• This record comes from PubMed

The order of PDZ3 and TrpCage in fusion chimeras determines their properties-a biophysical characterization

. 2021 Aug ; 30 (8) : 1653-1666. [epub] 20210603

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Most of the structural proteins known today are composed of domains that carry their own functions while keeping their structural properties. It is supposed that such domains, when taken out of the context of the whole protein, can retain their original structure and function to a certain extent. Information on the specific functional and structural characteristics of individual domains in a new context of artificial fusion proteins may help to reveal the rules of internal and external domain communication. Moreover, this could also help explain the mechanism of such communication and address how the mutual allosteric effect plays a role in a such multi-domain protein system. The simple model system of the two-domain fusion protein investigated in this work consisted of a well-folded PDZ3 domain and an artificially designed small protein domain called Tryptophan Cage (TrpCage). Two fusion proteins with swapped domain order were designed to study their structural and functional features as well as their biophysical properties. The proteins composed of PDZ3 and TrpCage, both identical in amino acid sequence but different in composition (PDZ3-TrpCage, TrpCage-PDZ3), were studied using circualr dichroism (CD) spectrometry, analytical ultracentrifugation, and molecular dynamic simulations. The biophysical analysis uncovered different structural and denaturation properties of both studied proteins, revealing their different unfolding pathways and dynamics.

See more in PubMed

Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995;247:536–540. 10.1006/jmbi.1995.0159. PubMed DOI

Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA. Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol. 2004;14:208–216. 10.1016/j.sbi.2004.03.011. PubMed DOI

Bornberg‐Bauer E, Beaussart F, Kummerfeld SK, Teichmann SA, 3rd Weiner J. The evolution of domain arrangements in proteins and interaction networks. Cell Mol Life Sci. 2005;62:435–445. 10.1007/s00018-004-4416-1. PubMed DOI PMC

Letunic I, Doerks T, Bork P. SMART: Recent updates, new developments and status in 2015. Nucleic Acids Res. 2015;43:D257–D260. 10.1093/nar/gku949. PubMed DOI PMC

Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D230. 10.1093/nar/gkt1223. PubMed DOI PMC

Mitchell A, Chang HY, Daugherty L, et al. The InterPro protein families database: the classification resource after 15years. Nucleic Acids Res. 2015;43:D213–D221. 10.1093/nar/gku1243. PubMed DOI PMC

Kirubakaran P, Pfeiferová L, Boušová K, Bednárová L, Obšilová V, Vondrášek J. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two‐domain constructs: a computational characterization of novel chimeric proteins. Proteins. 2016;84:1358–1374. 10.1002/prot.25082. PubMed DOI

Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010;8:8. 10.1186/1478-811x-8-8. PubMed DOI PMC

Manjunath GP, Ramanujam PL, Galande S. Structure function relations in PDZ‐domain‐containing proteins: implications for protein networks in cellular signalling. J Biosci. 2018;43:155–171. 10.1007/s12038-017-9727-0. PubMed DOI

Murciano‐Calles J. The conformational plasticity vista of PDZ domains. Life. 2020;10:123. 10.3390/life10080123. PubMed DOI PMC

Songyang Z, Fanning AS, Fu C, et al. Recognition of unique carboxyl‐terminal motifs by distinct PDZ domains. Science. 1997;275:73–77. 10.1126/science.275.5296.73. PubMed DOI

Ye F, Zhang M. Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures. Biochem J. 2013;455:1–14. 10.1042/bj20130783. PubMed DOI

Luck K, Charbonnier S, Travé G. The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains. FEBS Lett. 2012;586:2648–2661. 10.1016/j.febslet.2012.03.056. PubMed DOI

Kock G, Dicks M, Yip KT, et al. Molecular basis of class III ligand recognition by PDZ3 in murine protein tyrosine phosphatase PTPN13. J Mol Biol. 2018;430:4275–4292. 10.1016/j.jmb.2018.08.023. PubMed DOI

Kundu K, Backofen R. Cluster based prediction of PDZ‐peptide interactions. BMC Genomics. 2014;15:S5. 10.1186/1471-2164-15-s1-s5. PubMed DOI PMC

Raman AS, White KI, Ranganathan R. Origins of allostery and evolvability in proteins: a case study. Cell. 2016;166:468–480. 10.1016/j.cell.2016.05.047. PubMed DOI

Jr McLaughlin RN, Poelwijk FJ, Raman A, Gosal WS, Ranganathan R. The spatial architecture of protein function and adaptation. Nature. 2012;491:138–142. 10.1038/nature11500. PubMed DOI PMC

Chi CN, Haq SR, Rinaldo S, et al. Interactions outside the boundaries of the canonical binding groove of a PDZ domain influence ligand binding. Biochemistry. 2012;51:8971–8979. 10.1021/bi300792h. PubMed DOI

