beta vulgaris L.). Plants 10:886. 10.3390/plants10050886 PubMed DOI PMC
Zhang R., Yue Z., Chen X., Wang Y., Zhou Y., Xu W., et al. (2021b). Foliar applications of urea and melatonin to alleviate waterlogging stress on photosynthesis and antioxidant metabolism in sorghum seedlings. Plant Growth Reg. 1–10.
Zhang Y., Fan Y., Rui C., Zhang H., Xu N., Dai M., et al. (2021c). Melatonin improves cotton salt tolerance by regulating ROS scavenging system and Ca2+ signal transduction. Front. Plant Sci. 12:1239. 10.3389/fpls.2021.693690 PubMed DOI PMC
Zhang Q., Liu X., Zhang Z., Liu N., Li D., Hu L. (2019). Melatonin improved waterlogging tolerance in alfalfa (Medicago sativa) by reprogramming polyamine and ethylene metabolism. Front. Plant Sci. 10:44. 10.3389/fpls.2019.00044 PubMed DOI PMC
Zhang T., Shi Z., Zhang X., Zheng S., Wang J., Mo J. (2020a). Alleviating effects of exogenous melatonin on salt stress in cucumber. Sci. Hortic. 262:109070. 10.13287/j.1001-9332.201706.005 PubMed DOI
Zhang X., Zhang H., Zhang H., Tang M. (2020b). Exogenous melatonin application enhances Rhizophagus irregularis symbiosis and induces the antioxidant response of Medicago truncatula under lead stress. Front. Microbiol. 11:516. 10.3389/fmicb.2020.00516 PubMed DOI PMC
Zhao D., Yu Y., Shen Y., Liu Q., Zhao Z., Sharma R., et al. (2019). Melatonin synthesis and function: evolutionary history in animals and plants. Front. Endocrin. 10, 249. 10.3389/fendo.2019.00249 PubMed DOI PMC
Zhao G., Zhao Y., Yu X., Kiprotich F., Han H., Guan R., et al. (2018). Nitric oxide is required for melatonin-enhanced tolerance against salinity stress in rapeseed (Brassica napus L.) seedlings. Int. J. Mol. Sci. 19:1912. 10.3390/ijms19071912 PubMed DOI PMC
Zheng X., Zhou J., Tan D.-X., Wang N., Wang L., Shan D., et al. (2017). Melatonin improves waterlogging tolerance of Malus baccata (Linn.) Borkh. seedlings by maintaining aerobic respiration, photosynthesis and ROS migration. Front. Plant Sci. 8:483. 10.3389/fpls.2017.00483 PubMed DOI PMC
Zhou C., Liu Z., Zhu L., Ma Z., Wang J., Zhu J. (2016). Exogenous melatonin improves plant iron deficiency tolerance via increased accumulation of polyamine-mediated nitric oxide. Int. J. Mol. Sci. 17:1777. 10.3390/ijms17111777 PubMed DOI PMC
Zhuang W., Liu T., Shu X., Wang H., Wang Z., Wang T., et al. (2020). Overexpression of MzASMT 1, a gene from Malus zumi mats, enhances salt tolerance in transgenic tobacco. Front. Plant Sci. 11:561903. 10.3389/fpls.2020.561903 PubMed DOI PMC
Zuo B., Zheng X., He P., Wang L., Lei Q., Feng C., et al. (2014). Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. J. Pineal Res. 57 408–417. 10.1111/jpi.12180 PubMed DOI
Zuo Z., Sun L., Wang T., Miao P., Zhu X., Liu S., et al. (2017). Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-ZnO stress. Molecules 22:1727. PubMed PMC