Estrogenicity of chemical mixtures revealed by a panel of bioassays
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33957588
PubMed Central
PMC8210648
DOI
10.1016/j.scitotenv.2021.147284
PII: S0048-9697(21)02355-X
Knihovny.cz E-zdroje
- Klíčová slova
- Bioassay, Chemical mixture, Endocrine disrupting compound (EDC), Environmental quality standard (EQS), Estrogenicity, Hormone mixture,
- MeSH
- biotest MeSH
- chemické látky znečišťující vodu * analýza toxicita MeSH
- endokrinní disruptory * analýza MeSH
- estrogeny analýza toxicita MeSH
- estron MeSH
- monitorování životního prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- endokrinní disruptory * MeSH
- estrogeny MeSH
- estron MeSH
Estrogenic compounds are widely released to surface waters and may cause adverse effects to sensitive aquatic species. Three hormones, estrone, 17β-estradiol and 17α-ethinylestradiol, are of particular concern as they are bioactive at very low concentrations. Current analytical methods are not all sensitive enough for monitoring these substances in water and do not cover mixture effects. Bioassays could complement chemical analysis since they detect the overall effect of complex mixtures. Here, four chemical mixtures and two hormone mixtures were prepared and tested as reference materials together with two environmental water samples by eight laboratories employing nine in vitro and in vivo bioassays covering different steps involved in the estrogenic response. The reference materials included priority substances under the European Water Framework Directive, hormones and other emerging pollutants. Each substance in the mixture was present at its proposed safety limit concentration (EQS) in the European legislation. The in vitro bioassays detected the estrogenic effect of chemical mixtures even when 17β-estradiol was not present but differences in responsiveness were observed. LiBERA was the most responsive, followed by LYES. The additive effect of the hormones was captured by ERα-CALUX, MELN, LYES and LiBERA. Particularly, all in vitro bioassays detected the estrogenic effects in environmental water samples (EEQ values in the range of 0.75-304 × EQS), although the concentrations of hormones were below the limit of quantification in analytical measurements. The present study confirms the applicability of reference materials for estrogenic effects' detection through bioassays and indicates possible methodological drawbacks of some of them that may lead to false negative/positive outcomes. The observed difference in responsiveness among bioassays - based on mixture composition - is probably due to biological differences between them, suggesting that panels of bioassays with different characteristics should be applied according to specific environmental pollution conditions.
ARPA Lazio Regional Agency for Environmental Protection Via G Saredo 52 00173 Rome Italy
ARPA Lombardia Regional Agency for Environmental Protection Via Rosellini 17 20124 Milan Italy
Department of Biology Norwegian University of Science and Technology NO 7491 Trondheim Norway
European Commission Joint Research Centre Via E Fermi 2749 21027 Ispra VA Italy
Federal Institute of Hydrology Am Mainzer Tor 1 D 56068 Koblenz Germany
ISPRA Environmental Metrology Unit Via di Castel Romano 100 00128 Rome Italy
ISS National Health Institute Viale Regina Elena 299 00161 Rome Italy
RECETOX Faculty of Science Masaryk University Kamenice 5 CZ62500 Brno Czech Republic
Swiss Centre for Applied Ecotoxicology Überlandstrasse 133 8600 Dübendorf Switzerland
Zobrazit více v PubMed
2008/105/EC. European Directive 2008/105/EC---Environmental quality standards in the field of water policy. Official Journal of the European Union, L384/84.
2013/39/EU. European Directive 2013/39/EU---European Directive amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union, L226/1.
