The order of PDZ3 and TrpCage in fusion chimeras determines their properties-a biophysical characterization
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33969912
PubMed Central
PMC8284584
DOI
10.1002/pro.4107
Knihovny.cz E-resources
- Keywords
- chimeras, fusion protein, protein domains, protein dynamic studies,
- MeSH
- PDZ Domains * genetics physiology MeSH
- Recombinant Fusion Proteins * chemistry genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Molecular Dynamics Simulation MeSH
- Tryptophan * chemistry genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Recombinant Fusion Proteins * MeSH
- Tryptophan * MeSH
Most of the structural proteins known today are composed of domains that carry their own functions while keeping their structural properties. It is supposed that such domains, when taken out of the context of the whole protein, can retain their original structure and function to a certain extent. Information on the specific functional and structural characteristics of individual domains in a new context of artificial fusion proteins may help to reveal the rules of internal and external domain communication. Moreover, this could also help explain the mechanism of such communication and address how the mutual allosteric effect plays a role in a such multi-domain protein system. The simple model system of the two-domain fusion protein investigated in this work consisted of a well-folded PDZ3 domain and an artificially designed small protein domain called Tryptophan Cage (TrpCage). Two fusion proteins with swapped domain order were designed to study their structural and functional features as well as their biophysical properties. The proteins composed of PDZ3 and TrpCage, both identical in amino acid sequence but different in composition (PDZ3-TrpCage, TrpCage-PDZ3), were studied using circualr dichroism (CD) spectrometry, analytical ultracentrifugation, and molecular dynamic simulations. The biophysical analysis uncovered different structural and denaturation properties of both studied proteins, revealing their different unfolding pathways and dynamics.
2nd Faculty of Medicine Charles University Prague 5 Czech Republic
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biochemistry Faculty of Science Charles University Prague 2 Czech Republic
Faculty of Mathematics and Physics Charles University Prague 2 Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague 4 Czech Republic
See more in PubMed
Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995;247:536–540. 10.1006/jmbi.1995.0159. PubMed DOI
Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA. Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol. 2004;14:208–216. 10.1016/j.sbi.2004.03.011. PubMed DOI
Bornberg‐Bauer E, Beaussart F, Kummerfeld SK, Teichmann SA, 3rd Weiner J. The evolution of domain arrangements in proteins and interaction networks. Cell Mol Life Sci. 2005;62:435–445. 10.1007/s00018-004-4416-1. PubMed DOI PMC
Letunic I, Doerks T, Bork P. SMART: Recent updates, new developments and status in 2015. Nucleic Acids Res. 2015;43:D257–D260. 10.1093/nar/gku949. PubMed DOI PMC
Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D230. 10.1093/nar/gkt1223. PubMed DOI PMC
Mitchell A, Chang HY, Daugherty L, et al. The InterPro protein families database: the classification resource after 15years. Nucleic Acids Res. 2015;43:D213–D221. 10.1093/nar/gku1243. PubMed DOI PMC
Kirubakaran P, Pfeiferová L, Boušová K, Bednárová L, Obšilová V, Vondrášek J. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two‐domain constructs: a computational characterization of novel chimeric proteins. Proteins. 2016;84:1358–1374. 10.1002/prot.25082. PubMed DOI
Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010;8:8. 10.1186/1478-811x-8-8. PubMed DOI PMC
Manjunath GP, Ramanujam PL, Galande S. Structure function relations in PDZ‐domain‐containing proteins: implications for protein networks in cellular signalling. J Biosci. 2018;43:155–171. 10.1007/s12038-017-9727-0. PubMed DOI
Murciano‐Calles J. The conformational plasticity vista of PDZ domains. Life. 2020;10:123. 10.3390/life10080123. PubMed DOI PMC
Songyang Z, Fanning AS, Fu C, et al. Recognition of unique carboxyl‐terminal motifs by distinct PDZ domains. Science. 1997;275:73–77. 10.1126/science.275.5296.73. PubMed DOI
Ye F, Zhang M. Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures. Biochem J. 2013;455:1–14. 10.1042/bj20130783. PubMed DOI
Luck K, Charbonnier S, Travé G. The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains. FEBS Lett. 2012;586:2648–2661. 10.1016/j.febslet.2012.03.056. PubMed DOI
