The evolution and changing ecology of the African hominid oral microbiome
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 DE016937
NIDCR NIH HHS - United States
R01 DE024468
NIDCR NIH HHS - United States
R01 GM089886
NIGMS NIH HHS - United States
R37 DE016937
NIDCR NIH HHS - United States
PubMed
33972424
PubMed Central
PMC8157933
DOI
10.1073/pnas.2021655118
PII: 2021655118
Knihovny.cz E-zdroje
- Klíčová slova
- Neanderthal, dental calculus, microbiome, primate, salivary amylase,
- MeSH
- Bacteria klasifikace genetika MeSH
- biofilmy MeSH
- biologická evoluce * MeSH
- ekologie metody MeSH
- fylogeneze MeSH
- Gorilla gorilla mikrobiologie MeSH
- Hominidae klasifikace mikrobiologie MeSH
- lidé MeSH
- metagenom genetika MeSH
- mikrobiota genetika MeSH
- Pan troglodytes mikrobiologie MeSH
- ústa mikrobiologie MeSH
- zeměpis MeSH
- zubní plak mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.
Animal Ecology Department of Ecology and Genetics Uppsala University 75236 Uppsala Sweden
Anthropology Program California State University Channel Islands Camarillo CA 93012
Berliner Gesellschaft für Anthropologie Ethnologie und Urgeschichte 10117 Berlin Germany
Centre for Human Evolution Research The Natural History Museum London SW7 5BD United Kingdom
Centre for Palaeogenetics 10691 Stockholm Sweden
Clínica Alboraya 10 46010 València Spain
Clínica Dental Grande Mateu 46004 València Spain
Departament de Prehistòria Historia i Arqueología Universitat de València 46010 València Spain
Departamento de Prehistòria y Arqueología Universidad Nacional de Educación 28040 Madrid Spain
Departamento de Zoología y Antropología Física Universidad de Murcia 30100 Murcia Spain
Department of Anthropology California State University Northridge CA 91330
Department of Anthropology Harvard University Cambridge MA 02138
Department of Anthropology Masaryk University 61137 Brno Czech Republic
Department of Anthropology University of New Mexico Albuquerque NM 87131
Department of Anthropology University of Oklahoma Norman OK 73019
Department of Anthropology University of South Florida St Petersburg FL 33701
Department of Anthropology University of Winnipeg Winnipeg MB R3T 3C7 Canada
Department of Anthropology Western University London ON N6A 5C2 Canada
Department of Archaeology Faculty of Philosophy University of Belgrade 11000 Belgrade Serbia
Department of Archaeology Max Planck Institute for the Science of Human History 07745 Jena Germany
Department of Bioinformatics and Genetics Swedish Museum of Natural History 10405 Stockholm Sweden
Department of Geological Sciences University of Cape Town Rondebosch 7701 South Africa
Department of Human Evolutionary Biology Harvard University Cambridge MA 02138
Department of Humanities University of Ferrara 44121 Ferrara Italy
Department of Microbiology and Plant Biology University of Oklahoma Norman OK 73019
Department of Microbiology The Forsyth Institute Cambridge MA 02142
Escribano Escrivá Clínica Dental 38003 Santa Cruz de Tenerife Spain
Faculty of Archaeology Leiden University 2333CC Leiden The Netherlands
Institute for Archaeological Sciences Eberhard Karls University of Tübingen 72070 Tübingen Germany
Institute of Archaeology at Brno Czech Academy of Sciences 60200 Brno Czech Republic
Laboratoire Chronoenvironnement CNRS UMR 6249 25030 Besançon France
Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart 78467 Konstanz Germany
Museum für Vor und Frühgeschichte Berlin Stiftung Preussischer Kulturbesitz 10117 Berlin Germany
Natural History Museum University of Oslo 0562 Oslo Norway
Oral Medicine Infection and Immunity Harvard School of Dental Medicine Boston MA 02115
School of Human Evolution and Social Change Arizona State University Tempe AZ 85287
Zobrazit více v PubMed
Dewhirst F. E., et al. ., The human oral microbiome. J. Bacteriol. 192, 5002–5017 (2010). PubMed PMC
Kassebaum N. J., et al. ., Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 94, 650–658 (2015). PubMed
Eke P. I., et al. ., Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86, 611–622 (2015). PubMed PMC
