Simultaneous quantitative profiling of clinically relevant immune markers in neonatal stool swabs to reveal inflammation

. 2021 May 13 ; 11 (1) : 10222. [epub] 20210513

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33986356
Odkazy

PubMed 33986356
PubMed Central PMC8119937
DOI 10.1038/s41598-021-89384-0
PII: 10.1038/s41598-021-89384-0
Knihovny.cz E-zdroje

An aberrant immune response developed early in life may trigger inflammatory bowel disease (IBD) and food allergies (e.g., celiac disease). Fecal levels of immune markers categorize an inflammatory response (e.g., food allergy, autoimmune) paralleled with the initial microbial colonization. The immunoaffinity assays are routinely applied to quantify circulating immune protein markers in blood/serum. However, a reliable, multiplex assay to quantify fecal levels of immune proteins is unavailable. We developed mass spectrometry assays to simultaneously quantify fecal calprotectin, myeloperoxidase, eosinophil-derived neurotoxin, eosinophil cationic protein, alpha-1-antitrypsin 1, and adaptive immunity effectors in 134 neonatal stool swabs. We optimized extraction and proteolytic protocol and validated the multiplex assay in terms of linearity of response (> 100; typically 0.04 to 14.77 µg/mg of total protein), coefficient of determination (R2; > 0.99), the limit of detection (LOD; 0.003 to 0.04 µg/mg of total protein), the limit of quantification (LOQ; 0.009 to 0.122 µg/mg of total protein) and robustness. The median CV of intra- and interday precision was 9.8% and 14.1%, respectively. We quantified breast milk-derived IGHA2 to differentiate meconium from feces samples and to detect the first food intake. An early life profiling of immune markers reflects disrupted intestinal homeostasis, and it is perhaps suitable for pre-symptomatic interception of IBD and food allergies.

Zobrazit více v PubMed

Alatab S, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020;5:17–30. doi: 10.1016/S2468-1253(19)30333-4. PubMed DOI PMC

Loh W, Tang M. The epidemiology of food allergy in the global context. Int. J. Environ. Res. Public Health. 2018;15:2043. doi: 10.3390/ijerph15092043. PubMed DOI PMC

Singh P, et al. Global prevalence of celiac disease: Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2018;16:823–836.e2. doi: 10.1016/j.cgh.2017.06.037. PubMed DOI

Tordesillas L, Berin MC, Sampson HA. Immunology of food allergy. Immunity. 2017;47:32–50. doi: 10.1016/j.immuni.2017.07.004. PubMed DOI

Sicherer SH, Sampson HA. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J. Allergy Clin. Immunol. 2018;141:41–58. doi: 10.1016/j.jaci.2017.11.003. PubMed DOI

Danese S, Sans M, Fiocchi C. Inflammatory bowel disease: the role of environmental factors. Autoimmun. Rev. 2004;3:394–400. doi: 10.1016/j.autrev.2004.03.002. PubMed DOI

Park JH, Peyrin-Biroulet L, Eisenhut M, Shin JI. IBD immunopathogenesis: A comprehensive review of inflammatory molecules. Autoimmun. Rev. 2017;16:416–426. doi: 10.1016/j.autrev.2017.02.013. PubMed DOI

Kelly D, King T, Aminov R. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2007;622:58–69. doi: 10.1016/j.mrfmmm.2007.03.011. PubMed DOI

McKenzie C, Tan J, Macia L, Mackay CR. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol. Rev. 2017;278:277–295. doi: 10.1111/imr.12556. PubMed DOI

Miyoshi J, Chang EB. The gut microbiota and inflammatory bowel diseases. Transl. Res. 2017;179:38–48. doi: 10.1016/j.trsl.2016.06.002. PubMed DOI PMC

Olszak T, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–493. doi: 10.1126/science.1219328. PubMed DOI PMC

Cox LM, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–721. doi: 10.1016/j.cell.2014.05.052. PubMed DOI PMC

Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the association between Caesarean section and childhood asthma. Clin. Exp. Allergy. 2008;38:629–633. doi: 10.1111/j.1365-2222.2007.02780.x. PubMed DOI

Sevelsted A, Stokholm J, Bønnelykke K, Bisgaard H. Cesarean section chronic immune disorders. Pediatrics. 2015;135:e92–e98. doi: 10.1542/peds.2014-0596. PubMed DOI

Oddy WH. Breastfeeding, childhood asthma, and allergic disease. Ann. Nutr. Metab. 2017;70:26–36. doi: 10.1159/000457920. PubMed DOI

Lee J, et al. Molecular pathophysiology of epithelial barrier dysfunction in inflammatory bowel diseases. Proteomes. 2018;6:17. doi: 10.3390/proteomes6020017. PubMed DOI PMC

Langhorst J, et al. Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: Performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am. J. Gastroenterol. 2008;103:162–169. doi: 10.1111/j.1572-0241.2007.01556.x. PubMed DOI

Saiki T. Myeloperoxidase concentrations in the stool as a new parameter of inflammatory bowel disease. Kurume Med. J. 1998;45:69–73. doi: 10.2739/kurumemedj.45.69. PubMed DOI

Masoodi I, et al. Evaluation of fecal myeloperoxidase as a biomarker of disease activity and severity in ulcerative colitis. Dig. Dis. Sci. 2012;57:1336–1340. doi: 10.1007/s10620-012-2027-5. PubMed DOI

Lisowska-Myjak B, Zytyńska-Daniluk J, Skarzyńska E. Concentrations of neutrophil-derived proteins in meconium and their correlations. Biomark. Med. 2016;10:819–829. doi: 10.2217/bmm-2016-0034. PubMed DOI

Ohtsuka Y. Food intolerance and mucosal inflammation. Pediatr. Int. 2015;57:22–29. doi: 10.1111/ped.12546. PubMed DOI

Kalach N, et al. Intestinal permeability and fecal eosinophil-derived neurotoxin are the best diagnosis tools for digestive non-IgE-mediated cow’s milk allergy in toddlers. Clin. Chem. Lab. Med. 2013;51:351–361. doi: 10.1515/cclm-2012-0083. PubMed DOI

Bridgman SL, et al. Infant gut immunity: a preliminary study of IgA associations with breastfeeding. J. Dev. Orig. Health Dis. 2016;7:68–72. doi: 10.1017/S2040174415007862. PubMed DOI

Test ID: FECP, Eosinophil Cationic Protein (ECP), Fluoroenzyme Immunoassay. https://www.mayocliniclabs.com/test-catalog/Overview/57809.

Kosek M, et al. Fecal markers of intestinal inflammation and permeability associated with the subsequent acquisition of linear growth deficits in infants. Am. J. Trop. Med. Hyg. 2013;88:390–396. doi: 10.4269/ajtmh.2012.12-0549. PubMed DOI PMC

Skarżyńska E, Żytyńska-Daniluk J, Lisowska-Myjak B. Correlations between ceruloplasmin, lactoferrin and myeloperoxidase in meconium. J. Trace Elem. Med. Biol. 2017;43:58–62. doi: 10.1016/j.jtemb.2016.11.007. PubMed DOI

Roca M, et al. Fecal calprotectin and eosinophil-derived neurotoxin in healthy children between 0 and 12 years. J. Pediatr. Gastroenterol. Nutr. 2017;65:394–398. doi: 10.1097/MPG.0000000000001542. PubMed DOI

Test ID: CALPR, Calprotectin, Feces, Enzyme-Linked Immunosorbent Assay (ELISA).

Test ID: AATP, Alpha-1-Antitrypsin, Nephelometry.

