Cellular Response to Individual Components of the Platelet Concentrate
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
No 17-32285A
Internal Grant Agency of the Ministry of Health of the Czech Republic
projects No. LO1508, Operational Program - Prague Competitiveness CZ.2.16/3.1.00/21528
Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainabili-ty Programme I:
824007
EU Horizon 2020 MSCA-RISE-2018 - Research and Innovation Staff Exchange programme project IP Osteo "Induced pluripotent stem cell for bone and cartilage defects" under grant agreement
PubMed
33926125
PubMed Central
PMC8123700
DOI
10.3390/ijms22094539
PII: ijms22094539
Knihovny.cz E-resources
- Keywords
- fibroblasts, mesenchymal stem cells, plasma, platelets,
- MeSH
- Albumins MeSH
- Becaplermin metabolism MeSH
- Cell Culture Techniques methods MeSH
- Chemokines metabolism MeSH
- Fibrinogen metabolism MeSH
- Fibroblast Growth Factor 7 MeSH
- Fibroblasts metabolism MeSH
- Hepatocyte Growth Factor MeSH
- Insulin-Like Growth Factor I MeSH
- Plasma chemistry MeSH
- Culture Media chemistry MeSH
- Humans MeSH
- Mesenchymal Stem Cells metabolism MeSH
- Platelet-Rich Plasma metabolism MeSH
- Cell Proliferation drug effects MeSH
- Proto-Oncogene Proteins c-sis metabolism MeSH
- Blood Platelets chemistry metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Albumins MeSH
- Becaplermin MeSH
- Chemokines MeSH
- Fibrinogen MeSH
- Fibroblast Growth Factor 7 MeSH
- Hepatocyte Growth Factor MeSH
- Insulin-Like Growth Factor I MeSH
- Culture Media MeSH
- Proto-Oncogene Proteins c-sis MeSH
Platelet concentrates and especially their further product platelet lysate, are widely used as a replacement for cell culturing. Platelets contain a broad spectrum of growth factors and bioactive molecules that affect cellular fate. However, the cellular response to individual components of the human platelet concentrate is still unclear. The aim of this study was to observe cellular behavior according to the individual components of platelet concentrates. The bioactive molecule content was determined. The cells were supplemented with a medium containing 8% (v/v) of platelet proteins in plasma, pure platelet proteins in deionized water, and pure plasma. The results showed a higher concentration of fibrinogen, albumin, insulin growth factor I (IGF-1), keratinocyte growth factor (KGF), and hepatocyte growth factor (HGF), in the groups containing plasma. On the other hand, chemokine RANTES and platelet-derived growth factor bb (PDGF-bb), were higher in the groups containing platelet proteins. The groups containing both plasma and plasma proteins showed the most pronounced proliferation and viability of mesenchymal stem cells and fibroblasts. The platelet proteins alone were not sufficient to provide optimal cell growth and viability. A synergic effect of platelet proteins and plasma was observed. The data indicated the importance of plasma in platelet lysate for cell growth.
See more in PubMed
Dohan Ehrenfest D.M., Andia I., Zumstein M.A., Zhang C.Q., Pinto N.R., Bielecki T. Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: Current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J. 2014;4:3–9. doi: 10.32098/mltj.01.2014.02. PubMed DOI PMC
Mlynarek R.A., Kuhn A.W., Bedi A. Platelet-rich plasma (prp) in orthopedic sports medicine. Am. J. Orthop. 2016;45:290–326. PubMed
Terada S., Ota S., Kobayashi M., Kobayashi T., Mifune Y., Takayama K., Michelle W., Gianluca V., Nick O., Takanobu O., et al. Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J. Bone Jt. Surg. 2013;95:980–988. doi: 10.2106/JBJS.L.00266. PubMed DOI