Scannapieco F. A., Bush R. B., Paju S., Associations between periodontal disease and risk for nosocomial bacterial pneumonia and chronic obstructive pulmonary disease. A systematic review. Ann. Periodontol. 8, 54–69 (2003). PubMed
Lockhart P. B.et al. .; American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young, Council on Epidemiology and Prevention, Council on Peripheral Vascular Disease, and Council on Clinical Cardiology , Periodontal disease and atherosclerotic vascular disease: Does the evidence support an independent association?: A scientific statement from the American heart association. Circulation 125, 2520–2544 (2012). PubMed
The Human Microbiome Project Consortium , Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012). PubMed PMC
Clemente J. C., et al. ., The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015). PubMed PMC
Mark Welch J. L., Rossetti B. J., Rieken C. W., Dewhirst F. E., Borisy G. G., Biogeography of a human oral microbiome at the micron scale. Proc. Natl. Acad. Sci. U.S.A. 113, E791–E800 (2016). PubMed PMC
Akcalı A., Lang N. P., Dental calculus: The calcified biofilm and its role in disease development. Periodontol. 2000 76, 109–115 (2018). PubMed
Warinner C., et al. ., Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014). PubMed PMC
de La Fuente C., Flores S., Moraga M., DNA from human ancient bacteria: A novel source of genetic evidence from archaeological dental calculus. Archaeometry 55, 767–778 (2013).
Adler C. J., et al. ., Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and industrial revolutions. Nat. Genet. 45, 450–455 (2013). PubMed PMC
Weyrich L. S., et al. ., Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017). PubMed
Carmody R. N., et al. ., Cooking shapes the structure and function of the gut microbiome. Nat. Microbiol. 4, 2052–2063 (2019). PubMed PMC
Schnorr S. L., Sankaranarayanan K., Lewis C. M. Jr, Warinner C., Insights into human evolution from ancient and contemporary microbiome studies. Curr. Opin. Genet. Dev. 41, 14–26 (2016). PubMed PMC
Poole A. C., et al. ., Human salivary amylase gene copy number impacts oral and gut microbiomes. Cell Host Microbe 25, 553–564.e7 (2019). PubMed
Council S. E., et al. ., Diversity and evolution of the primate skin microbiome. Proc. Biol. Sci. 283, 20152586 (2016). PubMed PMC
Ross A. A., Rodrigues Hoffmann A., Neufeld J. D., The skin microbiome of vertebrates. Microbiome 7, 79 (2019). PubMed PMC
Aiello L. C., Wheeler P., The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).
Carmody R. N., Wrangham R. W., The energetic significance of cooking. J. Hum. Evol. 57, 379–391 (2009). PubMed
Hardy K., Brand-Miller J., Brown K. D., Thomas M. G., Copeland L., The importance of dietary carbohydrate in human evolution. Q. Rev. Biol. 90, 251–268 (2015). PubMed
Villanea F. A., Schraiber J. G., Multiple episodes of interbreeding between Neanderthal and modern humans. Nat. Ecol. Evol. 3, 39–44 (2019). PubMed PMC
Velsko I. M., et al. ., Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage. Microbiome 7, 102 (2019). PubMed PMC
Fu Q., et al. ., The genetic history of Ice Age Europe. Nature 534, 200–205 (2016). PubMed PMC
Fu Q., et al. ., An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015). PubMed PMC
Navarrete A., van Schaik C. P., Isler K., Energetics and the evolution of human brain size. Nature 480, 91–93 (2011). PubMed
Vågene Å. J., et al. ., Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2, 520–528 (2018). PubMed
Knights D., et al. ., Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8, 761–763 (2011). PubMed PMC
Davis N. M., Proctor D. M., Holmes S. P., Relman D. A., Callahan B. J., Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018). PubMed PMC
Briggs A. W., et al. ., Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. U.S.A. 104, 14616–14621 (2007). PubMed PMC
Wood B., Grabowski M., “Macroevolution in and around the hominin clade” in Macroevolution: Explanation, Interpretation and Evidence, Serrelli E., Gontier N., Eds. (Springer International Publishing, 2015), pp. 345–376.