Adeel M., Song X., Wang Y., Francis D., Yang Y. Environmental impact of estrogens on human, animal and plant life: a critical review. Environ. Int. 2017;99:107–119. doi: 10.1016/j.envint.2016.12.010. PubMed DOI
Balaguer P., François F., Comunale F., Fenet H., Boussioux A.M., Pons M. Reporter cell lines to study the estrogenic effects of xenoestrogens. Sci. Total Environ. 1999;233:47–56. doi: 10.1016/S0048-9697(99)00178-3. PubMed DOI
Balaguer P., Boussioux A.-M., Demirpence E., Nicolas J.-C. Reporter cell lines are useful tools for monitoring biological activity of nuclear receptor ligands. Luminescence. 2001;16:153–158. doi: 10.1016/j.aquatox.2015.03.021. PubMed DOI
Bemanian V., Male R., Goksøyr A. The aryl hydrocarbon receptor-mediated disruption of vitellogenin synthesis in the fish liver: cross-talk between AHR- and ERalpha-signalling pathways. Comp. Hepatol. 2004;3:2. doi: 10.1186/1476-5926-3-2. PubMed DOI PMC
Boonen I., Van Heyst A., Van Langenhove K., Van Hoeck E., Mertens B., Denison M.S. Assessing the receptor-mediated activity of PAHs using AhR-, ERα- and PPARγ- CALUX bioassays. Food Chem. Toxicol. 2020;145 doi: 10.1016/j.fct.2020.111602. PubMed DOI
Brack W., Aissa S.A., Backhaus T., Dulio V., Escher B.I., Faust M. Effect-based methods are key. The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. Environ. Sci. Eur. 2019;31:10. doi: 10.1186/s12302-019-0192-2. DOI
Brion F., Le Page Y., Piccini B., Cardoso O., Tong S.-K., B-c Chung. Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos. PLoS One. 2012;7:e36069. doi: 10.1371/journal.pone.0036069. PubMed DOI PMC
Brion F., De Gussem V., Buchinger S., Hollert H., Carere M., Porcher J.-M. Monitoring estrogenic activities of waste and surface waters using a novel in vivo zebrafish embryonic (EASZY) assay: comparison with in vitro cell-based assays and determination of effect-based trigger values. Environ. Int. 2019;130 doi: 10.1016/j.envint.2019.06.006. PubMed DOI
Buchinger S., Spira D., Bröder K., Schlüsener M., Ternes T., Reifferscheid G. Direct coupling of thin-layer chromatography with a bioassay for the detection of estrogenic compounds: applications for effect-directed analysis. Anal. Chem. 2013;85:7248–7256. doi: 10.1021/ac4010925. PubMed DOI
Carvalho R.N., Arukwe A., Ait-Aissa S., Bado-Nilles A., Balzamo S., Baun A. Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? Toxicol. Sci. 2014;141:218–233. doi: 10.1093/toxsci/kfu118. PubMed DOI PMC
Carvalho R.N., Ceriani L., Ippolito A., Lettieri T. Publications Office of the European Union; Luxembourg: 2015. Development of the First Watch List under the Environmental Quality Standards Directive, EUR2714. DOI
Carvalho R.N., Niegowska M., Gomez Cortes L., Lettieri T. EUR 29505 EN. Publications Office of the European Union; Luxembourg: 2019. Testing comparability of existing and innovative bioassays for water quality assessment. a European wide exercise. (ISBN 978-92-79-98270-5, doi:10.2760/565375, JRC114143)
COM 2011-876 final---European Commission proposal for a Directive amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy.
Dann A.B., Hontela A. Triclosan: environmental exposure, toxicity and mechanisms of action. J. Appl. Toxicol. 2011;31:285–311. doi: 10.1002/jat.1660. PubMed DOI
Du B., Fan G., Yu W., Yang S., Zhou J., Luo J. Occurrence and risk assessment of steroid estrogens in environmental water samples: a five-year worldwide perspective. Environ. Pollut. 2020;267 doi: 10.1016/j.envpol.2020.115405. PubMed DOI
Escher B.I., Bramaz N., Mueller J.F., Quayle P., Rutishauser S., Vermeirssen E.L.M. Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ecotoxicity testing of environmental samples. J. Environ. Monit. 2008;10:612–621. (doi:10: 612-621. 10.1039/B800949J) PubMed
Escher B.I., Allinson M., Altenburger R., Bain P.A., Balaguer P., Busch W. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with In Vitro bioassays. Environ. Sci. Technol. 2014;48:1940–1956. doi: 10.1021/es403899t. PubMed DOI
Escher B.I., Aїt-Aїssa S., Behnisch P.A., Brack W., Brion F., Brouwer A. Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European water framework directive. Sci. Total Environ. 2018;628-629:748–765. doi: 10.1016/j.scitotenv.2018.01.340. PubMed DOI
Escher B.I., Neale P.A., Villeneuve D.L. The advantages of linear concentration–response curves for in vitro bioassays with environmental samples. Environ. Toxicol. Chem. 2018;37:2273–2280. doi: 10.1002/etc.4178. PubMed DOI PMC
Escher B.I., Glauch L., König M., Mayer P., Schlichting R. Baseline toxicity and volatility cutoff in reporter gene assays used for high-throughput screening. Chem. Res. Toxicol. 2019;32:1646–1655. doi: 10.1021/acs.chemrestox.9b00182. PubMed DOI
EU. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJ L 327, 22.12.2000, p. 1–73.