Vogrin M., Rupreht M., Dinevski D., Hašpl M., Kuhta M., Jevsek M., Knežević M., Rožman P. Effects of a platelet gel on early graft revascularization after anterior cruciate ligament reconstruction: A prospective, randomized, double-blind, clinical trial. Eur. Surg. Res. 2010;45:77–85. doi: 10.1159/000318597. PubMed DOI
Emer J. Platelet-Rich Plasma (PRP): Current applications in dermatology. Ski. Ther. Lett. 2019;24:1–6. PubMed
Samadi P., Sheykhhasan M., Khoshinani H.M. The use of platelet-rich plasma in aesthetic and regenerative medicine: A comprehensive review. Aesthet. Plast. Surg. 2019;43:803–814. doi: 10.1007/s00266-018-1293-9. PubMed DOI
Aust M., Pototschnig H., Jamchi S., Busch K.H. Platelet-rich plasma for skin rejuvenation and treatment of actinic elastosis in the lower eyelid area. Cureus. 2018;10:e2999. doi: 10.7759/cureus.2999. PubMed DOI PMC
Elghblawi E. Platelet-rich plasma, the ultimate secret for youthful skin elixir and hair growth triggering. J. Cosmet. Dermatol. 2018;17:423–430. doi: 10.1111/jocd.12404. PubMed DOI
Cieslik-Bielecka A., Choukroun J., Odin G., Dohan Ehrenfest D.M. L-PRP/L-PRF in esthetic plastic surgery, regenerative medicine of the skin and chronic wounds. Curr. Pharm. Biotechnol. 2012;13:1266–1277. doi: 10.2174/138920112800624463. PubMed DOI
Leo M.S., Kumar A.S., Kirit R., Konathan R., Sivamani R.K. Systematic review of the use of platelet-rich plasma in aesthetic dermatology. J. Cosmet. Dermatol. 2015;14:315–323. doi: 10.1111/jocd.12167. PubMed DOI
Roubelakis M.G., Trohatou O., Roubelakis A., Mili E., Kalaitzopoulos I., Papazoglou G., Pappa K.I., Anagnou N.P. Platelet-rich plasma (PRP) promotes fetal mesenchymal stem/stromal cell migration and wound healing process. Stem Cell Rev. Rep. 2014;10:417–428. doi: 10.1007/s12015-013-9494-8. PubMed DOI
Marx R.E. Platelet-rich plasma: Evidence to support its use. J. Oral Maxillofac. Surg. 2004;62:489–496. doi: 10.1016/j.joms.2003.12.003. PubMed DOI
Bhanot S., Alex J.C. Current applications of platelet gels in facial plastic surgery. Facial Plast. Surg. 2002;18:27–34. doi: 10.1055/s-2002-19824. PubMed DOI
Xu J., Gou L., Zhang P., Li H., Qiu S. Platelet-rich plasma and regenerative dentistry. Aust. Dent. J. 2020;65:131–142. doi: 10.1111/adj.12754. PubMed DOI PMC
Shivashankar V.Y., Johns D.A., Maroli R.K., Sekar M., Chandrasekaran R., Karthikeyan S., Renganathan S.K. Comparison of the effect of PRP, PRF and induced bleeding in the revascularization of teeth with necrotic pulp and open apex: A triple blind randomized clinical trial. J. Clin. Diagn. Res. 2017;11:ZC34–ZC39. doi: 10.7860/JCDR/2017/22352.10056. PubMed DOI PMC
Merchán W.H., Gòmez L.A., Chasoy M.E., Alfonso-Rodríguez C.A., Muñoz A.L. Platelet-rich plasma, a powerful tool in dermatology. J. Tissue Eng. Regen. Med. 2019;13:892–901. doi: 10.1002/term.2832. PubMed DOI
Graziani F., Cei S., Ducci F., Giuca M.R., Donos N., Gabriele M. In vitro effects of different concentration of PRP on primary bone and gingival cell lines. Preliminary results. Minerva Stomatol. 2005;54:15–22. PubMed
Okuda K., Kawase T., Momose M., Murata M., Saito Y., Suzuki H., Wolff L.F., Yoshie H. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J. Periodontol. 2003;74:849–857. doi: 10.1902/jop.2003.74.6.849. PubMed DOI
Bertoncelj V., Pelipenko J., Kristl J., Jeras M., Cukjati M., Kocbek P. Development and bioevaluation of nanofibers with blood-derived growth factors for dermal wound healing. Eur. J. Pharm. Biopharm. 2014;88:64–74. doi: 10.1016/j.ejpb.2014.06.001. PubMed DOI
Ramos-Torrecillas J., García-Martínez O., De Luna-Bertos E., Ruiz C. Clinical utility of growth factors and platelet-rich plasma in tissue regeneration: A review. Wounds Compend. Clin. Res. Pract. 2014;26:207–213. PubMed