Prado-Martinez J., et al. ., Great ape genetic diversity and population history. Nature 499, 471–475 (2013). PubMed PMC
Bond M., et al. ., Corrigendum: Eocene primates of South America and the African origins of New World monkeys. Nature 525, 552 (2015). PubMed
Schrago C. G., On the time scale of New World primate diversification. Am. J. Phys. Anthropol. 132, 344–354 (2007). PubMed
Anderson M. J., A new method for non-parametric multivariate analysis of variance: Non-parametric manova for ecology. Austral Ecol. 26, 32–46 (2001).
Kolenbrander P. E., Palmer R. J. Jr, Periasamy S., Jakubovics N. S., Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 8, 471–480 (2010). PubMed
Turnbaugh P. J., et al. ., A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009). PubMed PMC
David L. A., et al. ., Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). PubMed PMC
Sonnenburg E. D., et al. ., Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016). PubMed PMC
Utter D. R., Mark Welch J. L., Borisy G. G., Individuality, stability, and variability of the plaque microbiome. Front. Microbiol. 7, 564 (2016). PubMed PMC
Kato I., et al. ., Nutritional correlates of human oral microbiome. J. Am. Coll. Nutr. 36, 88–98 (2017). PubMed PMC
Zhou Y., et al. ., Biogeography of the ecosystems of the healthy human body. Genome Biol. 14, R1 (2013). PubMed PMC
Zaura E., et al. ., Same exposure but two radically different responses to antibiotics: Resilience of the salivary microbiome versus long-term microbial shifts in feces. mBio 6, e01693-15 (2015). PubMed PMC
Shade A., Handelsman J., Beyond the venn diagram: The hunt for a core microbiome. Environ. Microbiol. 14, 4–12 (2012). PubMed
Risely A., Applying the core microbiome to understand host-microbe systems. J. Anim. Ecol. 89, 1549–1558 (2020). PubMed
Hajishengallis G., Lamont R. J., Beyond the red complex and into more complexity: The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral Microbiol. 27, 409–419 (2012). PubMed PMC
Pasolli E., et al. ., Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019). PubMed PMC
Aleti G., et al. ., Identification of the bacterial biosynthetic gene clusters of the oral microbiome illuminates the unexplored social language of bacteria during health and disease. mBio 10, e00321-19 (2019). PubMed PMC
Edlund A., et al. ., Metabolic fingerprints from the human oral microbiome reveal a vast knowledge gap of secreted small peptidic molecules. mSystems 2, e00058-17 (2017). PubMed PMC
Thamadilok S., et al. ., Human and nonhuman primate lineage-specific footprints in the salivary proteome. Mol. Biol. Evol. 37, 395–405 (2019). PubMed PMC
Scott R. S., Teaford M. F., Ungar P. S., Dental microwear texture and anthropoid diets. Am. J. Phys. Anthropol. 147, 551–579 (2012). PubMed
Anderson A. C., et al. ., Long-term fluctuation of oral biofilm microbiota following different dietary phases. Appl. Environ. Microbiol. 86, e01421-20 (2020). PubMed PMC
De Filippis F., et al. ., The same microbiota and a potentially discriminant metabolome in the saliva of omnivore, ovo-lacto-vegetarian and vegan individuals. PLoS One 9, e112373 (2014). PubMed PMC
Mark Welch J. L., Dewhirst F. E., Borisy G. G., Biogeography of the oral microbiome: The site-specialist hypothesis. Annu. Rev. Microbiol. 73, 335–358 (2019). PubMed PMC
Mark Welch J. L., Ramírez-Puebla S. T., Borisy G. G., Oral microbiome geography: Micron-scale habitat and niche. Cell Host Microbe 28, 160–168 (2020). PubMed PMC
