Sequential Changes in Antioxidant Potential of Oakleaf Lettuce Seedlings Caused by Nano-TiO2 Treatment
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
Ministry of Education and Science of the Republic of Poland
PubMed
33947078
PubMed Central
PMC8145349
DOI
10.3390/nano11051171
PII: nano11051171
Knihovny.cz E-resources
- Keywords
- Lactuca sativa var. foliosa, antioxidants, nanoparticles, sequential sampling, titanium dioxide,
- Publication type
- Journal Article MeSH
Nowadays, there is an increasing interest in nanoparticle (NP) technology used in household and industrial products. It could cause an accumulation and dispersion of NPs in the environment, with possible harmful effects on living organisms. Nanoparticles significantly affect plants and alter their physiology and biochemical pathways, and nanotechnology can be used to improve plant characteristics that are desirable by humans. Therefore, more extensive studies of NP interactions with plants are still needed. The aim of this report is to investigate the effect of TiO2 nanoparticles (TiO2-NPs) on the enzymatic and non-enzymatic antioxidants, fresh and dry weights, and malondialdehyde contents in oakleaf lettuce seedlings. Plants were foliar treated with a 0.75% suspension of TiO2-NPs, while control plants were sprayed with deionized water. Leaves were sampled 4, 7, 9, 11, and 13 days after the treatment. The effects of TiO2-NPs were time-dependent, but the most spectacular changes were observed 4 days after the treatment. Exposure of the plants to TiO2-NPs significantly increased the contents of glutathione at all sampling points, total phenolics at days 4 and 13, and L-ascorbic acid at 4, 7, and 11 days after the treatment. Elevated levels of ascorbate peroxidase and guaiacol peroxidase activities were recorded at days 4 and 13, respectively. Total antioxidant capacity increased initially in treated seedlings, when compared with the control, and then decreased. On day 7, higher fresh and dry weights, as well as malondialdehyde contents in TiO2-NPs treated plants were observed, compared with the control. The study demonstrated that the activation of some antioxidant system components due to TiO2-NPs treatment was connected with the induction of mild oxidative stress, with no external symptoms of NP toxicity in oakleaf lettuce.
See more in PubMed
Auffan M., Rose J., Bottero J.Y., Lowry G.V., Jolivet J.P., Wiesner M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009;4:634–641. doi: 10.1038/nnano.2009.242. PubMed DOI
Langauer-Lewowicka H., Pawlas K. Nanoparticles, nanotechnology–potential environmental and occupational hazards. Med. Sr. Environ. Med. 2014;17:7–14.
Radad K., Al-Shraim M., Moldzio R., Rausch W.D. Recent advances in benefits and hazards of engineered nanoparticles. Environ. Toxicol. Pharmacol. 2012;34:661–672. doi: 10.1016/j.etap.2012.07.011. PubMed DOI
Rastogi A., Zivcak M., Sytar O., Kalaji H.M., He X., Mbarki S., Brestic M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 2017;5:78. doi: 10.3389/fchem.2017.00078. PubMed DOI PMC
Zuverza-Mena N., Martínez-Fernández D., Du W., Hernandez-Viezcas J.A., Bonilla-Bird N., López-Moreno M.L., Komárek M., Peralta-Videa J.R., Gardea-Torresdey J. Exposure of engineered nano-materials to plants: Insights into the physiological and biochemical responses—A review. Plant Physiol. Biochem. 2017;110:236–264. doi: 10.1016/j.plaphy.2016.05.037. PubMed DOI
Goswami P., Yadav S., Mathur J. Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Sci. Today. 2019;6:233–242. doi: 10.14719/pst.2019.6.2.502. DOI
Arruda S.C., Silva A.L., Galazzi R.M., Azevedo R.A., Arruda M.A. Nanoparticles applied to plant science: A review. Talanta. 2015;131:693–705. doi: 10.1016/j.talanta.2014.08.050. PubMed DOI
Du W., Tan W., Peralta-Videa J.P., Gardea-Torresdey J.L., Ji R., Yin Y., Guo H. Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiol. Biochem. 2017;110:210–225. doi: 10.1016/j.plaphy.2016.04.024. PubMed DOI
Yang J., Cao W., Rui Y. Interactions between nanoparticles and plants: Phytotoxicity and defense mechanisms. J. Plant Interact. 2017;12:158–169. doi: 10.1080/17429145.2017.1310944. DOI
Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053. DOI
Costa M.V.J.D., Sharma P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2016;54:110–119. doi: 10.1007/s11099-015-0167-5. DOI
Hasanuzzaman M., Bhuyan M.H.M.B., Zulfiqar F., Raza A., Mohsin S.M., Mahmud J.A., Fujita M., Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants. 2020;9:681. doi: 10.3390/antiox9080681. PubMed DOI PMC
Shallan M.A., Hassan H.M.M., Namich A.A.M., Ibrahim A.A. Biochemical and physiological effects of TiO2 and SiO2 nanoparticles on cotton plant under drought stress. Res. J. Pharm. Biol. Chem. Sci. 2016;7:1540–1551.
