Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IN 00023001
Health, Czech Republic - conceptual development of research organization ("Institute for Clinical and Experimental Medicine - IKEM
NV19-02-00118
Ministry of Health of the Czech Republic
RVO VFN64165
Ministry of Health, Czech Republic
PubMed
33926122
PubMed Central
PMC8123607
DOI
10.3390/ijms22094538
PII: ijms22094538
Knihovny.cz E-zdroje
- Klíčová slova
- cardiac surgery, coronary artery disease, diabetes mellitus, endoplasmic reticulum stress, epicardial fat, gene expression, inflammation, mitochondrial dysfunction,
- MeSH
- endoplazmatické retikulum genetika metabolismus MeSH
- exprese genu genetika MeSH
- kosterní svaly metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- mitochondrie genetika metabolismus MeSH
- myokard metabolismus MeSH
- nemoci koronárních tepen genetika patofyziologie MeSH
- perikard metabolismus MeSH
- podkožní tuk metabolismus MeSH
- senioři MeSH
- stanovení celkové genové exprese metody MeSH
- stres endoplazmatického retikula genetika fyziologie MeSH
- transkriptom genetika MeSH
- tuková tkáň metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- messenger RNA MeSH
The aim of our study was to analyze mitochondrial and endoplasmic reticulum (ER) gene expression profiles in subcutaneous (SAT) and epicardial (EAT) adipose tissue, skeletal muscle, and myocardium in patients with and without CAD undergoing elective cardiac surgery. Thirty-eight patients, 27 with (CAD group) and 11 without CAD (noCAD group), undergoing coronary artery bypass grafting and/or valvular surgery were included in the study. EAT, SAT, intercostal skeletal muscle, and right atrium tissue and blood samples were collected at the start and end of surgery; mRNA expression of selected mitochondrial and ER stress genes was assessed using qRT-PCR. The presence of CAD was associated with decreased mRNA expression of most of the investigated mitochondrial respiratory chain genes in EAT, while no such changes were seen in SAT or other tissues. In contrast, the expression of ER stress genes did not differ between the CAD and noCAD groups in almost any tissue. Cardiac surgery further augmented mitochondrial dysfunction in EAT. In our study, CAD was associated with decreased expression of mitochondrial, but not endoplasmic reticulum stress genes in EAT. These changes may contribute to the acceleration of coronary atherosclerosis.
Department of Oncology and Metabolism University of Sheffield Sheffield S0114 UK
Shackleton Department of Anaesthesia UHS NHS UK Southampton General Hospital Southampton SO14 UK
Zobrazit více v PubMed
Wang H., Naghavi M., Allen C., Barber R.M., Bhutta Z.A., Casey D.C., Charlson F.J., Chen A.Z., Coates M.M., Coggeshall M., et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–1544. doi: 10.1016/S0140-6736(16)31012-1. PubMed DOI PMC
Patel V.B., Shah S., Verma S., Oudit G.Y. Epicardial adipose tissue as a metabolic transducer: Role in heart failure and coronary artery disease. Heart Fail. Rev. 2017;22:889–902. doi: 10.1007/s10741-017-9644-1. PubMed DOI
Kunimura A., Ishii H., Uetani T., Harada K., Hirayama K., Harata S., Shibata Y., Kawashima K., Shimbo Y., Takayama Y., et al. Impact of adipose tissue composition on cardiovascular risk assessment in patients with stable coronary artery disease. Atherosclerosis. 2016;251:206–212. doi: 10.1016/j.atherosclerosis.2016.06.041. PubMed DOI
Kim S.-H., Chung J.-H., Kwon B.-J., Song S.-W., Choi W.-S. The Associations of Epicardial Adipose Tissue with Coronary Artery Disease and Coronary Atherosclerosis. Int. Heart J. 2014;55:197–203. doi: 10.1536/ihj.13-303. PubMed DOI
