Simultaneous quantitative profiling of clinically relevant immune markers in neonatal stool swabs to reveal inflammation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33986356
PubMed Central
PMC8119937
DOI
10.1038/s41598-021-89384-0
PII: 10.1038/s41598-021-89384-0
Knihovny.cz E-zdroje
- MeSH
- biologické markery metabolismus MeSH
- chemické techniky analytické metody MeSH
- feces chemie MeSH
- hmotnostní spektrometrie metody MeSH
- idiopatické střevní záněty etiologie metabolismus MeSH
- lidé MeSH
- novorozenec MeSH
- odběr biologického vzorku metody MeSH
- potravinová alergie etiologie metabolismus MeSH
- zánět diagnóza mikrobiologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
An aberrant immune response developed early in life may trigger inflammatory bowel disease (IBD) and food allergies (e.g., celiac disease). Fecal levels of immune markers categorize an inflammatory response (e.g., food allergy, autoimmune) paralleled with the initial microbial colonization. The immunoaffinity assays are routinely applied to quantify circulating immune protein markers in blood/serum. However, a reliable, multiplex assay to quantify fecal levels of immune proteins is unavailable. We developed mass spectrometry assays to simultaneously quantify fecal calprotectin, myeloperoxidase, eosinophil-derived neurotoxin, eosinophil cationic protein, alpha-1-antitrypsin 1, and adaptive immunity effectors in 134 neonatal stool swabs. We optimized extraction and proteolytic protocol and validated the multiplex assay in terms of linearity of response (> 100; typically 0.04 to 14.77 µg/mg of total protein), coefficient of determination (R2; > 0.99), the limit of detection (LOD; 0.003 to 0.04 µg/mg of total protein), the limit of quantification (LOQ; 0.009 to 0.122 µg/mg of total protein) and robustness. The median CV of intra- and interday precision was 9.8% and 14.1%, respectively. We quantified breast milk-derived IGHA2 to differentiate meconium from feces samples and to detect the first food intake. An early life profiling of immune markers reflects disrupted intestinal homeostasis, and it is perhaps suitable for pre-symptomatic interception of IBD and food allergies.
Zobrazit více v PubMed
Alatab S, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020;5:17–30. doi: 10.1016/S2468-1253(19)30333-4. PubMed DOI PMC
Loh W, Tang M. The epidemiology of food allergy in the global context. Int. J. Environ. Res. Public Health. 2018;15:2043. doi: 10.3390/ijerph15092043. PubMed DOI PMC
Singh P, et al. Global prevalence of celiac disease: Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2018;16:823–836.e2. doi: 10.1016/j.cgh.2017.06.037. PubMed DOI
Tordesillas L, Berin MC, Sampson HA. Immunology of food allergy. Immunity. 2017;47:32–50. doi: 10.1016/j.immuni.2017.07.004. PubMed DOI
Sicherer SH, Sampson HA. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J. Allergy Clin. Immunol. 2018;141:41–58. doi: 10.1016/j.jaci.2017.11.003. PubMed DOI
Danese S, Sans M, Fiocchi C. Inflammatory bowel disease: the role of environmental factors. Autoimmun. Rev. 2004;3:394–400. doi: 10.1016/j.autrev.2004.03.002. PubMed DOI
Park JH, Peyrin-Biroulet L, Eisenhut M, Shin JI. IBD immunopathogenesis: A comprehensive review of inflammatory molecules. Autoimmun. Rev. 2017;16:416–426. doi: 10.1016/j.autrev.2017.02.013. PubMed DOI
Kelly D, King T, Aminov R. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2007;622:58–69. doi: 10.1016/j.mrfmmm.2007.03.011. PubMed DOI