Dohan Ehrenfest D.M., Rasmusson L., Albrektsson T. Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF) Trends Biotechnol. 2009;27:158–167. doi: 10.1016/j.tibtech.2008.11.009. PubMed DOI
Dohan Ehrenfest D.M., Doglioli P., de Peppo G.M., Del Corso M., Charrier J.-B. Choukroun’s platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way. Arch. Oral Biol. 2010;55:185–194. doi: 10.1016/j.archoralbio.2010.01.004. PubMed DOI
Mussano F., Genova T., Munaron L., Petrillo S., Erovigni F., Carossa S. Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets. 2016;27:467–471. doi: 10.3109/09537104.2016.1143922. PubMed DOI
Murray M.M., Spindler K.P., Abreu E., Muller J.A., Nedder A., Kelly M., Frino J., Zurakowski D., Valenza M., Snyder B.D., et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J. Orthop. Res. 2007;25:81–91. doi: 10.1002/jor.20282. PubMed DOI
Vocetkova K., Buzgo M., Sovkova V., Bezdekova D., Kneppo P., Amler E. Nanofibrous polycaprolactone scaffolds with adhered platelets stimulate proliferation of skin cells. Cell Prolif. 2016;49:568–578. doi: 10.1111/cpr.12276. PubMed DOI PMC
Pietramaggiori G., Scherer S.S., Mathews J.C., Alperovich M., Yang H., Arch J.N.M., Czeczuga J.M., Chan R.K., Wagner C.T., Orgill D.P. Healing modulation induced by freeze-dried platelet-rich plasma and micronized allogenic dermis in a diabetic wound model. Wound Repair Regen. 2008;16:218–225. doi: 10.1111/j.1524-475X.2008.00362.x. PubMed DOI
Sahni A., Guo M., Sahni S.K., Francis C.W. Interleukin-1β but not IL-1α binds to fibrinogen and fibrin and has enhanced activity in the bound form. Blood. 2004;104:409–414. doi: 10.1182/blood-2004-01-0126. PubMed DOI
Bielecki T., Dohan Ehrenfest D.M., Everts P.A., Wiczkowski A. The role of leukocytes from L-PRP/L-PRF in wound healing and immune defense: New perspectives. Curr. Pharm. Biotechnol. 2012;13:1153–1162. doi: 10.2174/138920112800624373. PubMed DOI
Zhang Z.Y., Huang A.W., Fan J.J., Wei K., Jin D., Chen B., Li D., Bi L., Wang J., Pei G. The potential use of allogeneic platelet-rich plasma for large bone defect treatment: Immunogenicity and defect healing efficacy. Cell Transplant. 2013;22:175–187. doi: 10.3727/096368912X653183. PubMed DOI
Scevola S., Nicoletti G., Brenta F., Isernia P., Maestri M., Faga A. Allogenic platelet gel in the treatment of pressure sores: A pilot study. Int. Wound J. 2010;7:184–190. doi: 10.1111/j.1742-481X.2010.00671.x. PubMed DOI PMC
Jonnalagadda D., Izu L.T., Whiteheart S.W. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood. 2012;120:5209–5216. doi: 10.1182/blood-2012-07-445080. PubMed DOI PMC
Kamykowski J., Carlton P., Sehgal S., Storrie B. Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet α-granules. Blood. 2011;118:1370–1373. doi: 10.1182/blood-2011-01-330910. PubMed DOI
Chatterjee M., Huang Z., Zhang W., Jiang L., Hultenby K., Zhu L., Hu H., Nilsson G.P., Li N. Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood. 2011;117:3907–3911. doi: 10.1182/blood-2010-12-327007. PubMed DOI
Battinelli E.M., Markens B.A., Italiano J.E. Release of angiogenesis regulatory proteins from platelet alpha granules: Modulation of physiologic and pathologic angiogenesis. Blood. 2011;118:1359–1369. doi: 10.1182/blood-2011-02-334524. PubMed DOI PMC
Peters C.G., Michelson A.D., Flaumenhaft R. Granule exocytosis is required for platelet spreading: Differential sorting of α-granules expressing VAMP-7. Blood. 2012;120:199–206. doi: 10.1182/blood-2011-10-389247. PubMed DOI PMC
Van Nispen tot Pannerden H., de Haas F., Geerts W., Posthuma G., van Dijk S., Heijnen H.F.G. The platelet interior revisited: Electron tomography reveals tubular alpha-granule subtypes. Blood. 2010;116:1147–1156. doi: 10.1182/blood-2010-02-268680. PubMed DOI