Skarżyńska E, Kiersztyn B, Wilczyńska P, Jakimiuk A, Lisowska-Myjak B. Total proteolytic activity and concentration of alpha-1 antitrypsin in meconium for assessment of the protease/antiprotease balance. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018;223:133–138. doi: 10.1016/j.ejogrb.2017.10.006. PubMed DOI

Saarinen KM, Sarnesto A, Savilahti E. Markers of inflammation in the feces of infants with cow’s milk allergy. Pediatr. Allergy Immunol. 2002;13:188–194. doi: 10.1034/j.1399-3038.2002.01027.x. PubMed DOI

Lisowska-Myjak B, Pachecka J. Alpha-1-antitrypsin and IgA in serial meconium and faeces of healthy breast-fed newborns. Fetal Diagn. Ther. 2007;22:116–120. doi: 10.1159/000097108. PubMed DOI

Vidova V, Spacil Z. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Anal. Chim. Acta. 2017;964:7–23. doi: 10.1016/j.aca.2017.01.059. PubMed DOI

Picotti P, Bodenmiller B, Aebersold R. Proteomics meets the scientific method. Nat. Methods. 2012;10:24–27. doi: 10.1038/nmeth.2291. PubMed DOI

Henderson CM, et al. Quantification by nano liquid chromatography parallel reaction monitoring mass spectrometry of human apolipoprotein A-I, apolipoprotein B, and hemoglobin A1c in dried blood spots. Proteom. Clin. Appl. 2017;11:1600103. doi: 10.1002/prca.201600103. PubMed DOI PMC

Singh RJ, Hines JM, Lopez MF, Krastins B, Hoofnagle AN. Mass spectrometric immunoassay raises doubt for the existence of parathyroid hormone fragment 7–84. Clin. Chem. 2015;61:558–560. doi: 10.1373/clinchem.2014.235440. PubMed DOI

Gopalakrishna KP, Hand TW. Influence of maternal milk on the neonatal intestinal microbiome. Nutrients. 2020;12:823. doi: 10.3390/nu12030823. PubMed DOI PMC

Schnatbaum K, et al. New approaches for absolute quantification of stable-isotope-labeled peptide standards for targeted proteomics based on a UV active tag. Proteomics. 2020;20:2000007. doi: 10.1002/pmic.202000007. PubMed DOI

Tibble JA, Sigthorsson G, Bridger S, Fagerhol MK, Bjarnason I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology. 2000;119:15–22. doi: 10.1053/gast.2000.8523. PubMed DOI

Martín-Muñoz MF, et al. Food allergy in breastfeeding babies. Hidden allergens in human milk. Eur. Ann. Allergy Clin. Immunol. 2016;48:123–128. PubMed

Boix E, et al. Structural determinants of the eosinophil cationic protein antimicrobial activity. Biol. Chem. 2012;393:801–815. doi: 10.1515/hsz-2012-0160. PubMed DOI

Acharya KR, Ackerman SJ. Eosinophil granule proteins: Form and function. J. Biol. Chem. 2014;289:17406–17415. doi: 10.1074/jbc.R113.546218. PubMed DOI PMC

Yang D, et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2–MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J. Exp. Med. 2008;205:79–90. doi: 10.1084/jem.20062027. PubMed DOI PMC

Abu-Ghazaleh RI, et al. Eosinophil granule proteins in peripheral blood granulocytes. J. Leukoc. Biol. 1992;52:611–618. doi: 10.1002/jlb.52.6.611. PubMed DOI

Li F, et al. Fecal Calprotectin concentrations in healthy children aged 1–18 months. PLoS ONE. 2015;10:e0119574. doi: 10.1371/journal.pone.0119574. PubMed DOI PMC

Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infantsʼ and childrenʼs health? J. Pediatr. Gastroenterol. Nutr. 2015;60:294–307. doi: 10.1097/MPG.0000000000000597. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Fecal tryptophan metabolite profiling in newborns in relation to microbiota and antibiotic treatment

. 2024 Nov 05 ; 108 (1) : 504. [epub] 20241105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...