McKenzie C, Tan J, Macia L, Mackay CR. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol. Rev. 2017;278:277–295. doi: 10.1111/imr.12556. PubMed DOI
Miyoshi J, Chang EB. The gut microbiota and inflammatory bowel diseases. Transl. Res. 2017;179:38–48. doi: 10.1016/j.trsl.2016.06.002. PubMed DOI PMC
Olszak T, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–493. doi: 10.1126/science.1219328. PubMed DOI PMC
Cox LM, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–721. doi: 10.1016/j.cell.2014.05.052. PubMed DOI PMC
Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the association between Caesarean section and childhood asthma. Clin. Exp. Allergy. 2008;38:629–633. doi: 10.1111/j.1365-2222.2007.02780.x. PubMed DOI
Sevelsted A, Stokholm J, Bønnelykke K, Bisgaard H. Cesarean section chronic immune disorders. Pediatrics. 2015;135:e92–e98. doi: 10.1542/peds.2014-0596. PubMed DOI
Oddy WH. Breastfeeding, childhood asthma, and allergic disease. Ann. Nutr. Metab. 2017;70:26–36. doi: 10.1159/000457920. PubMed DOI
Lee J, et al. Molecular pathophysiology of epithelial barrier dysfunction in inflammatory bowel diseases. Proteomes. 2018;6:17. doi: 10.3390/proteomes6020017. PubMed DOI PMC
Langhorst J, et al. Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: Performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am. J. Gastroenterol. 2008;103:162–169. doi: 10.1111/j.1572-0241.2007.01556.x. PubMed DOI
Saiki T. Myeloperoxidase concentrations in the stool as a new parameter of inflammatory bowel disease. Kurume Med. J. 1998;45:69–73. doi: 10.2739/kurumemedj.45.69. PubMed DOI
Masoodi I, et al. Evaluation of fecal myeloperoxidase as a biomarker of disease activity and severity in ulcerative colitis. Dig. Dis. Sci. 2012;57:1336–1340. doi: 10.1007/s10620-012-2027-5. PubMed DOI
Lisowska-Myjak B, Zytyńska-Daniluk J, Skarzyńska E. Concentrations of neutrophil-derived proteins in meconium and their correlations. Biomark. Med. 2016;10:819–829. doi: 10.2217/bmm-2016-0034. PubMed DOI
Ohtsuka Y. Food intolerance and mucosal inflammation. Pediatr. Int. 2015;57:22–29. doi: 10.1111/ped.12546. PubMed DOI
Kalach N, et al. Intestinal permeability and fecal eosinophil-derived neurotoxin are the best diagnosis tools for digestive non-IgE-mediated cow’s milk allergy in toddlers. Clin. Chem. Lab. Med. 2013;51:351–361. doi: 10.1515/cclm-2012-0083. PubMed DOI
Bridgman SL, et al. Infant gut immunity: a preliminary study of IgA associations with breastfeeding. J. Dev. Orig. Health Dis. 2016;7:68–72. doi: 10.1017/S2040174415007862. PubMed DOI
Test ID: FECP, Eosinophil Cationic Protein (ECP), Fluoroenzyme Immunoassay. https://www.mayocliniclabs.com/test-catalog/Overview/57809.
Kosek M, et al. Fecal markers of intestinal inflammation and permeability associated with the subsequent acquisition of linear growth deficits in infants. Am. J. Trop. Med. Hyg. 2013;88:390–396. doi: 10.4269/ajtmh.2012.12-0549. PubMed DOI PMC
Skarżyńska E, Żytyńska-Daniluk J, Lisowska-Myjak B. Correlations between ceruloplasmin, lactoferrin and myeloperoxidase in meconium. J. Trace Elem. Med. Biol. 2017;43:58–62. doi: 10.1016/j.jtemb.2016.11.007. PubMed DOI
Roca M, et al. Fecal calprotectin and eosinophil-derived neurotoxin in healthy children between 0 and 12 years. J. Pediatr. Gastroenterol. Nutr. 2017;65:394–398. doi: 10.1097/MPG.0000000000001542. PubMed DOI
Test ID: CALPR, Calprotectin, Feces, Enzyme-Linked Immunosorbent Assay (ELISA).
Test ID: AATP, Alpha-1-Antitrypsin, Nephelometry.