Musial J., Krakowiak R., Mlynarczyk D.T., Goslinski T., Stanisz B.J. Titanium dioxide nanoparticles in food and personal care products—What do we know about their safety? Nanomaterials. 2020;10:1110. doi: 10.3390/nano10061110. PubMed DOI PMC
Kosmala K., Szymańska R. Titanium dioxide (IV) nanoparticles. Production, properties and application. Kosmos. 2016;65:235–245. (In Polish)
Chaudhary I.J., Singh V. Titanium dioxide nanoparticles and its impact on growth, biomass and yield of agricultural crops under environmental stress: A review. Res. J. Nanosci. Nanotechnol. 2020;10:1–8.
Li J., Naeem M.S., Wang X., Liu L., Chen C., Ma N., Zhang C. Nano-TiO2 is not phytotoxic as revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response. PLoS ONE. 2015;10:e0143885. doi: 10.1371/journal.pone.0143885. PubMed DOI PMC
Zheng L., Hong F., Lu S., Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 2005;104:83–91. doi: 10.1385/BTER:104:1:083. PubMed DOI
Gohari G., Mohammadi A., Akbari A., Panahirad S., Dadpour M.R., Fotopoulos V., Kimura S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 2020;10:912. doi: 10.1038/s41598-020-57794-1. PubMed DOI PMC
Cox A., Venkatachalam P., Sahi S., Sharma N. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol. Biochem. 2016;107:147–163. doi: 10.1016/j.plaphy.2016.05.022. PubMed DOI
Song G., Gao Y., Wu H., Hou W., Zhang C., Ma H. Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ. Toxicol. Chem. 2012;31:2147–2152. doi: 10.1002/etc.1933. PubMed DOI
Frazier T.P., Burklew C.E., Zhang B. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum) Funct. Integr. Genom. 2014;14:75–83. doi: 10.1007/s10142-013-0341-4. PubMed DOI
Mampholo B.M., Maboko M.M., Soundy P., Sivakumar D. Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in closed hydroponic system. J. Food Qual. 2016;39:805–815. doi: 10.1111/jfq.12234. DOI
Van Treuren R., van Eekelen H.D.L.M., Wehrens R., de Vos R.C.H. Metabolite variation in the lettuce gene pool: Towards healthier crop varieties and food. Metabolomics. 2018;14:146. doi: 10.1007/s11306-018-1443-8. PubMed DOI PMC
Viacava G.E., Roura S.I., Berrueta L.A., Iriondo C., Gallo B., Alonso-Salces R.M. Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESI-QToF/MS using MSE scan mode. J. Mass Spectrom. 2017;52:873–902. doi: 10.1002/jms.4021. PubMed DOI
Larue C., Castillo-Michel H., Sobanska S., Trcera N., Sorieul S., Cécillon L., Ouerdane L., Legros S., Sarret G. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J. Hazard. Mater. 2014;273:17–26. doi: 10.1016/j.jhazmat.2014.03.014. PubMed DOI
Xu J., Luo X., Wang Y., Feng Y. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. Environ. Sci. Pollut. Res. 2018;25:6026–6035. doi: 10.1007/s11356-017-0953-7. PubMed DOI
Jurkow R., Pokluda R., Sękara A., Kalisz A. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biol. 2020;20:290. doi: 10.1186/s12870-020-02490-5. PubMed DOI PMC
Pelegrino M.T., Kohatsu M.Y., Seabra A.B., Monteiro L.R., Gomes D.G., Oliveira H.C., Rolim W.R., Jesus T.A., Batista B.L., Lange C.N. Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environ. Monit. Assess. 2020;192:232. doi: 10.1007/s10661-020-8188-3. PubMed DOI
Jurkow R., Sękara A., Pokluda R., Smoleń S., Kalisz A. Biochemical response of oakleaf lettuce seedlings to different concentrations of some metal(oid) oxide nanoparticles. Agronomy. 2020;10:997. doi: 10.3390/agronomy10070997. DOI
Dhindsa R.S., Matowe W. Drought tolerance in two mosses: Correlated with enzymatic defense against lipid peroxidation. J. Exp. Bot. 1981;32:79–91. doi: 10.1093/jxb/32.1.79. DOI
Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004;26:211–219.
Guri A. Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can. J. Plant Sci. 1983;63:733–737. doi: 10.4141/cjps83-090. DOI
Krełowska-Kułas M. Badanie Jakości Produktów Spożywczych. PWE; Warsaw, Poland: 1993. (In Polish)
Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P., Vidal N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006;97:654–660. doi: 10.1016/j.foodchem.2005.04.028. DOI
Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.