Nomme J, Fanning AS, Caffrey M, Lye MF, Anderson JM, Lavie A. The Src homology 3 domain is required for junctional adhesion molecule binding to the third PDZ domain of the scaffolding protein ZO‐1. J Biol Chem. 2011;286:43352–43360. 10.1074/jbc.m111.304089. PubMed DOI PMC

Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D. Junctional adhesion molecule interacts with the PDZ domain‐containing proteins AF‐6 and ZO‐1. J Biol Chem. 2000;275:27979–27988. 10.1074/jbc.m002363200. PubMed DOI

Severson EA, Parkos CA. Mechanisms of outside‐in signaling at the tight junction by junctional adhesion molecule A. Ann N Y Acad Sci. 2009;1165:10–18. 10.1111/j.1749-6632.2009.04034.x. PubMed DOI

Qiu L, Pabit SA, Roitberg AE, Hagen SJ. Smaller and faster: the 20‐residue Trp‐cage protein folds in 4 micros. J Am Chem Soc. 2002;124:12952–12953. 10.1021/ja0279141. PubMed DOI

Neidigh JW, Fesinmeyer RM, Andersen NH. Designing a 20‐residue protein. Nat Struct Biol. 2002;9:425–430. 10.1038/nsb798. PubMed DOI

Barua B, Lin JC, Williams VD, Kummler P, Neidigh JW, Andersen NH. The Trp‐cage: optimizing the stability of a globular miniprotein. Protein Eng Des Sel. 2008;21:171–185. 10.1093/protein/gzm082. PubMed DOI PMC

Snow CD, Zagrovic B, Pande VS. The Trp cage: folding kinetics and unfolded state topology via molecular dynamics simulations. J Am Chem Soc. 2002;124:14548–14549. 10.1021/ja028604l. PubMed DOI

Černý J, Vondrášek JI, Hobza P. Loss of dispersion energy changes the stability and folding/unfolding equilibrium of the trp‐cage protein. J Phys Chem B. 2009;113:5657–5660. 10.1021/jp9004746. PubMed DOI

Bendová‐Biedermannová L, Hobza P, Vondrášek J. Identifying stabilizing key residues in proteins using interresidue interaction energy matrix. Proteins. 2008;72:402–413. 10.1002/prot.21938. PubMed DOI

Yao X‐Q, She Z‐S. Key residue‐dominated protein folding dynamics. Biochem Biophys Res Commun. 2008;373:64–68. 10.1016/j.bbrc.2008.05.179. PubMed DOI

Zhou R. Trp‐cage: folding free energy landscape in explicit water. Proc Natl Acad Sci U S A. 2003;100:13280–13285. 10.1073/pnas.2233312100. PubMed DOI PMC

Simmerling C, Strockbine B, Roitberg AE. All‐atom structure prediction and folding simulations of a stable protein. J Am Chem Soc. 2002;124:11258–11259. 10.1021/ja0273851. PubMed DOI

Pitera JW, Swope W. Understanding folding and design: replica‐exchange simulations of "Trp‐cage" miniproteins. Proc Natl Acad Sci U S A. 2003;100:7587–7592. 10.1073/pnas.1330954100. PubMed DOI PMC

Kannan S, Zacharias M. Role of tryptophan side chain dynamics on the Trp‐cage mini‐protein folding studied by molecular dynamics simulations. PLoS One. 2014;9:e88383. 10.1371/journal.pone.0088383. PubMed DOI PMC

Pan L, Chen J, Yu J, Yu H, Zhang M. The structure of the PDZ3‐SH3‐GuK tandem of ZO‐1 protein suggests a supramodular organization of the membrane‐associated guanylate kinase (MAGUK) family scaffold protein core. J Biol Chem. 2011;286:40069–40074. 10.1074/jbc.c111.293084. PubMed DOI PMC

Chen X, Zaro JL, Shen W‐C. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013;65:1357–1369. 10.1016/j.addr.2012.09.039. PubMed DOI PMC

Crasto CJ, Feng J‐A. LINKER: a program to generate linker sequences for fusion proteins. Protein Eng. 2000;13:309–312. 10.1093/protein/13.5.309. PubMed DOI

van Rosmalen M, Krom M, Merkx M. Tuning the flexibility of glycine‐serine linkers to allow rational design of multidomain proteins. Biochemistry. 2017;56:6565–6574. 10.1021/acs.biochem.7b00902. PubMed DOI PMC

Bousova K, Herman P, Vecer J, et al. Shared CaM‐ and S100A1‐binding epitopes in the distal TRPM4 N terminus. FEBS J. 2018;285:599–613. 10.1111/febs.14362. PubMed DOI

Hayes D, Laue T, Philo J. Program Sednterp: sedimentation interpretation program. Thousand Oaks, CA: Alliance Protein Laboratories, 1995.