Skarżyńska E, Kiersztyn B, Wilczyńska P, Jakimiuk A, Lisowska-Myjak B. Total proteolytic activity and concentration of alpha-1 antitrypsin in meconium for assessment of the protease/antiprotease balance. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018;223:133–138. doi: 10.1016/j.ejogrb.2017.10.006. PubMed DOI
Saarinen KM, Sarnesto A, Savilahti E. Markers of inflammation in the feces of infants with cow’s milk allergy. Pediatr. Allergy Immunol. 2002;13:188–194. doi: 10.1034/j.1399-3038.2002.01027.x. PubMed DOI
Lisowska-Myjak B, Pachecka J. Alpha-1-antitrypsin and IgA in serial meconium and faeces of healthy breast-fed newborns. Fetal Diagn. Ther. 2007;22:116–120. doi: 10.1159/000097108. PubMed DOI
Vidova V, Spacil Z. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Anal. Chim. Acta. 2017;964:7–23. doi: 10.1016/j.aca.2017.01.059. PubMed DOI
Picotti P, Bodenmiller B, Aebersold R. Proteomics meets the scientific method. Nat. Methods. 2012;10:24–27. doi: 10.1038/nmeth.2291. PubMed DOI
Henderson CM, et al. Quantification by nano liquid chromatography parallel reaction monitoring mass spectrometry of human apolipoprotein A-I, apolipoprotein B, and hemoglobin A1c in dried blood spots. Proteom. Clin. Appl. 2017;11:1600103. doi: 10.1002/prca.201600103. PubMed DOI PMC
Singh RJ, Hines JM, Lopez MF, Krastins B, Hoofnagle AN. Mass spectrometric immunoassay raises doubt for the existence of parathyroid hormone fragment 7–84. Clin. Chem. 2015;61:558–560. doi: 10.1373/clinchem.2014.235440. PubMed DOI
Gopalakrishna KP, Hand TW. Influence of maternal milk on the neonatal intestinal microbiome. Nutrients. 2020;12:823. doi: 10.3390/nu12030823. PubMed DOI PMC
Schnatbaum K, et al. New approaches for absolute quantification of stable-isotope-labeled peptide standards for targeted proteomics based on a UV active tag. Proteomics. 2020;20:2000007. doi: 10.1002/pmic.202000007. PubMed DOI
Tibble JA, Sigthorsson G, Bridger S, Fagerhol MK, Bjarnason I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology. 2000;119:15–22. doi: 10.1053/gast.2000.8523. PubMed DOI
Martín-Muñoz MF, et al. Food allergy in breastfeeding babies. Hidden allergens in human milk. Eur. Ann. Allergy Clin. Immunol. 2016;48:123–128. PubMed
Boix E, et al. Structural determinants of the eosinophil cationic protein antimicrobial activity. Biol. Chem. 2012;393:801–815. doi: 10.1515/hsz-2012-0160. PubMed DOI
Acharya KR, Ackerman SJ. Eosinophil granule proteins: Form and function. J. Biol. Chem. 2014;289:17406–17415. doi: 10.1074/jbc.R113.546218. PubMed DOI PMC
Yang D, et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2–MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J. Exp. Med. 2008;205:79–90. doi: 10.1084/jem.20062027. PubMed DOI PMC
Abu-Ghazaleh RI, et al. Eosinophil granule proteins in peripheral blood granulocytes. J. Leukoc. Biol. 1992;52:611–618. doi: 10.1002/jlb.52.6.611. PubMed DOI
Li F, et al. Fecal Calprotectin concentrations in healthy children aged 1–18 months. PLoS ONE. 2015;10:e0119574. doi: 10.1371/journal.pone.0119574. PubMed DOI PMC
Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infantsʼ and childrenʼs health? J. Pediatr. Gastroenterol. Nutr. 2015;60:294–307. doi: 10.1097/MPG.0000000000000597. PubMed DOI PMC
Fecal tryptophan metabolite profiling in newborns in relation to microbiota and antibiotic treatment