Oxidative Stress-Mediated YAP Dysregulation Contributes to the Pathogenesis of Pemphigus Vulgaris
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem
PubMed
33968042
PubMed Central
PMC8098436
DOI
10.3389/fimmu.2021.649502
Knihovny.cz E-zdroje
- Klíčová slova
- cell-cell adhesion, keratinocyte, oxidative stress, pemphigus vulgaris, reactive oxygen species, yes-associated protein,
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- alfa-katenin metabolismus MeSH
- antioxidancia farmakologie terapeutické užití MeSH
- autoprotilátky krev imunologie metabolismus MeSH
- buněčná adheze účinky léků imunologie MeSH
- buněčné linie MeSH
- desmoglein 3 imunologie metabolismus MeSH
- genový knockdown MeSH
- keratinocyty MeSH
- lidé MeSH
- MAP kinasový signální systém účinky léků imunologie MeSH
- oxidační stres účinky léků imunologie MeSH
- pemfigus krev farmakoterapie imunologie patologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální proteiny YAP MeSH
- studie případů a kontrol MeSH
- transkripční faktory genetika metabolismus MeSH
- ústní sliznice imunologie patologie MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- alfa-katenin MeSH
- antioxidancia MeSH
- autoprotilátky MeSH
- desmoglein 3 MeSH
- DSG3 protein, human MeSH Prohlížeč
- reaktivní formy kyslíku MeSH
- signální proteiny YAP MeSH
- transkripční faktory MeSH
- YAP1 protein, human MeSH Prohlížeč
Pemphigus Vulgaris (PV) is a life-threatening autoimmune disease manifested with blisters in the skin and mucosa and caused by autoantibodies against adhesion protein desmoglein-3 (Dsg3) expressed in epithelial membrane linings of these tissues. Despite many studies, the pathogenesis of PV remains incompletely understood. Recently we have shown Dsg3 plays a role in regulating the yes-associated protein (YAP), a co-transcription factor and mechanical sensor, and constraining reactive oxygen species (ROS). This study investigated the effect of PV sera as well as the anti-Dsg3 antibody AK23 on these molecules. We detected elevated YAP steady-state protein levels in PV cells surrounding blisters and perilesional regions and in keratinocytes treated with PV sera and AK23 with concomitant transient ROS overproduction. Cells treated with hydrogen peroxide also exhibited augmented nuclear YAP accompanied by reduction of Dsg3 and α-catenin, a negative regulator of YAP. As expected, transfection of α-catenin-GFP plasmid rendered YAP export from the nucleus evoked by hydrogen peroxide. In addition, suppression of total YAP was observed in hydrogen peroxide treated cells exposed to antioxidants with enhanced cell-cell adhesion being confirmed by decreased fragmentation in the dispase assay compared to hydrogen peroxide treatment alone. On the other hand, the expression of exogenous YAP disrupted intercellular junction assembly. In contrast, YAP depletion resulted in an inverse effect with augmented expression of junction assembly proteins, including Dsg3 and α-catenin capable of abolishing the effect of AK23 on Dsg3 expression. Finally, inhibition of other kinase pathways, including p38MAPK, also demonstrated suppression of YAP induced by hydrogen peroxide. Furthermore, antioxidant treatment of keratinocytes suppressed PV sera-induced total YAP accumulation. In conclusion, this study suggests that oxidative stress coupled with YAP dysregulation attributes to PV blistering, implying antioxidants may be beneficial in the treatment of PV.
