• This record comes from PubMed

Cellular Response to Individual Components of the Platelet Concentrate

. 2021 Apr 26 ; 22 (9) : . [epub] 20210426

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
No 17-32285A Internal Grant Agency of the Ministry of Health of the Czech Republic
projects No. LO1508, Operational Program - Prague Competitiveness CZ.2.16/3.1.00/21528 Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainabili-ty Programme I:
824007 EU Horizon 2020 MSCA-RISE-2018 - Research and Innovation Staff Exchange programme project IP Osteo "Induced pluripotent stem cell for bone and cartilage defects" under grant agreement

Platelet concentrates and especially their further product platelet lysate, are widely used as a replacement for cell culturing. Platelets contain a broad spectrum of growth factors and bioactive molecules that affect cellular fate. However, the cellular response to individual components of the human platelet concentrate is still unclear. The aim of this study was to observe cellular behavior according to the individual components of platelet concentrates. The bioactive molecule content was determined. The cells were supplemented with a medium containing 8% (v/v) of platelet proteins in plasma, pure platelet proteins in deionized water, and pure plasma. The results showed a higher concentration of fibrinogen, albumin, insulin growth factor I (IGF-1), keratinocyte growth factor (KGF), and hepatocyte growth factor (HGF), in the groups containing plasma. On the other hand, chemokine RANTES and platelet-derived growth factor bb (PDGF-bb), were higher in the groups containing platelet proteins. The groups containing both plasma and plasma proteins showed the most pronounced proliferation and viability of mesenchymal stem cells and fibroblasts. The platelet proteins alone were not sufficient to provide optimal cell growth and viability. A synergic effect of platelet proteins and plasma was observed. The data indicated the importance of plasma in platelet lysate for cell growth.

See more in PubMed

Dohan Ehrenfest D.M., Andia I., Zumstein M.A., Zhang C.Q., Pinto N.R., Bielecki T. Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: Current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J. 2014;4:3–9. doi: 10.32098/mltj.01.2014.02. PubMed DOI PMC

Mlynarek R.A., Kuhn A.W., Bedi A. Platelet-rich plasma (prp) in orthopedic sports medicine. Am. J. Orthop. 2016;45:290–326. PubMed

Terada S., Ota S., Kobayashi M., Kobayashi T., Mifune Y., Takayama K., Michelle W., Gianluca V., Nick O., Takanobu O., et al. Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J. Bone Jt. Surg. 2013;95:980–988. doi: 10.2106/JBJS.L.00266. PubMed DOI

Vogrin M., Rupreht M., Dinevski D., Hašpl M., Kuhta M., Jevsek M., Knežević M., Rožman P. Effects of a platelet gel on early graft revascularization after anterior cruciate ligament reconstruction: A prospective, randomized, double-blind, clinical trial. Eur. Surg. Res. 2010;45:77–85. doi: 10.1159/000318597. PubMed DOI

Emer J. Platelet-Rich Plasma (PRP): Current applications in dermatology. Ski. Ther. Lett. 2019;24:1–6. PubMed

Samadi P., Sheykhhasan M., Khoshinani H.M. The use of platelet-rich plasma in aesthetic and regenerative medicine: A comprehensive review. Aesthet. Plast. Surg. 2019;43:803–814. doi: 10.1007/s00266-018-1293-9. PubMed DOI

Aust M., Pototschnig H., Jamchi S., Busch K.H. Platelet-rich plasma for skin rejuvenation and treatment of actinic elastosis in the lower eyelid area. Cureus. 2018;10:e2999. doi: 10.7759/cureus.2999. PubMed DOI PMC

Elghblawi E. Platelet-rich plasma, the ultimate secret for youthful skin elixir and hair growth triggering. J. Cosmet. Dermatol. 2018;17:423–430. doi: 10.1111/jocd.12404. PubMed DOI

Cieslik-Bielecka A., Choukroun J., Odin G., Dohan Ehrenfest D.M. L-PRP/L-PRF in esthetic plastic surgery, regenerative medicine of the skin and chronic wounds. Curr. Pharm. Biotechnol. 2012;13:1266–1277. doi: 10.2174/138920112800624463. PubMed DOI