Cannon J.G., van der Meer J.W., Kwiatkowski D., Endres S., Lonnemann G., Burke J.F., Dinarello C.A. Interleukin-1 beta in human plasma: Optimization of blood collection, plasma extraction, and radioimmunoassay methods. Lymphokine Res. 1988;7:457–467. PubMed
Martino M.M., Briquez P.S., Ranga A., Lutolf M.P., Hubbell J.A. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. USA. 2013;110:4563–4568. doi: 10.1073/pnas.1221602110. PubMed DOI PMC
Thavasu P.W., Longhurst S., Joel S.P., Slevin M.L., Balkwill F.R. Measuring cytokine levels in blood. Importance of anticoagulants, processing, and storage conditions. J. Immunol. Methods. 1992;153:115–124. doi: 10.1016/0022-1759(92)90313-I. PubMed DOI
De Jager W., Bourcier K., Rijkers G.T., Prakken B.J., Seyfert-Margolis V. Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol. 2009;10:52. doi: 10.1186/1471-2172-10-52. PubMed DOI PMC
Duvigneau J.C., Hartl R.T., Teinfalt M., Gemeiner M. Delay in processing porcine whole blood affects cytokine expression. J. Immunol. Methods. 2003;272:11–21. doi: 10.1016/S0022-1759(02)00372-1. PubMed DOI
Laster S.M., Wood J.G., Gooding L.R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 1988;141:2629–2634. PubMed
Frankel S.K., Cosgrove G.P., Cha S.-I., Cool C.D., Wynes M.W., Edelman B.L., Brown K.K., Riches D.W.H. TNF-alpha sensitizes normal and fibrotic human lung fibroblasts to Fas-induced apoptosis. Am. J. Respir. Cell Mol. Biol. 2006;34:293–304. doi: 10.1165/rcmb.2005-0155OC. PubMed DOI PMC
Graves D.T., Oskoui M., Voleinikova S., Naguib G., Cai S., Desta T., Kakouras A., Jiang Y. Tumor necrosis factor modulates fibroblast apoptosis, PMN recruitment, and osteoclast formation in response to P. gingivalis infection. J. Dent. Res. 2001;80:1875–1879. doi: 10.1177/00220345010800100301. PubMed DOI
Platanias L.C. Interferons: Laboratory to clinic investigations. Curr. Opin. Oncol. 1995;7:560–565. doi: 10.1097/00001622-199511000-00015. PubMed DOI
Chawla-Sarkar M., Lindner D.J., Liu Y.F., Williams B.R., Sen G.C., Silverman R.H., Borden E.C. Apoptosis and interferons: Role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 2003;8:237–249. doi: 10.1023/A:1023668705040. PubMed DOI
Schroder K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-γ: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004;75:163–189. doi: 10.1189/jlb.0603252. PubMed DOI
Wang X.Y., Crowston J.G., White A.J., Zoellner H., Healey P.R. Interferon-alpha and interferon-gamma modulate Fas-mediated apoptosis in mitomycin-C-resistant human Tenon’s fibroblasts. Clin. Exp. Ophthalmol. 2014;42:529–538. doi: 10.1111/ceo.12268. PubMed DOI
Todaro G.J., Green H. Serum Albumin supplemented medium for long term cultivation of mammalian fibroblast strains. Exp. Biol. Med. 1964;116:688–692. doi: 10.3181/00379727-116-29346. PubMed DOI
Hers I. Insulin-like growth factor-1 potentiates platelet activation via the IRS/PI3Kalpha pathway. Blood. 2007;110:4243–4252. doi: 10.1182/blood-2006-10-050633. PubMed DOI
Phillips P.D., Pignolo R.J., Cristofalo V.J. Insulin-like growth factor-I: Specific binding to high and low affinity sites and mitogenic action throughout the life span of WI-38 cells. J. Cell. Physiol. 1987;133:135–143. doi: 10.1002/jcp.1041330117. PubMed DOI
Jones J.I., Clemmons D.R. Insulin-like growth factors and their binding proteins: Biological actions*. Endocr. Rev. 1995;16:3–34. PubMed
Liu Z., Gao L., Wang P., Xie Z., Cen S., Li Y., Wu X., Wang L., Su H., Deng W., et al. TNF- α induced the enhanced apoptosis of mesenchymal stem cells in ankylosing spondylitis by overexpressing TRAIL-R2. Stem Cells Int. 2017;2017:1–14. PubMed PMC