CB Joint MHNCRL Hospital and School of Stomatology Guizhou Medical University Guiyang China
Department of Dermatology St Anna University Hospital Brno Czechia
Zobrazit více v PubMed
Amagai M. Autoimmune and infectious skin diseases that target desmogleins. Proc Jpn Acad Ser B Phys Biol Sci (2010) 86:524–37. 10.2183/pjab.86.524 PubMed DOI PMC
Kitajima Y. 150(th) anniversary series: Desmosomes and autoimmune disease, perspective of dynamic desmosome remodeling and its impairments in pemphigus. Cell Commun Adhes (2014) 21:269–80. 10.3109/15419061.2014.943397 PubMed DOI
Lanza A, Cirillo N, Femiano F, Gombos F. How does acantholysis occur in pemphigus vulgaris: a critical review. J Cutan Pathol (2006) 33:401–12. 10.1111/j.0303-6987.2006.00523.x PubMed DOI
Waschke J. The desmosome and pemphigus. Histochem Cell Biol (2008) 130:21–54. 10.1007/s00418-008-0420-0 PubMed DOI PMC
Spindler V, Eming R, Schmidt E, Amagai M, Grando S, Jonkman MF, et al. . Mechanisms Causing Loss of Keratinocyte Cohesion in Pemphigus. J Invest Dermatol (2018) 138:32–7. 10.1016/j.jid.2017.06.022 PubMed DOI
Heupel WM, Zillikens D, Drenckhahn D, Waschke J. Pemphigus vulgaris IgG directly inhibit desmoglein 3-mediated transinteraction. J Immunol (2008) 181:1825–34. 10.4049/jimmunol.181.3.1825 PubMed DOI
Tsunoda K, Ota T, Aoki M, Yamada T, Nagai T, Nakagawa T, et al. . Induction of pemphigus phenotype by a mouse monoclonal antibody against the amino-terminal adhesive interface of desmoglein 3. J Immunol (2003) 170:2170–8. 10.4049/jimmunol.170.4.2170 PubMed DOI
Amagai M, Karpati S, Prussick R, Klaus-Kovtun V, Stanley JR. Autoantibodies against the amino-terminal cadherin-like binding domain of pemphigus vulgaris antigen are pathogenic. J Clin Invest (1992) 90:919–26. 10.1172/JCI115968 PubMed DOI PMC
Caldelari R, de Bruin A, Baumann D, Suter MM, Bierkamp C, Balmer V, et al. . A central role for the armadillo protein plakoglobin in the autoimmune disease pemphigus vulgaris. J Cell Biol (2001) 153:823–34. 10.1083/jcb.153.4.823 PubMed DOI PMC
Kawasaki Y, Aoyama Y, Tsunoda K, Amagai M, Kitajima Y. Pathogenic monoclonal antibody against desmoglein 3 augments desmoglein 3 and p38 MAPK phosphorylation in human squamous carcinoma cell line. Autoimmunity (2006) 39:587–90. 10.1080/08916930600971943 PubMed DOI
Berkowitz P, Hu P, Liu Z, Diaz LA, Enghild JJ, Chua MP, et al. . Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. J Biol Chem (2005) 280:23778–84. 10.1074/jbc.M501365200 PubMed DOI
Vielmuth F, Waschke J, Spindler V. Loss of Desmoglein Binding Is Not Sufficient for Keratinocyte Dissociation in Pemphigus. J Invest Dermatol (2015) 135:3068–77. 10.1038/jid.2015.324 PubMed DOI
Mao X, Sano Y, Park JM, Payne AS. p38 MAPK activation is downstream of the loss of intercellular adhesion in pemphigus vulgaris. J Biol Chem (2011) 286:1283–91. 10.1074/jbc.M110.172874 PubMed DOI PMC
Spindler V, Waschke J. Role of Rho GTPases in desmosomal adhesion and pemphigus pathogenesis. Ann Anat (2011) 193:177–80. 10.1016/j.aanat.2011.02.003 PubMed DOI
Williamson L, Raess NA, Caldelari R, Zakher A, de Bruin A, Posthaus H, et al. . Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J (2006) 25:3298–309. 10.1038/sj.emboj.7601224 PubMed DOI PMC
Tsang SM, Brown L, Lin K, Liu L, Piper K, O’Toole EA, et al. . Non-junctional human desmoglein 3 acts as an upstream regulator of Src in E-cadherin adhesion, a pathway possibly involved in the pathogenesis of pemphigus vulgaris. J Pathol (2012) 227:81–93. 10.1002/path.3982 PubMed DOI