EU. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union, L226/1-17, 24.8.2013.
EU. Commission Implementing Decision (CID) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Official Journal of the European Union, L 78/40-42, 24.3.2015.
EU. 2018/840. Commission Implementing Decision (CID) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495 (notified under document C(2018) 3362).
Ferrero V.E., Pedotti M., Chiadò A., Simonelli L., Calzolai L., Varani L. Rational modification of estrogen receptor by combination of computational and experimental analysis. PLoS One. 2014;9 doi: 10.1371/journal.pone.0102658. PubMed DOI PMC
Glauch L., Escher B.I. The combined algae test for the evaluation of mixture toxicity in environmental samples. Environ. Toxicol. Chem. 2020;39:2496–2508. doi: 10.1002/etc.4873. PubMed DOI
Gonsioroski A., Mourikes V.E., Flaws J.A. Endocrine disruptors in water and their effects on the reproductive system. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21061929. PubMed DOI PMC
ISO 17034 . 2016. General Requirements for the Competence of Reference Material Producers.
ISO 19040-1 . 2018. Water Quality - Determination of the Estrogenic Potential of Water and Waste Water - Part 1: Yeast Estrogen Screen (Saccharomyces cerevisiae)
ISO 19040-3 . 2018. Water Quality --- Determination of the Estrogenic Potential of Water and Waste Water --- Part 3: In vitro Human Cell-based Reporter Gene Assay.
ISO Guide 35 . 2017. Reference Materials — Guidance for Characterization and Assessment of Homogeneity and Stability.
Jarošová B., Bláha L., Giesy J.P., Hilscherová K. What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe? Environ. Int. 2014;64:98–109. doi: 10.1016/j.envint.2013.12.009. PubMed DOI
Jarošová B., Erseková A., Hilscherová K., Loos R., Gawlik B.M., Giesy J.P. Europe-wide survey of estrogenicity in wastewater treatment plant effluents: the need for the effect-based monitoring. Environ. Sci. Pollut. Res. 2014;21:10970–10982. doi: 10.1007/s11356-014-3056-8. PubMed DOI
Kase R., Javurkova B., Simon E., Swart K., Buchinger S., Könemann S. Screening and risk management solutions for steroidal estrogens in surface and wastewater. TrAC Trends Anal. Chem. 2018;102:343–358. doi: 10.1016/j.trac.2018.02.013. DOI
Könemann S., Kase R., Simon E., Swart K., Buchinger S., Schlüsener M. Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. TrAC Trends Anal. Chem. 2018;102:225–235. doi: 10.1016/j.trac.2018.02.008. DOI
König M., Escher B.I., Neale P.A., Krauss M., Hilscherová K., Novák J. Impact of untreated wastewater on a major European river evaluated with a combination of in vitro bioassays and chemical analysis. Environ. Pollut. 2017;220:1220–1230. doi: 10.1016/j.envpol.2016.11.011. PubMed DOI
Kunz P.Y., Simon E., Creusot N., Jayasinghe B.S., Kienle C., Maletz S. Effect-based tools for monitoring estrogenic mixtures: evaluation of five in vitro bioassays. Water Res. 2017;110:378–388. doi: 10.1016/j.watres.2016.10.062. PubMed DOI
Leusch F.D., de Jager C., Levi Y., Lim R., Puijker L., Sacher F. Comparison of five in vitro bioassays to measure estrogenic activity in environmental waters. Environ. Sci. Technol. 2010;44:3853–3860. doi: 10.1021/es903899d. PubMed DOI
Leusch F.D.L., Neale P.A., Arnal C., Aneck-Hahn N.H., Balaguer P., Bruchet A. Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries. Water Res. 2018;139:10–18. doi: 10.1016/j.watres.2018.03.056. PubMed DOI
Loos R. JRC Scientific and Policy Report. JRC73257. EUR 25532 EN. Publications Office of the European Union, 2012; Luxembourg: 2012. Analytical methods relevant to the European Commission’s 2012 proposal on Priority Substances under the Water Framework Directive.