Wang L., Zhao Y., Liu Y., Akiyama K., Chen C., Qu C., Jin Y., Shi S. IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFκB signaling. Stem Cells. 2013;31:1383–1395. doi: 10.1002/stem.1388. PubMed DOI PMC
Chen H., Min X.-H., Wang Q.-Y., Leung F.W., Shi L., Zhou Y., Yu T., Wang C.-M., An G., Sha W.-H., et al. Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Sci. Rep. 2015;5:8718. doi: 10.1038/srep08718. PubMed DOI PMC
Redondo-Castro E., Cunningham C., Miller J., Martuscelli L., Aoulad-Ali S., Rothwell N.J., Kielty C.M., Allan S.M., Pinteaux E. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Res. Ther. 2017;8:79. doi: 10.1186/s13287-017-0531-4. PubMed DOI PMC
Pricola K.L., Kuhn N.Z., Haleem-Smith H., Song Y., Tuan R.S. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J. Cell. Biochem. 2009;108:577–588. doi: 10.1002/jcb.22289. PubMed DOI PMC
Youssef A., Aboalola D., Han V.K.M. The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells Int. 2017;2017:9453108. doi: 10.1155/2017/9453108. PubMed DOI PMC
Nawrocka D., Kornicka K., Szydlarska J., Marycz K. Basic fibroblast growth factor inhibits apoptosis and promotes proliferation of adipose-derived mesenchymal stromal cells isolated from patients with type 2 diabetes by reducing cellular oxidative stress. Oxidative Med. Cell. Longev. 2017;2017:1–22. PubMed PMC
Zhang F., Ren T., Wu J., Niu J. Small concentrations of TGF-β1 promote proliferation of bone marrow-derived mesenchymal stem cells via activation of Wnt/β-catenin pathway. Indian J. Exp. Biol. 2015;53:508–513. PubMed
Gharibi B., Hughes F.J. Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl. Med. 2012;1:771–782. doi: 10.5966/sctm.2010-0031. PubMed DOI PMC
Tang F.P., Wu X.H., Yu X.L., Yang S.H., Xu W.H., Li J. Effects of granulocyte colony-stimulating factor and stem cell factor, alone and in combination, on the biological behaviours of bone marrow mesenchymal stem cells. J. Biomed. Sci. Eng. 2009;2:200–207. doi: 10.4236/jbise.2009.23033. DOI
Truong M.D., Choi B.H., Kim Y.J., Kim M.S., Min B.H. Granulocyte macrophage—Colony stimulating factor (GM-CSF) significantly enhances articular cartilage repair potential by microfracture. Osteoarthr. Cartil. 2017;25:1345–1352. doi: 10.1016/j.joca.2017.03.002. PubMed DOI
Shahdadfar A., Frønsdal K., Haug T., Reinholt F.P., Brinchmann J.E. In vitro expansion of human mesenchymal stem cells: Choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells. 2005;23:1357–1366. doi: 10.1634/stemcells.2005-0094. PubMed DOI
Allen A.B., Butts E.B., Copland I.B., Stevens H.Y., Guldberg R.E. Human platelet lysate supplementation of mesenchymal stromal cell delivery: Issues of xenogenicity and species variability. J. Tissue Eng. Regen. Med. 2017;11:2876–2884. doi: 10.1002/term.2191. PubMed DOI
Gstraunthaler G., Lindl T., van der Valk J. A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology. 2013;65:791–793. doi: 10.1007/s10616-013-9633-8. PubMed DOI PMC
Mishra A., Tummala P., King A., Lee B., Kraus M., Tse V., Jacobs C.R. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng. Part C Methods. 2009;15:431–435. doi: 10.1089/ten.tec.2008.0534. PubMed DOI PMC
Vogel J.P., Szalay K., Geiger F., Kramer M., Richter W., Kasten P. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics. Platelets. 2006;17:462–469. doi: 10.1080/09537100600758867. PubMed DOI
Bennardo F., Bennardo L., Del Duca E., Patruno C., Fortunato L., Giudice A., Nisticò S.P. Autologous platelet-rich fibrin injections in the management of facial cutaneous sinus tracts secondary to medication-related osteonecrosis of the jaw. Dermatologic Ther. 2020;33:e13334. doi: 10.1111/dth.13334. PubMed DOI