Chernyavsky AI, Arredondo J, Kitajima Y, Sato-Nagai M, Grando SA. Desmoglein versus non-desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of pemphigus vulgaris antigens. J Biol Chem (2007) 282:13804–12. 10.1074/jbc.M611365200 PubMed DOI
Marchenko S, Chernyavsky AI, Arredondo J, Gindi V, Grando SA. Antimitochondrial autoantibodies in pemphigus vulgaris: a missing link in disease pathophysiology. J Biol Chem (2010) 285:3695–704. 10.1074/jbc.M109.081570 PubMed DOI PMC
Grando SA. Pemphigus autoimmunity: hypotheses and realities. Autoimmunity (2012) 45:7–35. 10.3109/08916934.2011.606444 PubMed DOI PMC
Sinha AA, Sajda T. The Evolving Story of Autoantibodies in Pemphigus Vulgaris: Development of the “Super Compensation Hypothesis”. Front Med (Lausanne) (2018) 5:218. 10.3389/fmed.2018.00218 PubMed DOI PMC
Nguyen VT, Ndoye A, Shultz LD, Pittelkow MR, Grando SA. Antibodies against keratinocyte antigens other than desmogleins 1 and 3 can induce pemphigus vulgaris-like lesions. J Clin Invest (2000) 106:1467–79. 10.1172/JCI10305 PubMed DOI PMC
Zhu C, Li L, Zhao B. The regulation and function of YAP transcription co-activator. Acta Biochim Biophys Sin (Shanghai) (2015) 47:16–28. 10.1093/abbs/gmu110 PubMed DOI
Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev (2014) 94:1287–312. 10.1152/physrev.00005.2014 PubMed DOI
Aqeilan RI. Hippo signaling: to die or not to die. Cell Death Differ (2013) 20:1287–8. 10.1038/cdd.2013.100 PubMed DOI PMC
Yu FX, Zhao B, Guan KL. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell (2015) 163:811–28. 10.1016/j.cell.2015.10.044 PubMed DOI PMC
Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H, et al. . A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun (2014) 5:3315. 10.1038/ncomms4315 PubMed DOI PMC
Chen SN, Gurha P, Lombardi R, Ruggiero A, Willerson JT, Marian AJ. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res (2014) 114:454–68. 10.1161/CIRCRESAHA.114.302810 PubMed DOI PMC
Plouffe SW, Hong AW, Guan KL. Disease implications of the Hippo/YAP pathway. Trends Mol Med (2015) 21:212–22. 10.1016/j.molmed.2015.01.003 PubMed DOI PMC
Uttagomol J, Ahmad US, Rehman A, Huang Y, Laly AC, Kang A, et al. . Evidence for the Desmosomal Cadherin Desmoglein-3 in Regulating YAP and Phospho-YAP in Keratinocyte Responses to Mechanical Forces. Int J Mol Sci (2019) 20(24):6221. 10.1101/827725 PubMed DOI PMC
Shah AA, Dey-Rao R, Seiffert-Sinha K, Sinha AA. Increased oxidative stress in pemphigus vulgaris is related to disease activity and HLA-association. Autoimmunity (2016) 49:248–57. 10.3109/08916934.2016.1145675 PubMed DOI
Javanbakht MH, Djalali M, Daneshpazhooh M, Zarei M, Eshraghian MR, Derakhshanian H, et al. . Evaluation of antioxidant enzyme activity and antioxidant capacity in patients with newly diagnosed pemphigus vulgaris. Clin Exp Dermatol (2015) 40:313–7. 10.1111/ced.12489 PubMed DOI
Yesilova Y, Ucmak D, Selek S, Dertlioglu SB, Sula B, Bozkus F, et al. . Oxidative stress index may play a key role in patients with pemphigus vulgaris. J Eur Acad Dermatol Venereol (2013) 27:465–7. 10.1111/j.1468-3083.2012.04463.x PubMed DOI
Abida O, Gargouri B, Ben MR, Mseddi-Djemal M, Masmoudi A, Ben AM, et al. . Biomarkers of oxidative stress in epidermis of Tunisian pemphigus foliaceus patients. J Eur Acad Dermatol Venereol (2013) 27:e271–5. 10.1111/j.1468-3083.2012.04626.x PubMed DOI