Leo M.S., Kumar A.S., Kirit R., Konathan R., Sivamani R.K. Systematic review of the use of platelet-rich plasma in aesthetic dermatology. J. Cosmet. Dermatol. 2015;14:315–323. doi: 10.1111/jocd.12167. PubMed DOI

Roubelakis M.G., Trohatou O., Roubelakis A., Mili E., Kalaitzopoulos I., Papazoglou G., Pappa K.I., Anagnou N.P. Platelet-rich plasma (PRP) promotes fetal mesenchymal stem/stromal cell migration and wound healing process. Stem Cell Rev. Rep. 2014;10:417–428. doi: 10.1007/s12015-013-9494-8. PubMed DOI

Marx R.E. Platelet-rich plasma: Evidence to support its use. J. Oral Maxillofac. Surg. 2004;62:489–496. doi: 10.1016/j.joms.2003.12.003. PubMed DOI

Bhanot S., Alex J.C. Current applications of platelet gels in facial plastic surgery. Facial Plast. Surg. 2002;18:27–34. doi: 10.1055/s-2002-19824. PubMed DOI

Xu J., Gou L., Zhang P., Li H., Qiu S. Platelet-rich plasma and regenerative dentistry. Aust. Dent. J. 2020;65:131–142. doi: 10.1111/adj.12754. PubMed DOI PMC

Shivashankar V.Y., Johns D.A., Maroli R.K., Sekar M., Chandrasekaran R., Karthikeyan S., Renganathan S.K. Comparison of the effect of PRP, PRF and induced bleeding in the revascularization of teeth with necrotic pulp and open apex: A triple blind randomized clinical trial. J. Clin. Diagn. Res. 2017;11:ZC34–ZC39. doi: 10.7860/JCDR/2017/22352.10056. PubMed DOI PMC

Merchán W.H., Gòmez L.A., Chasoy M.E., Alfonso-Rodríguez C.A., Muñoz A.L. Platelet-rich plasma, a powerful tool in dermatology. J. Tissue Eng. Regen. Med. 2019;13:892–901. doi: 10.1002/term.2832. PubMed DOI

Graziani F., Cei S., Ducci F., Giuca M.R., Donos N., Gabriele M. In vitro effects of different concentration of PRP on primary bone and gingival cell lines. Preliminary results. Minerva Stomatol. 2005;54:15–22. PubMed

Okuda K., Kawase T., Momose M., Murata M., Saito Y., Suzuki H., Wolff L.F., Yoshie H. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J. Periodontol. 2003;74:849–857. doi: 10.1902/jop.2003.74.6.849. PubMed DOI

Bertoncelj V., Pelipenko J., Kristl J., Jeras M., Cukjati M., Kocbek P. Development and bioevaluation of nanofibers with blood-derived growth factors for dermal wound healing. Eur. J. Pharm. Biopharm. 2014;88:64–74. doi: 10.1016/j.ejpb.2014.06.001. PubMed DOI

Ramos-Torrecillas J., García-Martínez O., De Luna-Bertos E., Ruiz C. Clinical utility of growth factors and platelet-rich plasma in tissue regeneration: A review. Wounds Compend. Clin. Res. Pract. 2014;26:207–213. PubMed

Dohan Ehrenfest D.M., Rasmusson L., Albrektsson T. Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF) Trends Biotechnol. 2009;27:158–167. doi: 10.1016/j.tibtech.2008.11.009. PubMed DOI

Dohan Ehrenfest D.M., Doglioli P., de Peppo G.M., Del Corso M., Charrier J.-B. Choukroun’s platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way. Arch. Oral Biol. 2010;55:185–194. doi: 10.1016/j.archoralbio.2010.01.004. PubMed DOI

Mussano F., Genova T., Munaron L., Petrillo S., Erovigni F., Carossa S. Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets. 2016;27:467–471. doi: 10.3109/09537104.2016.1143922. PubMed DOI

Murray M.M., Spindler K.P., Abreu E., Muller J.A., Nedder A., Kelly M., Frino J., Zurakowski D., Valenza M., Snyder B.D., et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J. Orthop. Res. 2007;25:81–91. doi: 10.1002/jor.20282. PubMed DOI