Louiz I., Kinani S., Gouze M.E., Ben-Attia M., Menif D., Bouchonnet S. Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs) Sci. Total Environ. 2008;402:318–329. doi: 10.1016/j.scitotenv.2008.05.005. PubMed DOI
McDonnell DP, Nawaz Z, Densmore C, Weigel NL, Pham TA, Clark JH, et al, 1991. High level expression of biologically active estrogen receptor in Saccharomyces cerevisiae. J. Steroid Biochem. Mol. Biol. 1991; 39: 291–297. doi:10.1016/0960-0760(91)90038-7. PubMed DOI
Mehinto A.C., Jia A., Snyder S.A., Jayasinghe B.S., Denslow N.D., Crago J. Interlaboratory comparison of in vitro bioassays for screening of endocrine active chemicals in recycled water. Water Res. 2015;83:303–309. doi: 10.1016/j.watres.2015.06.050. PubMed DOI
Mortensen A.S., Arukwe A. Effects of 17α-ethynylestradiol on hormonal responses and xenobiotic biotransformation system of Atlantic salmon (Salmo salar) Aquat. Toxicol. 2007;85:113–123. doi: 10.1016/j.aquatox.2007.08.004. PubMed DOI
Neale P.A., Altenburger R., Aït-Aïssa S., Brion F., Busch W., de Aragão Umbuzeiro G. Development of a bioanalytical test battery for water quality monitoring: fingerprinting identified micropollutants and their contribution to effects in surface water. Water Res. 2017;123:734–750. doi: 10.1016/j.watres.2017.07.016. PubMed DOI
OECD . Performance-Based Test Guideline for Stably Transfected Transactivation In Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists. 2015. Oecd guideline for the testing of chemicals no. 455. DOI
von der Ohe P.C., Schmitt-Jansen M., Slobodnik J., Brack W. Triclosan—the forgotten priority substance? Environ. Sci. Pollut. Res. 2012;19:585–591. doi: 10.1007/s11356-011-0580-7. PubMed DOI
Ryan J.A., Hightower L.E. Evaluation of heavy-metal ion toxicity in fish cells using a combined stress protein and cytotoxicity assay. Environ. Toxicol. Chem. 1994;13:1231–1240. doi: 10.1002/etc.5620130804. DOI
Schoenborn A., Schmid P., Bräm S., Reifferscheid G., Ohlig M., Buchinger S. Unprecedented sensitivity of the planar yeast estrogen screen by using a spray-on technology. J. Chromatogr. A. 2017;1530:185–191. doi: 10.1016/j.chroma.2017.11.009. PubMed DOI
Schultis T., Metzger J.W. Determination of estrogenic activity by LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase) Chemosphere. 2004;57:1649–1655. doi: 10.1016/j.chemosphere.2004.06.027. PubMed DOI
Serra H., Brion F., Porcher J.M., Budzinski H., Aït-Aïssa S. Triclosan lacks anti-estrogenic effects in zebrafish cells but modulates estrogen response in zebrafish embryos. Int. J. Mol. Sci. 2018;19 doi: 10.3390/ijms19041175. PubMed DOI PMC
Serra H., Scholze M., Altenburger R., Busch W., Budzinski H., Brion F. Combined effects of environmental xeno-estrogens within multi-component mixtures: comparison of in vitro human- and zebrafish-based estrogenicity bioassays. Chemosphere. 2019;227:334–344. doi: 10.1016/j.chemosphere.2019.04.060. PubMed DOI
Simon E., Schifferli A., Bucher T.B., Olbrich D., Werner I., Vermeirssen E.L.M. Solid-phase extraction of estrogens and herbicides from environmental waters for bioassay analysis—effects of sample volume on recoveries. Anal. Bioanal. Chem. 2019;411:2057–2069. doi: 10.1007/s00216-019-01628-1. PubMed DOI
Sonneveld E., Jansen H.J., Riteco J.A., Brouwer A., van der Burg B. Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol. Sci. 2005;83:136–148. doi: 10.1093/toxsci/kfi005. PubMed DOI
Wernersson A.-S., Carere M., Maggi C., Tusil P., Soldan P., James A. The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environ. Sci. Eur. 2015;27:7. doi: 10.1186/s12302-015-0039-4. DOI