Matloch Z., Kratochvílová H., Cinkajzlová A., Lipš M., Kopecký P., Pořízka M., Haluzíková D., Lindner J., Mráz M., Kloučková J., et al. Changes in Omentin Levels and Its mRNA Expression in Epicardial Adipose Tissue in Patients Undergoing Elective Cardiac Surgery: The Influence of Type 2 Diabetes and Coronary Heart Disease. Physiol. Res. 2018;67:881–890. doi: 10.33549/physiolres.933909. PubMed DOI
Mazurek T., Zhang L., Zalewski A., Mannion J.D., Diehl J.T., Arafat H., Sarov-Blat L., O’Brien S., Keiper E.A., Johnson A.G., et al. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation. 2003;108:2460–2466. doi: 10.1161/01.CIR.0000099542.57313.C5. PubMed DOI
Reinecke F., Smeitink J.A., van der Westhuizen F.H. OXPHOS gene expression and control in mitochondrial disorders. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2009;1792:1113–1121. doi: 10.1016/j.bbadis.2009.04.003. PubMed DOI
Højlund K., Mogensen M., Sahlin K., Beck-Nielsen H. Mitochondrial Dysfunction in Type 2 Diabetes and Obesity. Endocrinol. Metab. Clin. N. Am. 2008;37:713–731. doi: 10.1016/j.ecl.2008.06.006. PubMed DOI
Ning X.-H., Zhang J., Liu J., Ye Y., Chen S.-H., From A.H., Bache R.J., A Portman M. Signaling and expression for mitochondrial membrane proteins during left ventricular remodeling and contractile failure after myocardial infarction. J. Am. Coll. Cardiol. 2000;36:282–287. doi: 10.1016/S0735-1097(00)00689-6. PubMed DOI
Cao S.S., Kaufman R.J. Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxid. Redox Signal. 2014;21:396–413. doi: 10.1089/ars.2014.5851. PubMed DOI PMC
Yao Y., Lu Q., Hu Z., Yufeng Y., Chen Q., Wang Q.K. A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure. Nat. Commun. 2017;8:1–15. doi: 10.1038/s41467-017-00171-w. PubMed DOI PMC
Schönthal A.H. Endoplasmic Reticulum Stress: Its Role in Disease and Novel Prospects for Therapy. Science. 2012;2012:1–26. doi: 10.6064/2012/857516. PubMed DOI PMC
Ladiges W.C. Pancreatic β-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes. 2005;54:1074–1081. doi: 10.2337/diabetes.54.4.1074. PubMed DOI
Zhang K., Kaufman R.J. The unfolded protein response: A stress signaling pathway critical for health and disease. Neurology. 2005;66:S102–S109. doi: 10.1212/01.wnl.0000192306.98198.ec. PubMed DOI
Corradi D., Maestri R., Callegari S., Pastori P., Goldoni M., Luong T.V., Bordi C. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc. Pathol. 2004;13:313–316. doi: 10.1016/j.carpath.2004.08.005. PubMed DOI
Nakajima T., Yokota T., Shingu Y., Yamada A., Iba Y., Ujihira K., Wakasa S., Ooka T., Takada S., Shirakawa R., et al. Impaired mitochondrial oxidative phosphorylation capacity in epicardial adipose tissue is associated with decreased concentration of adiponectin and severity of coronary atherosclerosis. Sci. Rep. 2019;9:3535. doi: 10.1038/s41598-019-40419-7. PubMed DOI PMC
Chechi K., Voisine P., Mathieu L., Laplante M., Bonnet S., Picard F., Joubert P., Richard D. Functional characterization of the Ucp1-associated oxidative phenotype of human epicardial adipose tissue. Sci. Rep. 2017;7:1–15. doi: 10.1038/s41598-017-15501-7. PubMed DOI PMC
Aldiss P. ‘Browning’the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. Int. J. Cardiol. 2017;228:265–274. doi: 10.1016/j.ijcard.2016.11.074. PubMed DOI PMC
Montaigne D. Mitochondrial dysfunction as an arrhythmogenic substrate: A translational proof-of-concept study in patients with metabolic syndrome in whom post-operative atrial fibrillation develops. J. Am. Coll. Cardiol. 2013;62:1466–1473. doi: 10.1016/j.jacc.2013.03.061. PubMed DOI
Ozcan C., Li Z., Kim G., Jeevanandam V., Uriel N. Molecular Mechanism of the Association Between Atrial Fibrillation and Heart Failure Includes Energy Metabolic Dysregulation Due to Mitochondrial Dysfunction. J. Card. Fail. 2019;25:911–920. doi: 10.1016/j.cardfail.2019.08.005. PubMed DOI PMC