Schuck P. Size‐distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000;78:1606–1619. 10.1016/s0006-3495(00)76713-0. PubMed DOI PMC

Brautigam CA. Calculations and publication‐quality illustrations for analytical ultracentrifugation data. Methods Enzymol. 2015;562:109–133. 10.1016/bs.mie.2015.05.001. PubMed DOI

Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8:409–427. 10.1007/s12551-016-0218-6. PubMed DOI PMC

Sreerama N, Woody RW. On the analysis of membrane protein circular dichroism spectra. Protein Sci. 2004;13:100–112. 10.1110/ps.03258404. PubMed DOI PMC

Sreerama N, Woody RW. Computation and analysis of protein circular dichroism spectra. Methods Enzymol. 2004;383:318–351. 10.1016/S0076-6879(04)83013-1. PubMed DOI

Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000;287:252–260. 10.1006/abio.2000.4880. PubMed DOI

Greenfield NJ. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc. 2006;1:2527–2535. 10.1038/nprot.2006.204. PubMed DOI PMC

Xu D, Jaroszewski L, Li Z, Godzik A. AIDA: Ab initio domain assembly for automated multi‐domain protein structure prediction and domain–domain interaction prediction. Bioinformatics. 2015;31:2098–2105. 10.1093/bioinformatics/btv092. PubMed DOI PMC

Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12:255. 10.1038/nprot.2016.169. PubMed DOI PMC

Lindahl E, Hess B, Van Der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol Model Ann. 2001;7:306–317. 10.1007/s008940100045. DOI

Duan Y, Wu C, Chowdhury S, et al. A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. J Comput Chem. 2003;24:1999–2012. 10.1002/jcc.10349. PubMed DOI

Jorgensen WL, Chandrasekhar J, Madura JD. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. 10.1063/1.445869. DOI

Hess B, Bekker H, HJC B, JGEM F. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472. https://doi.org/10.1002/(sici)1096‐987x(199709)18:12<1463::aid‐jcc4>3.0.co;2‐h.

Cheatham TI, Miller JL, Fox T, Darden TA, Kollman PA. Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc. 1995;117:4193–4194. 10.1021/ja00119a045. DOI

Berendsen HJ, JPM P, van Gunsteren WF, Di Nola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690. 10.1063/1.448118. DOI

Martoňák R, Laio A, Parrinello M. Predicting crystal structures: the Parrinello‐Rahman method revisited. Phys Rev Lett. 2003;90:075503.075503 10.1103/physrevlett.90.075503. PubMed DOI

Heyda J, Kožíšek M, Bednárova L, et al. Urea and guanidinium induced denaturation of a Trp‐cage miniprotein. J Phys Chem B. 2011;115:8910–8924. 10.1021/jp200790h. PubMed DOI

Kelly SM, Price NC. The use of circular dichroism in the investigation of protein structure and function. Curr Protein Peptide Sci. 2000;1:349–384. 10.2174/1389203003381315. PubMed DOI

Paschek D, Nymeyer H, García AE. Replica exchange simulation of reversible folding/unfolding of the Trp‐cage miniprotein in explicit solvent: on the structure and possible role of internal water. J Struct Biol. 2007;157:524–533. 10.1016/j.jsb.2006.10.031. PubMed DOI

Vymětal J, Vondrášek J. Gyration‐and inertia‐tensor‐based collective coordinates for metadynamics. Application on the conformational behavior of polyalanine peptides and Trp‐cage folding. J Phys Chem A. 2011;115:11455–11465. 10.1021/jp2065612. PubMed DOI

Liu Z, Thirumalai D. Denaturants alter the flux through multiple pathways in the folding of PDZ domain. J Phys Chem B. 2018;122:1408–1416. 10.1021/acs.jpcb.7b11408. PubMed DOI PMC

Feng H, Vu N‐D, Bai Y. Detection of a hidden folding intermediate of the third domain of PDZ. J Mol Biol. 2005;346:345–353. 10.1016/j.jmb.2004.11.040. PubMed DOI

Murciano‐Calles J, Guell‐Bosch J, Villegas S, Martinez JC. Common features in the unfolding and misfolding of PDZ domains and beyond: The modulatory effect of domain swapping and extra‐elements. Sci Rep. 2016;6:19242. 10.1038/srep19242. PubMed DOI PMC

Saotome T, Mezaki T, Subbaian B, et al. Thermodynamic analysis of point mutations inhibiting high‐temperature reversible oligomerization of PDZ3. Biophysical J. 2020;119:1391–1401. 10.1016/j.bpj.2020.08.023. PubMed DOI PMC

Wafer LN, Streicher WW, Makhatadze GI. Thermodynamics of the Trp‐cage miniprotein unfolding in urea. Proteins. 2010;78:1376–1381. 10.1002/prot.22681. PubMed DOI PMC

Torchio GM, Ermácora MR, Sica MP. Equilibrium unfolding of the PDZ domain of β2‐syntrophin. Biophys J. 2012;102:2835–2844. 10.1016/j.bpj.2012.05.021. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...