Marsh P. D., Do T., Beighton D., Devine D. A., Influence of saliva on the oral microbiota. Periodontol. 2000 70, 80–92 (2016). PubMed
Schnorr S. L., et al. ., Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014). PubMed PMC
De Angelis M., et al. ., Diet influences the functions of the human intestinal microbiome. Sci. Rep. 10, 4247 (2020). PubMed PMC
Briggs A. W., et al. ., Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010). PubMed PMC
Posth C., et al. ., Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a late glacial population turnover in Europe. Curr. Biol. 26, 827–833 (2016). PubMed
Tanner A. C. R., et al. ., Similarity of the oral microbiota of pre-school children with that of their caregivers in a population-based study. Oral Microbiol. Immunol. 17, 379–387 (2002). PubMed
Shaw L., et al. ., The human salivary microbiome is shaped by shared environment rather than genetics: Evidence from a large family of closely related individuals. mBio 8, e01237-17 (2017). PubMed PMC
Franzosa E. A., et al. ., Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018). PubMed PMC
Huson D. H., et al. ., MEGAN community edition–Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016). PubMed PMC
Louca S., et al. ., Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018). PubMed
Amato K. R., et al. ., Convergence of human and Old World monkey gut microbiomes demonstrates the importance of human ecology over phylogeny. Genome Biol. 20, 201 (2019). PubMed PMC
Richards V. P., et al. ., Phylogenomics and the dynamic genome evolution of the genus Streptococcus. Genome Biol. Evol. 6, 741–753 (2014). PubMed PMC
Haase E. M., et al. ., Comparative genomics and evolution of the amylase-binding proteins of oral streptococci. BMC Microbiol. 17, 94 (2017). PubMed PMC
Nikitkova A. E., Haase E. M., Scannapieco F. A., Taking the starch out of oral biofilm formation: Molecular basis and functional significance of salivary α-amylase binding to oral streptococci. Appl. Environ. Microbiol. 79, 416–423 (2013). PubMed PMC
Deimling D., et al. ., Electron microscopic detection of salivary α-amylase in the pellicle formed in situ. Eur. J. Oral Sci. 112, 503–509 (2004). PubMed
Rogers J. D., Palmer R. J. Jr, Kolenbrander P. E., Scannapieco F. A., Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect. Immun. 69, 7046–7056 (2001). PubMed PMC
Behringer V., et al. ., Measurements of salivary alpha amylase and salivary cortisol in hominoid primates reveal within-species consistency and between-species differences. PLoS One 8, e60773 (2013). PubMed PMC
Pajic P., et al. ., Independent amylase gene copy number bursts correlate with dietary preferences in mammals. eLife 8, e44628 (2019). PubMed PMC
Fernández C. I., Wiley A. S., Rethinking the starch digestion hypothesis for AMY1 copy number variation in humans. Am. J. Phys. Anthropol. 163, 645–657 (2017). PubMed
Lazaridis I., et al. ., Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014). PubMed PMC
Inchley C. E., et al. ., Selective sweep on human amylase genes postdates the split with Neanderthals. Sci. Rep. 6, 37198 (2016). PubMed PMC
Warinner C., Speller C., Collins M. J., Lewis C. M. Jr, Ancient human microbiomes. J. Hum. Evol. 79, 125–136 (2015). PubMed PMC
Warinner C., Dental calculus and the evolution of the human oral microbiome. J. Calif. Dent. Assoc. 44, 411–420 (2016). PubMed
Warinner C., Lewis C. M., Microbiome and health in past and present human populations. Am. Anthropol. 117, 740–741 (2015).