Mao B, Gao Y, Bai Y, Yuan Z. Hippo signaling in stress response and homeostasis maintenance. Acta Biochim Biophys Sin (Shanghai) (2015) 47:2–9. 10.1093/abbs/gmu109 PubMed DOI
Dixit D, Ghildiyal R, Anto NP, Sen E. Chaetocin-induced ROS-mediated apoptosis involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell Death Dis (2014) 5:e1212. 10.1038/cddis.2014.179 PubMed DOI PMC
Roh KH, Choi EJ. TRAF2 functions as an activator switch in the reactive oxygen species-induced stimulation of MST1. Free Radic Biol Med (2016) 91:105–13. 10.1016/j.freeradbiomed.2015.12.010 PubMed DOI
Rehman A, Cai Y, Hunefeld C, Jedlickova H, Huang Y, Teck TM, et al. . The desmosomal cadherin desmoglein-3 acts as a keratinocyte anti-stress protein via suppression of p53. Cell Death Dis (2019) 10:750. 10.1038/s41419-019-1988-0 PubMed DOI PMC
Li X, Ahmad US, Huang Y, Uttagomol J, Rehman A, Zhou K, et al. . Desmoglein-3 acts as a pro-survival protein by suppressing reactive oxygen species and doming whilst augmenting the tight junctions in MDCK cells. Mech Ageing Dev (2019) 184:111174. 10.1016/j.mad.2019.111174 PubMed DOI
Rheinwald JG, Hahn WC, Ramsey MR, Wu JY, Guo Z, Tsao H, et al. . A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol Cell Biol (2002) 22:5157–72. 10.1128/MCB.22.14.5157-5172.2002 PubMed DOI PMC
Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, et al. . Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol (2000) 20:1436–47. 10.1128/MCB.20.4.1436-1447.2000 PubMed DOI PMC
Moftah H, Dias K, Apu EH, Liu L, Uttagomol J, Bergmeier L, et al. . Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion. Cell Adh Migr (2016) 11(3):211–32. 10.1080/19336918.2016.1195942 PubMed DOI PMC
Jennings JM, Tucker DK, Kottke MD, Saito M, Delva E, Hanakawa Y, et al. . Desmosome disassembly in response to pemphigus vulgaris IgG occurs in distinct phases and can be reversed by expression of exogenous dsg3. J Invest Dermatol (2011) 131:706–18. 10.1038/jid.2010.389 PubMed DOI PMC
Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, et al. . Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell (2011) 144:782–95. 10.1016/j.cell.2011.02.031 PubMed DOI PMC
Kim NG, Koh E, Chen X, Gumbiner BM. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A (2011) 108:11930–5. 10.1073/pnas.1103345108 PubMed DOI PMC
Abe-Yutori M, Chikazawa T, Shibasaki K, Murakami S. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J Periodontal Res (2017) 52:42–50. 10.1111/jre.12367 PubMed DOI
Inumaru J, Nagano O, Takahashi E, Ishimoto T, Nakamura S, Suzuki Y, et al. . Molecular mechanisms regulating dissociation of cell-cell junction of epithelial cells by oxidative stress. Genes Cells (2009) 14:703–16. 10.1111/j.1365-2443.2009.01303.x PubMed DOI
Kim KA, Jung JH, Kang IG, Choi YS, Kim ST. ROS Is Involved in Disruption of Tight Junctions of Human Nasal Epithelial Cells Induced by HRV16. Laryngoscope (2018) 128:E393–401. 10.1002/lary.27510 PubMed DOI
Narimatsu T, Ozawa Y, Miyake S, Kubota S, Hirasawa M, Nagai N, et al. . Disruption of cell-cell junctions and induction of pathological cytokines in the retinal pigment epithelium of light-exposed mice. Invest Ophthalmol Vis Sci (2013) 54:4555–62. 10.1167/iovs.12-11572 PubMed DOI
Vasioukhin V, Bauer C, Degenstein L, Wise B, Fuchs E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell (2001) 104:605–17. 10.1016/S0092-8674(01)00246-X PubMed DOI
Wan H. Desmoglein-3. In: Choi S, editor. Encyclopedia of Signaling Molecules. New York, NY: Springer New York; (2016). p. 1–15. 10.1007/978-1-4614-6438-9_101583-1 DOI