Vocetkova K., Buzgo M., Sovkova V., Bezdekova D., Kneppo P., Amler E. Nanofibrous polycaprolactone scaffolds with adhered platelets stimulate proliferation of skin cells. Cell Prolif. 2016;49:568–578. doi: 10.1111/cpr.12276. PubMed DOI PMC

Pietramaggiori G., Scherer S.S., Mathews J.C., Alperovich M., Yang H., Arch J.N.M., Czeczuga J.M., Chan R.K., Wagner C.T., Orgill D.P. Healing modulation induced by freeze-dried platelet-rich plasma and micronized allogenic dermis in a diabetic wound model. Wound Repair Regen. 2008;16:218–225. doi: 10.1111/j.1524-475X.2008.00362.x. PubMed DOI

Sahni A., Guo M., Sahni S.K., Francis C.W. Interleukin-1β but not IL-1α binds to fibrinogen and fibrin and has enhanced activity in the bound form. Blood. 2004;104:409–414. doi: 10.1182/blood-2004-01-0126. PubMed DOI

Bielecki T., Dohan Ehrenfest D.M., Everts P.A., Wiczkowski A. The role of leukocytes from L-PRP/L-PRF in wound healing and immune defense: New perspectives. Curr. Pharm. Biotechnol. 2012;13:1153–1162. doi: 10.2174/138920112800624373. PubMed DOI

Zhang Z.Y., Huang A.W., Fan J.J., Wei K., Jin D., Chen B., Li D., Bi L., Wang J., Pei G. The potential use of allogeneic platelet-rich plasma for large bone defect treatment: Immunogenicity and defect healing efficacy. Cell Transplant. 2013;22:175–187. doi: 10.3727/096368912X653183. PubMed DOI

Scevola S., Nicoletti G., Brenta F., Isernia P., Maestri M., Faga A. Allogenic platelet gel in the treatment of pressure sores: A pilot study. Int. Wound J. 2010;7:184–190. doi: 10.1111/j.1742-481X.2010.00671.x. PubMed DOI PMC

Jonnalagadda D., Izu L.T., Whiteheart S.W. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood. 2012;120:5209–5216. doi: 10.1182/blood-2012-07-445080. PubMed DOI PMC

Kamykowski J., Carlton P., Sehgal S., Storrie B. Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet α-granules. Blood. 2011;118:1370–1373. doi: 10.1182/blood-2011-01-330910. PubMed DOI

Chatterjee M., Huang Z., Zhang W., Jiang L., Hultenby K., Zhu L., Hu H., Nilsson G.P., Li N. Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood. 2011;117:3907–3911. doi: 10.1182/blood-2010-12-327007. PubMed DOI

Battinelli E.M., Markens B.A., Italiano J.E. Release of angiogenesis regulatory proteins from platelet alpha granules: Modulation of physiologic and pathologic angiogenesis. Blood. 2011;118:1359–1369. doi: 10.1182/blood-2011-02-334524. PubMed DOI PMC

Peters C.G., Michelson A.D., Flaumenhaft R. Granule exocytosis is required for platelet spreading: Differential sorting of α-granules expressing VAMP-7. Blood. 2012;120:199–206. doi: 10.1182/blood-2011-10-389247. PubMed DOI PMC

Van Nispen tot Pannerden H., de Haas F., Geerts W., Posthuma G., van Dijk S., Heijnen H.F.G. The platelet interior revisited: Electron tomography reveals tubular alpha-granule subtypes. Blood. 2010;116:1147–1156. doi: 10.1182/blood-2010-02-268680. PubMed DOI

Cannon J.G., van der Meer J.W., Kwiatkowski D., Endres S., Lonnemann G., Burke J.F., Dinarello C.A. Interleukin-1 beta in human plasma: Optimization of blood collection, plasma extraction, and radioimmunoassay methods. Lymphokine Res. 1988;7:457–467. PubMed

Martino M.M., Briquez P.S., Ranga A., Lutolf M.P., Hubbell J.A. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. USA. 2013;110:4563–4568. doi: 10.1073/pnas.1221602110. PubMed DOI PMC