Kilian M., et al. ., The oral microbiome–An update for oral healthcare professionals. Br. Dent. J. 221, 657–666 (2016). PubMed
Liu S., et al. ., Effect of Veillonella parvula on the physiological activity of Streptococcus mutans. Arch. Oral Biol. 109, 104578 (2020). PubMed
Prüfer K., et al. ., A high-coverage Veandertal genome from Vindija Cave in Croatia. Science 358, 655–658 (2017). PubMed PMC
Gómez-Robles A., Dental evolutionary rates and its implications for the Neanderthal-modern human divergence. Sci. Adv. 5, eaaw1268 (2019). PubMed PMC
Mau M., Südekum K.-H., Johann A., Sliwa A., Kaiser T. M., Indication of higher salivary alpha-amylase expression in hamadryas baboons and geladas compared to chimpanzees and humans. J. Med. Primatol. 39, 187–190 (2010). PubMed
Mau M., Südekum K.-H., Johann A., Sliwa A., Kaiser T. M., Saliva of the graminivorous Theropithecus gelada lacks proline-rich proteins and tannin-binding capacity. Am. J. Primatol. 71, 663–669 (2009). PubMed
Dabney J., et al. ., Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U.S.A. 110, 15758–15763 (2013). PubMed PMC
Meyer M., Kircher M., Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010). PubMed
Briggs A. W., Heyn P., Preparation of next-generation sequencing libraries from damaged DNA. Methods Mol. Biol. 840, 143–154 (2012). PubMed
Peltzer A., et al. ., EAGER: Efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016). PubMed PMC
Li H., Durbin R., Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010). PubMed PMC
Herbig A., et al. ., MALT: Fast alignment and analysis of metagenomic DNA sequence data applied to the Tyrolean Iceman 10.1101/050559 (Accessed 28 April 2016). DOI
Caporaso J. G., et al. ., QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010). PubMed PMC
Hübler R., et al. ., HOPS: Automated detection and authentication of pathogen DNA in archaeological remains. Genome Biol. 20, 280 (2019). PubMed PMC
Neukamm J., Peltzer A., Nieselt K., DamageProfiler: Fast damage pattern calculation for ancient DNA. Bioinformatics, btab190, 10.1093/bioinformatics/btab190 (2021). PubMed DOI
Silverman J. D., Washburne A. D., Mukherjee S., David L. A., A phylogenetic transform enhances analysis of compositional microbiota data. eLife 6, e21887 (2017). PubMed PMC
Suzuki R., Shimodaira H., Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006). PubMed
Reimer L. C.et al. ., BacDive in 2019: bacterial phenotypic data for High-throughput biodiversity analysis. Nucleic Acids Res. 47, D631–D636 (2019). PubMed PMC
De Cáceres M., Legendre P., Moretti M., Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).
Conway J. R., Lex A., Gehlenborg N., UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017). PubMed PMC
Zijnge V., et al. ., Oral biofilm architecture on natural teeth. PLoS One 5, e9321 (2010). PubMed PMC
Quinlan A. R., Hall I. M., BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). PubMed PMC
Ding W., Baumdicker F., Neher R. A., panX: Pan-genome analysis and exploration. Nucleic Acids Res. 46, e5 (2018). PubMed PMC
Thorvaldsdóttir H.et al. ., Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013). PubMed PMC
Bouckaert R., et al. ., BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e100650 (2019). PubMed PMC
Jukes T. H., Cantor C. R., “Evolution of protein molecules” in Mammalian Protein Metabolism, Munro H. N., Ed. (Academic Pres, New York, USA, 1969), III, pp. 21–135.
Paradis E., Schliep K., Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019). PubMed
Yu G., Smith D. K., Zhu H., Guan Y., Lam T. T.-Y., ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).
Truong D. T., et al. ., MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015). PubMed
Suzek B. E., Wang Y., Huang H., McGarvey P. B., Wu C. H.; UniProt Consortium , UniRef clusters: A comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015). PubMed PMC
Overbeek R., et al. ., The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691–5702 (2005). PubMed PMC
Socransky S. S., Haffajee A. D., Cugini M. A., Smith C., Kent R. L. Jr, Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144 (1998). PubMed