Ahmed AR, Carrozzo M, Caux F, Cirillo N, Dmochowski M, Alonso AE, et al. . Monopathogenic vs multipathogenic explanations of pemphigus pathophysiology. Exp Dermatol (2016) 25:839–46. 10.1111/exd.13106 PubMed DOI
Lee HB, Yu MR, Song JS, Ha H. Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells. Kidney Int (2004) 65:1170–9. 10.1111/j.1523-1755.2004.00491.x PubMed DOI
Sato A, Okada M, Shibuya K, Watanabe E, Seino S, Narita Y, et al. . Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells. Stem Cell Res (2014) 12:119–31. 10.1016/j.scr.2013.09.012 PubMed DOI
Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J Signal Transduction (2011) 2011:792639. 10.1155/2011/792639 PubMed DOI PMC
Son Y, Kim S, Chung HT, Pae HO. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol (2013) 528:27–48. 10.1016/B978-0-12-405881-1.00002-1 PubMed DOI
Wang Y, Bell JC, Keeney DS, Strobel HW. Gene regulation of CYP4F11 in human keratinocyte HaCaT cells. Drug Metab Dispos (2010) 38:100–7. 10.1124/dmd.109.029025 PubMed DOI PMC
Brown L, Waseem A, Cruz IN, Szary J, Gunic E, Mannan T, et al. . Desmoglein 3 promotes cancer cell migration and invasion by regulating activator protein 1 and protein kinase C-dependent-Ezrin activation. Oncogene (2014) 33:2363–74. 10.1038/onc.2013.186 PubMed DOI
Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol (2017) 18:758–70. 10.1038/nrm.2017.87 PubMed DOI PMC
Tsang SM, Liu L, Teh MT, Wheeler A, Grose R, Hart IR, et al. . Desmoglein 3, via an interaction with E-cadherin, is associated with activation of Src. PloS One (2010) 5:e14211. 10.1371/journal.pone.0014211 PubMed DOI PMC
Williamson L, Suter MM, Olivry T, Wyder M, Muller EJ. Upregulation of c-Myc may contribute to the pathogenesis of canine pemphigus vulgaris. Vet Dermatol (2007) 18:12–7. 10.1111/j.1365-3164.2007.00561.x PubMed DOI
Berkowitz P, Chua M, Liu Z, Diaz LA, Rubenstein DS. Autoantibodies in the autoimmune disease pemphigus foliaceus induce blistering via p38 mitogen-activated protein kinase-dependent signaling in the skin. Am J Pathol (2008) 173:1628–36. 10.2353/ajpath.2008.080391 PubMed DOI PMC
Jolly PS, Berkowitz P, Bektas M, Lee HE, Chua M, Diaz LA, et al. . p38MAPK signaling and desmoglein-3 internalization are linked events in pemphigus acantholysis. J Biol Chem (2010) 19(285):8936–41. 10.1074/jbc.M109.087999 PubMed DOI PMC
Lin KC, Moroishi T, Meng Z, Jeong HS, Plouffe SW, Sekido Y, et al. . Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat Cell Biol (2017) 19:996–1002. 10.1038/ncb3581 PubMed DOI PMC
Takaguri A, Kubo T, Mori M, Satoh K. The protective role of YAP1 on ER stress-induced cell death in vascular smooth muscle cells. Eur J Pharmacol (2017) 815:470–7. 10.1016/j.ejphar.2017.09.033 PubMed DOI
Budanov AV. The role of tumor suppressor p53 in the antioxidant defense and metabolism. Subcell Biochem (2014) 85:337–58. 10.1007/978-94-017-9211-0_18 PubMed DOI PMC
van WS, van Buul JD, Quik S, Mul FP, Anthony EC, ten Klooster JP, et al. . Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J Cell Sci (2002) 115:1837–46. PubMed
Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol (2001) 280:C719–41. 10.1152/ajpcell.2001.280.4.C719 PubMed DOI
Egu DT, Sigmund AM, Schmidt E, Spindler V, Walter E, Waschke J. A new ex vivo human oral mucosa model reveals that p38MAPK inhibition is not effective in preventing autoantibody-induced mucosal blistering in pemphigus. Br J Dermatol (2020) 182:987–94. 10.1111/bjd.18237 PubMed DOI