Thavasu P.W., Longhurst S., Joel S.P., Slevin M.L., Balkwill F.R. Measuring cytokine levels in blood. Importance of anticoagulants, processing, and storage conditions. J. Immunol. Methods. 1992;153:115–124. doi: 10.1016/0022-1759(92)90313-I. PubMed DOI

De Jager W., Bourcier K., Rijkers G.T., Prakken B.J., Seyfert-Margolis V. Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol. 2009;10:52. doi: 10.1186/1471-2172-10-52. PubMed DOI PMC

Duvigneau J.C., Hartl R.T., Teinfalt M., Gemeiner M. Delay in processing porcine whole blood affects cytokine expression. J. Immunol. Methods. 2003;272:11–21. doi: 10.1016/S0022-1759(02)00372-1. PubMed DOI

Laster S.M., Wood J.G., Gooding L.R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 1988;141:2629–2634. PubMed

Frankel S.K., Cosgrove G.P., Cha S.-I., Cool C.D., Wynes M.W., Edelman B.L., Brown K.K., Riches D.W.H. TNF-alpha sensitizes normal and fibrotic human lung fibroblasts to Fas-induced apoptosis. Am. J. Respir. Cell Mol. Biol. 2006;34:293–304. doi: 10.1165/rcmb.2005-0155OC. PubMed DOI PMC

Graves D.T., Oskoui M., Voleinikova S., Naguib G., Cai S., Desta T., Kakouras A., Jiang Y. Tumor necrosis factor modulates fibroblast apoptosis, PMN recruitment, and osteoclast formation in response to P. gingivalis infection. J. Dent. Res. 2001;80:1875–1879. doi: 10.1177/00220345010800100301. PubMed DOI

Platanias L.C. Interferons: Laboratory to clinic investigations. Curr. Opin. Oncol. 1995;7:560–565. doi: 10.1097/00001622-199511000-00015. PubMed DOI

Chawla-Sarkar M., Lindner D.J., Liu Y.F., Williams B.R., Sen G.C., Silverman R.H., Borden E.C. Apoptosis and interferons: Role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 2003;8:237–249. doi: 10.1023/A:1023668705040. PubMed DOI

Schroder K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-γ: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004;75:163–189. doi: 10.1189/jlb.0603252. PubMed DOI

Wang X.Y., Crowston J.G., White A.J., Zoellner H., Healey P.R. Interferon-alpha and interferon-gamma modulate Fas-mediated apoptosis in mitomycin-C-resistant human Tenon’s fibroblasts. Clin. Exp. Ophthalmol. 2014;42:529–538. doi: 10.1111/ceo.12268. PubMed DOI

Todaro G.J., Green H. Serum Albumin supplemented medium for long term cultivation of mammalian fibroblast strains. Exp. Biol. Med. 1964;116:688–692. doi: 10.3181/00379727-116-29346. PubMed DOI

Hers I. Insulin-like growth factor-1 potentiates platelet activation via the IRS/PI3Kalpha pathway. Blood. 2007;110:4243–4252. doi: 10.1182/blood-2006-10-050633. PubMed DOI

Phillips P.D., Pignolo R.J., Cristofalo V.J. Insulin-like growth factor-I: Specific binding to high and low affinity sites and mitogenic action throughout the life span of WI-38 cells. J. Cell. Physiol. 1987;133:135–143. doi: 10.1002/jcp.1041330117. PubMed DOI

Jones J.I., Clemmons D.R. Insulin-like growth factors and their binding proteins: Biological actions*. Endocr. Rev. 1995;16:3–34. PubMed

Liu Z., Gao L., Wang P., Xie Z., Cen S., Li Y., Wu X., Wang L., Su H., Deng W., et al. TNF- α induced the enhanced apoptosis of mesenchymal stem cells in ankylosing spondylitis by overexpressing TRAIL-R2. Stem Cells Int. 2017;2017:1–14. PubMed PMC

Wang L., Zhao Y., Liu Y., Akiyama K., Chen C., Qu C., Jin Y., Shi S. IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFκB signaling. Stem Cells. 2013;31:1383–1395. doi: 10.1002/stem.1388. PubMed DOI PMC