Zhang Z., Pang X., Duan X., Ji Z.L., Jiang Y. Role of peroxidase in anthocyanine degradation in litchi fruit pericarp. Food Chem. 2005;90:47–52. doi: 10.1016/j.foodchem.2004.03.023. DOI
Pijanowski E., Mrożewski S., Horubała A. Technologia Produktów Owocowych i Warzywnych. PWRiL; Warsaw, Poland: 1964. (In Polish)
Kalisz A., Sękara A., Smoleń S., Grabowska A., Gil J., Komorowska M., Kunicki E. Survey of 17 elements, including rare earth elements, in chilled and non-chilled cauliflower cultivars. Sci. Rep. 2019;9:5416. doi: 10.1038/s41598-019-41946-z. PubMed DOI PMC
Morales M., Munné-Bosch S. Malondialdehyde: Facts and artifacts. Plant Physiol. 2019;180:1246–1250. doi: 10.1104/pp.19.00405. PubMed DOI PMC
Mohammadi H., Esmailpour M., Gheranpaye A. Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants. Acta Agric. Slov. 2016;107:385–396. doi: 10.14720/aas.2016.107.2.11. DOI
Latef A.A.H.A., Srivastava A.K., El-Sadek M.S.A., Kordrostami M., Tran L.-S.P. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad. Dev. 2018;29:1065–1073. doi: 10.1002/ldr.2780. DOI
Kőrösi L., Bouderias S., Csepregi K., Bognár B., Teszlák P., Scarpellini A., Castelli A., Hideg É., Jakab G. Nanostructured TiO2-induced photocatalytic stress enhances the antioxidant capacity and phenolic content in the leaves of Vitis vinifera on a genotype-dependent manner. J. Photochem. Photobiol. B Biol. 2019;190:137–145. PubMed
Ghorbanpour M. Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian J. Plant Physiol. 2015;20:249–256. doi: 10.1007/s40502-015-0170-7. DOI
Kang H.-M., Saltveit M.E. Effect of chilling on antioxidant enzymes and DPPH-radical scavenging activity of high- and low-vigour cucumber seedling radicles. Plant Cell Environ. 2002;25:1233–1238. PubMed
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012;2012:217037. doi: 10.1155/2012/217037. DOI
Hicks L.M., Cahoon R.E., Bonner E.R., Rivard R.S., Sheffield J., Jez J.M. Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell. 2007;19:2653–2661. PubMed PMC
Ma C., Chhikara S., Xing B., Musante C., White J.C., Dhankher O.P. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain. Chem. Eng. 2013;1:768–778. doi: 10.1021/sc400098h. DOI
Hasanuzzaman M., Nahar K., Anee T.I., Fujita M. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants. 2017;23:249–268. doi: 10.1007/s12298-017-0422-2. PubMed DOI PMC
Ma C., White J.C., Dhankher O.P., Xing B. Metal-based nanotoxicity and detoxification pathways in higher plants. Environ. Sci. Technol. 2015;49:7109–7122. PubMed
Jozefczak M., Remans T., Vangronsveld J., Cuypers A. Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 2012;13:3145–3175. doi: 10.3390/ijms13033145. PubMed DOI PMC
Yadav S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010;76:167–179.
Hernández L.E., Sobrino-Plata J., Montero-Palmero M.B., Carrasco-Gil S., Flores-Cáceres M.L., Ortega-Villasante C., Escobar C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J. Exp. Bot. 2015;66:2901–2911. doi: 10.1093/jxb/erv063. PubMed DOI
Hossain M.A., Munné-Bosch S., Burritt D.J., Diaz-Vivancos P., Fujita M., Lorence A. Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer International Publishing; New York, NY, USA: 2017.
Silva S., de Oliveira J.M.P.F., Dias M.C., Silva A.M.S., Santos C. Antioxidant mechanisms to counteract TiO2-nanoparticles toxicity in wheat leaves and roots are organ dependent. J. Hazard. Mater. 2019;380:120889. doi: 10.1016/j.jhazmat.2019.120889. PubMed DOI
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Naikoo M.I., Dar M.I., Raghib F., Jaleel H., Ahmad B., Raina A., Khan F.A., Naushin F. Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In: Khan M.I.R., Reddy P.S., Ferrante A., Khan N.A., editors. Plant Signaling Molecules, Role and Regulation under Stressful Environments. Elsevier; Amsterdam, The Netherlands: 2019. pp. 157–168.
Comotto M., Casazza A.A., Aliakbarian B., Caratto V., Ferretti M., Perego P. Influence of TiO2 nanoparticles on growth and phenolic compounds production in photosynthetic microorganisms. Sci. World J. 2014;2014:961437. doi: 10.1155/2014/961437. PubMed DOI PMC
Caverzan A., Passaia G., Rosa S.B., Ribeiro C.W., Lazzarotto F., Margis-Pinheiro M. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 2012;35(Suppl. 4):1011–1019. doi: 10.1590/S1415-47572012000600016. PubMed DOI PMC
Rao S., Shekhawat G.S. Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. Biotech. 2016;6:244. doi: 10.1007/s13205-016-0550-3. PubMed DOI PMC
Lei Z., Mingyu S., Xiao W., Chao L., Chunxiang Q., Liang C., Hao H., Xiaoqing L., Fashui H. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol. Trace Elem. Res. 2008;121:69–79. doi: 10.1007/s12011-007-8028-0. PubMed DOI
Mahmoodzadeh H., Nabavi M., Kashefi H. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus) J. Ornam. Hortic. Plants. 2013;3:25–32.
Raliya R., Nair R., Chavalmane S., Wang W.-N., Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 2015;7:1584–1594. doi: 10.1039/C5MT00168D. PubMed DOI