Kock G, Dicks M, Yip KT, et al. Molecular basis of class III ligand recognition by PDZ3 in murine protein tyrosine phosphatase PTPN13. J Mol Biol. 2018;430:4275–4292. 10.1016/j.jmb.2018.08.023. PubMed DOI
Kundu K, Backofen R. Cluster based prediction of PDZ‐peptide interactions. BMC Genomics. 2014;15:S5. 10.1186/1471-2164-15-s1-s5. PubMed DOI PMC
Raman AS, White KI, Ranganathan R. Origins of allostery and evolvability in proteins: a case study. Cell. 2016;166:468–480. 10.1016/j.cell.2016.05.047. PubMed DOI
Jr McLaughlin RN, Poelwijk FJ, Raman A, Gosal WS, Ranganathan R. The spatial architecture of protein function and adaptation. Nature. 2012;491:138–142. 10.1038/nature11500. PubMed DOI PMC
Chi CN, Haq SR, Rinaldo S, et al. Interactions outside the boundaries of the canonical binding groove of a PDZ domain influence ligand binding. Biochemistry. 2012;51:8971–8979. 10.1021/bi300792h. PubMed DOI
Nomme J, Fanning AS, Caffrey M, Lye MF, Anderson JM, Lavie A. The Src homology 3 domain is required for junctional adhesion molecule binding to the third PDZ domain of the scaffolding protein ZO‐1. J Biol Chem. 2011;286:43352–43360. 10.1074/jbc.m111.304089. PubMed DOI PMC
Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D. Junctional adhesion molecule interacts with the PDZ domain‐containing proteins AF‐6 and ZO‐1. J Biol Chem. 2000;275:27979–27988. 10.1074/jbc.m002363200. PubMed DOI
Severson EA, Parkos CA. Mechanisms of outside‐in signaling at the tight junction by junctional adhesion molecule A. Ann N Y Acad Sci. 2009;1165:10–18. 10.1111/j.1749-6632.2009.04034.x. PubMed DOI
Qiu L, Pabit SA, Roitberg AE, Hagen SJ. Smaller and faster: the 20‐residue Trp‐cage protein folds in 4 micros. J Am Chem Soc. 2002;124:12952–12953. 10.1021/ja0279141. PubMed DOI
Neidigh JW, Fesinmeyer RM, Andersen NH. Designing a 20‐residue protein. Nat Struct Biol. 2002;9:425–430. 10.1038/nsb798. PubMed DOI
Barua B, Lin JC, Williams VD, Kummler P, Neidigh JW, Andersen NH. The Trp‐cage: optimizing the stability of a globular miniprotein. Protein Eng Des Sel. 2008;21:171–185. 10.1093/protein/gzm082. PubMed DOI PMC
Snow CD, Zagrovic B, Pande VS. The Trp cage: folding kinetics and unfolded state topology via molecular dynamics simulations. J Am Chem Soc. 2002;124:14548–14549. 10.1021/ja028604l. PubMed DOI
Černý J, Vondrášek JI, Hobza P. Loss of dispersion energy changes the stability and folding/unfolding equilibrium of the trp‐cage protein. J Phys Chem B. 2009;113:5657–5660. 10.1021/jp9004746. PubMed DOI
Bendová‐Biedermannová L, Hobza P, Vondrášek J. Identifying stabilizing key residues in proteins using interresidue interaction energy matrix. Proteins. 2008;72:402–413. 10.1002/prot.21938. PubMed DOI
Yao X‐Q, She Z‐S. Key residue‐dominated protein folding dynamics. Biochem Biophys Res Commun. 2008;373:64–68. 10.1016/j.bbrc.2008.05.179. PubMed DOI
Zhou R. Trp‐cage: folding free energy landscape in explicit water. Proc Natl Acad Sci U S A. 2003;100:13280–13285. 10.1073/pnas.2233312100. PubMed DOI PMC
Simmerling C, Strockbine B, Roitberg AE. All‐atom structure prediction and folding simulations of a stable protein. J Am Chem Soc. 2002;124:11258–11259. 10.1021/ja0273851. PubMed DOI
Pitera JW, Swope W. Understanding folding and design: replica‐exchange simulations of "Trp‐cage" miniproteins. Proc Natl Acad Sci U S A. 2003;100:7587–7592. 10.1073/pnas.1330954100. PubMed DOI PMC
Kannan S, Zacharias M. Role of tryptophan side chain dynamics on the Trp‐cage mini‐protein folding studied by molecular dynamics simulations. PLoS One. 2014;9:e88383. 10.1371/journal.pone.0088383. PubMed DOI PMC
Pan L, Chen J, Yu J, Yu H, Zhang M. The structure of the PDZ3‐SH3‐GuK tandem of ZO‐1 protein suggests a supramodular organization of the membrane‐associated guanylate kinase (MAGUK) family scaffold protein core. J Biol Chem. 2011;286:40069–40074. 10.1074/jbc.c111.293084. PubMed DOI PMC
Chen X, Zaro JL, Shen W‐C. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013;65:1357–1369. 10.1016/j.addr.2012.09.039. PubMed DOI PMC
Crasto CJ, Feng J‐A. LINKER: a program to generate linker sequences for fusion proteins. Protein Eng. 2000;13:309–312. 10.1093/protein/13.5.309. PubMed DOI
van Rosmalen M, Krom M, Merkx M. Tuning the flexibility of glycine‐serine linkers to allow rational design of multidomain proteins. Biochemistry. 2017;56:6565–6574. 10.1021/acs.biochem.7b00902. PubMed DOI PMC
Bousova K, Herman P, Vecer J, et al. Shared CaM‐ and S100A1‐binding epitopes in the distal TRPM4 N terminus. FEBS J. 2018;285:599–613. 10.1111/febs.14362. PubMed DOI
Hayes D, Laue T, Philo J. Program Sednterp: sedimentation interpretation program. Thousand Oaks, CA: Alliance Protein Laboratories, 1995.