Chen H., Min X.-H., Wang Q.-Y., Leung F.W., Shi L., Zhou Y., Yu T., Wang C.-M., An G., Sha W.-H., et al. Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Sci. Rep. 2015;5:8718. doi: 10.1038/srep08718. PubMed DOI PMC

Redondo-Castro E., Cunningham C., Miller J., Martuscelli L., Aoulad-Ali S., Rothwell N.J., Kielty C.M., Allan S.M., Pinteaux E. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Res. Ther. 2017;8:79. doi: 10.1186/s13287-017-0531-4. PubMed DOI PMC

Pricola K.L., Kuhn N.Z., Haleem-Smith H., Song Y., Tuan R.S. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J. Cell. Biochem. 2009;108:577–588. doi: 10.1002/jcb.22289. PubMed DOI PMC

Youssef A., Aboalola D., Han V.K.M. The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells Int. 2017;2017:9453108. doi: 10.1155/2017/9453108. PubMed DOI PMC

Nawrocka D., Kornicka K., Szydlarska J., Marycz K. Basic fibroblast growth factor inhibits apoptosis and promotes proliferation of adipose-derived mesenchymal stromal cells isolated from patients with type 2 diabetes by reducing cellular oxidative stress. Oxidative Med. Cell. Longev. 2017;2017:1–22. PubMed PMC

Zhang F., Ren T., Wu J., Niu J. Small concentrations of TGF-β1 promote proliferation of bone marrow-derived mesenchymal stem cells via activation of Wnt/β-catenin pathway. Indian J. Exp. Biol. 2015;53:508–513. PubMed

Gharibi B., Hughes F.J. Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl. Med. 2012;1:771–782. doi: 10.5966/sctm.2010-0031. PubMed DOI PMC

Tang F.P., Wu X.H., Yu X.L., Yang S.H., Xu W.H., Li J. Effects of granulocyte colony-stimulating factor and stem cell factor, alone and in combination, on the biological behaviours of bone marrow mesenchymal stem cells. J. Biomed. Sci. Eng. 2009;2:200–207. doi: 10.4236/jbise.2009.23033. DOI

Truong M.D., Choi B.H., Kim Y.J., Kim M.S., Min B.H. Granulocyte macrophage—Colony stimulating factor (GM-CSF) significantly enhances articular cartilage repair potential by microfracture. Osteoarthr. Cartil. 2017;25:1345–1352. doi: 10.1016/j.joca.2017.03.002. PubMed DOI

Shahdadfar A., Frønsdal K., Haug T., Reinholt F.P., Brinchmann J.E. In vitro expansion of human mesenchymal stem cells: Choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells. 2005;23:1357–1366. doi: 10.1634/stemcells.2005-0094. PubMed DOI

Allen A.B., Butts E.B., Copland I.B., Stevens H.Y., Guldberg R.E. Human platelet lysate supplementation of mesenchymal stromal cell delivery: Issues of xenogenicity and species variability. J. Tissue Eng. Regen. Med. 2017;11:2876–2884. doi: 10.1002/term.2191. PubMed DOI

Gstraunthaler G., Lindl T., van der Valk J. A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology. 2013;65:791–793. doi: 10.1007/s10616-013-9633-8. PubMed DOI PMC

Mishra A., Tummala P., King A., Lee B., Kraus M., Tse V., Jacobs C.R. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng. Part C Methods. 2009;15:431–435. doi: 10.1089/ten.tec.2008.0534. PubMed DOI PMC

Vogel J.P., Szalay K., Geiger F., Kramer M., Richter W., Kasten P. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics. Platelets. 2006;17:462–469. doi: 10.1080/09537100600758867. PubMed DOI

Bennardo F., Bennardo L., Del Duca E., Patruno C., Fortunato L., Giudice A., Nisticò S.P. Autologous platelet-rich fibrin injections in the management of facial cutaneous sinus tracts secondary to medication-related osteonecrosis of the jaw. Dermatologic Ther. 2020;33:e13334. doi: 10.1111/dth.13334. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...