Dahlman I. Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-α. Diabetes. 2006;55:1792–1799. doi: 10.2337/db05-1421. PubMed DOI
Cominacini L., Mozzini C., Garbin U., Pasini A., Stranieri C., Solani E., Vallerio P., Tinelli I.A., Pasini A.F. Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic. Biol. Med. 2015;88:233–242. doi: 10.1016/j.freeradbiomed.2015.05.027. PubMed DOI
Liu M.-Q., Chen Z., Chen L.-X. Endoplasmic reticulum stress: A novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol. Sin. 2016;37:425–443. doi: 10.1038/aps.2015.145. PubMed DOI PMC
Azfer A., Niu J., Rogers L.M., Adamski F.M., Kolattukudy P.E. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am. J. Physiol. Circ. Physiol. 2006;291:H1411–H1420. doi: 10.1152/ajpheart.01378.2005. PubMed DOI PMC
Kremen J., Dolinkova M., Krajickova J., Blaha J., Anderlova K., Lacinova Z., Haluzikova D., Bosanska L., Vokurka M., Svacina S., et al. Increased Subcutaneous and Epicardial Adipose Tissue Production of Proinflammatory Cytokines in Cardiac Surgery Patients: Possible Role in Postoperative Insulin Resistance. J. Clin. Endocrinol. Metab. 2006;91:4620–4627. doi: 10.1210/jc.2006-1044. PubMed DOI
Trachta P., Drápalová J., Kaválková P., Toušková V., Cinkajzlová A., Lacinová Z., Matoulek M., Zelinka T., Widimský J., Mráz M., et al. Three Months of Regular Aerobic Exercise in Patients with Obesity Improve Systemic Subclinical Inflammation Without Major Influence on Blood Pressure and Endocrine Production of Subcutaneous Fat. Physiol. Res. 2014;63:S299–S308. doi: 10.33549/physiolres.932792. PubMed DOI
Cheng T.-L., Liao C.-C., Tsai W.-H., Lin C.-C., Yeh C.-W., Teng C.-F., Chang W.-T. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase. J. Cell. Biochem. 2009;107:1002–1015. doi: 10.1002/jcb.22200. PubMed DOI
Christe M., Hirzel E., Lindinger A., Kern B., Von Flüe M., Peterli R., Peters T., Eberle A.N., Lindinger P.W. Obesity Affects Mitochondrial Citrate Synthase in Human Omental Adipose Tissue. ISRN Obes. 2013;2013:1–8. doi: 10.1155/2013/826027. PubMed DOI PMC
Kadenbach B., Huettemann M. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion. 2015;24:64–76. doi: 10.1016/j.mito.2015.07.002. PubMed DOI
Gaignard P., Menezes M., Schiff M., Bayot A., Rak M., de Baulny H.O., Su C.-H., Gilleron M., Lombes A., Abida H., et al. Mutations in CYC1, Encoding Cytochrome c1 Subunit of Respiratory Chain Complex III, Cause Insulin-Responsive Hyperglycemia. Am. J. Hum. Genet. 2013;93:384–389. doi: 10.1016/j.ajhg.2013.06.015. PubMed DOI PMC
Urbanová M., Mráz M., Ďurovcová V., Trachta P., Kloučková J., Kaválková P., Haluzíková D., Lacinová Z., Hansíková H., Wenchich L., et al. The Effect of Very-Low-Calorie Diet on Mitochondrial Dysfunction in Subcutaneous Adipose Tissue and Peripheral Monocytes of Obese Subjects with Type 2 Diabetes Mellitus. Physiol. Res. 2017;66:811–822. doi: 10.33549/physiolres.933469. PubMed DOI
Wortel I.M., van der Meer L.T., Kilberg M.S., van Leeuwen F.N. Surviving Stress: Modulation of ATF4-Mediated Stress Responses in Normal and Malignant Cells. Trends Endocrinol. Metab. 2017;28:794–806. doi: 10.1016/j.tem.2017.07.003. PubMed DOI PMC
Chen X., Shen J., Prywes R. The Luminal Domain of ATF6 Senses Endoplasmic Reticulum (ER) Stress and Causes Translocation of ATF6 from the ER to the Golgi. J. Biol. Chem. 2002;277:13045–13052. doi: 10.1074/jbc.M110636200. PubMed DOI
Wang J., Lee J., Liem D., Ping P. HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene. 2017;618:14–23. doi: 10.1016/j.gene.2017.03.005. PubMed DOI PMC
Ramji D.P., Foka P. CCAAT/enhancer-binding proteins: Structure, function and regulation. Biochem. J. 2002;365:561–575. doi: 10.1042/bj20020508. PubMed DOI PMC