Schuck P. Size‐distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000;78:1606–1619. 10.1016/s0006-3495(00)76713-0. PubMed DOI PMC
Brautigam CA. Calculations and publication‐quality illustrations for analytical ultracentrifugation data. Methods Enzymol. 2015;562:109–133. 10.1016/bs.mie.2015.05.001. PubMed DOI
Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8:409–427. 10.1007/s12551-016-0218-6. PubMed DOI PMC
Sreerama N, Woody RW. On the analysis of membrane protein circular dichroism spectra. Protein Sci. 2004;13:100–112. 10.1110/ps.03258404. PubMed DOI PMC
Sreerama N, Woody RW. Computation and analysis of protein circular dichroism spectra. Methods Enzymol. 2004;383:318–351. 10.1016/S0076-6879(04)83013-1. PubMed DOI
Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000;287:252–260. 10.1006/abio.2000.4880. PubMed DOI
Greenfield NJ. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc. 2006;1:2527–2535. 10.1038/nprot.2006.204. PubMed DOI PMC
Xu D, Jaroszewski L, Li Z, Godzik A. AIDA: Ab initio domain assembly for automated multi‐domain protein structure prediction and domain–domain interaction prediction. Bioinformatics. 2015;31:2098–2105. 10.1093/bioinformatics/btv092. PubMed DOI PMC
Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12:255. 10.1038/nprot.2016.169. PubMed DOI PMC
Lindahl E, Hess B, Van Der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol Model Ann. 2001;7:306–317. 10.1007/s008940100045. DOI
Duan Y, Wu C, Chowdhury S, et al. A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. J Comput Chem. 2003;24:1999–2012. 10.1002/jcc.10349. PubMed DOI
Jorgensen WL, Chandrasekhar J, Madura JD. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. 10.1063/1.445869. DOI
Hess B, Bekker H, HJC B, JGEM F. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472. https://doi.org/10.1002/(sici)1096‐987x(199709)18:12<1463::aid‐jcc4>3.0.co;2‐h.
Cheatham TI, Miller JL, Fox T, Darden TA, Kollman PA. Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc. 1995;117:4193–4194. 10.1021/ja00119a045. DOI
Berendsen HJ, JPM P, van Gunsteren WF, Di Nola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690. 10.1063/1.448118. DOI
Martoňák R, Laio A, Parrinello M. Predicting crystal structures: the Parrinello‐Rahman method revisited. Phys Rev Lett. 2003;90:075503.075503 10.1103/physrevlett.90.075503. PubMed DOI
Heyda J, Kožíšek M, Bednárova L, et al. Urea and guanidinium induced denaturation of a Trp‐cage miniprotein. J Phys Chem B. 2011;115:8910–8924. 10.1021/jp200790h. PubMed DOI
Kelly SM, Price NC. The use of circular dichroism in the investigation of protein structure and function. Curr Protein Peptide Sci. 2000;1:349–384. 10.2174/1389203003381315. PubMed DOI
Paschek D, Nymeyer H, García AE. Replica exchange simulation of reversible folding/unfolding of the Trp‐cage miniprotein in explicit solvent: on the structure and possible role of internal water. J Struct Biol. 2007;157:524–533. 10.1016/j.jsb.2006.10.031. PubMed DOI
Vymětal J, Vondrášek J. Gyration‐and inertia‐tensor‐based collective coordinates for metadynamics. Application on the conformational behavior of polyalanine peptides and Trp‐cage folding. J Phys Chem A. 2011;115:11455–11465. 10.1021/jp2065612. PubMed DOI
Liu Z, Thirumalai D. Denaturants alter the flux through multiple pathways in the folding of PDZ domain. J Phys Chem B. 2018;122:1408–1416. 10.1021/acs.jpcb.7b11408. PubMed DOI PMC
Feng H, Vu N‐D, Bai Y. Detection of a hidden folding intermediate of the third domain of PDZ. J Mol Biol. 2005;346:345–353. 10.1016/j.jmb.2004.11.040. PubMed DOI
Murciano‐Calles J, Guell‐Bosch J, Villegas S, Martinez JC. Common features in the unfolding and misfolding of PDZ domains and beyond: The modulatory effect of domain swapping and extra‐elements. Sci Rep. 2016;6:19242. 10.1038/srep19242. PubMed DOI PMC
Saotome T, Mezaki T, Subbaian B, et al. Thermodynamic analysis of point mutations inhibiting high‐temperature reversible oligomerization of PDZ3. Biophysical J. 2020;119:1391–1401. 10.1016/j.bpj.2020.08.023. PubMed DOI PMC
Wafer LN, Streicher WW, Makhatadze GI. Thermodynamics of the Trp‐cage miniprotein unfolding in urea. Proteins. 2010;78:1376–1381. 10.1002/prot.22681. PubMed DOI PMC
Torchio GM, Ermácora MR, Sica MP. Equilibrium unfolding of the PDZ domain of β2‐syntrophin. Biophys J. 2012;102:2835–2844. 10.1016/j.bpj.2012.05.021. PubMed DOI PMC