• This record comes from PubMed

Priority list of biodiversity metrics to observe from space

. 2021 Jul ; 5 (7) : 896-906. [epub] 20210513

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Review

Links

PubMed 33986541
DOI 10.1038/s41559-021-01451-x
PII: 10.1038/s41559-021-01451-x
Knihovny.cz E-resources

Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales.

Albert Ludwigs University of Freiburg Freiburg Germany

Biodiversity Centre Finnish Environment Institute Helsinki Finland

College of Marine Science University of South Florida St Petersburg FL USA

Computational Landscape Ecology Helmholtz Centre for Environmental Research Leipzig Germany

Department of Applied Geoinformatics and Spatial Planning Faculty of Environmental Sciences Czech University of Life Sciences Prague Czech Republic

Department of Biological Geological and Environmental Sciences University of Bologna Bologna Italy

Department of Earth and Environmental Science Macquarie University Sydney New South Wales Australia

Department of Forest Resources Management University of British Columbia Vancouver British Columbia Canada

Department of Geography and Environmental Studies Wollo University Dessie Ethiopia

Department of Visitor Management and National Park Monitoring Bavarian Forest National Park Administration Grafenau Germany

Earth Observation Center Oberpfaffenhofen Germany

Earth Science Division NASA Washington DC USA

European Space Research Institute European Space Agency Frascati Italy

Faculty of Geo Information Science and Earth Observation University of Twente Enschede the Netherlands

Flemish Institute for Technological Research Mol Belgium

GBIF Secretariat Copenhagen Denmark

Geography Department Humboldt University of Berlin Berlin Germany

George Mason University Fairfax VA USA

German Centre for Integrative Biodiversity Research Leipzig Germany

Google Zurich Switzerland

Humboldt Universität zu Berlin Berlin Germany

Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam the Netherlands

Institute of Biology Martin Luther University Halle Wittenberg Halle Germany

Institute of Geographical Sciences Freie Universität Berlin Berlin Germany

Institute of Geography and Geology University of Wuerzburg Würzburg Germany

Land Systems and Sustainable Land Management Geographisches Institut Universität Bern Bern Switzerland

NatureServe Arlington VA USA

Remote Sensing Center for Earth System Research University of Leipzig Leipzig Germany

Remote Sensing Laboratories Department of Geography University of Zurich Zurich Switzerland

Technische Universität Braunschweig Braunschweig Germany

Tour du Valat Arles France

UN Environment World Conservation Monitoring Centre Cambridge UK

Unilever Europe B 5 Rotterdam the Netherlands

Wageningen Environmental Research Wageningen University and Research Wageningen the Netherlands

Erratum In

PubMed

Erratum In

PubMed

Erratum In

PubMed

Comment In

PubMed

See more in PubMed

Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv. 2, 132–140 (2016). DOI

What are EBVs? GEO BON https://geobon.org/ebvs/what-are-ebvs/ (2020).

Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013). PubMed DOI

Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016). PubMed DOI

Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017). DOI

Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016). DOI

Lausch, A. et al. Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches. Remote Sens. 10, 1120 (2018). DOI

Barga, R., Gannon, D. & Reed, D. The client and the cloud democratizing research computing. IEEE Internet Comput. 15, 72–75 (2011). DOI

Muller-Karger, F. E. et al. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecol. Appl. 28, 749–760 (2018). PubMed DOI PMC

O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28 (2015). DOI

Geijzendorffer, I. R. et al. Bridging the gap between biodiversity data and policy reporting needs: an essential biodiversity variables perspective. J. Appl. Ecol. 53, 1341–1350 (2016). DOI

Rohde, S., Hostmann, M., Peter, A. & Ewald, K. C. Room for rivers: an integrative search strategy for floodplain restoration. Landsc. Urban Plan. 78, 50–70 (2006). DOI

Belward, A. The Global Observing System for Climate: Implementation Needs Report No. GCOS-200 (Global Climate Observing System, 2016).

Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 95, 1431–1443 (2014). DOI

Wu, J. G. Effects of changing scale on landscape pattern analysis: scaling relations. Landsc. Ecol. 19, 125–138 (2004). DOI

Lake, P. S. Disturbance, patchiness, and diversity in streams. J. N. Am. Benthol. Soc. 19, 573–592 (2000). DOI

Graves, S. J. et al. Tree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced data. Remote Sens. 8, 161 (2016). DOI

Schlerf, M., Atzberger, C. & Hill, J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens. Environ. 95, 177–194 (2005). DOI

Xue, Y. F., Wang, T. J. & Skidmore, A. K. Automatic counting of large mammals from very high resolution panchromatic satellite imagery. Remote Sens. 9, 878 (2017). DOI

Zhao, M. S., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005). DOI

Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002). DOI

Curran, P. J., Dungan, J. L. & Peterson, D. L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry testing the Kokaly and Clark methodologies. Remote Sens. Environ. 76, 349–359 (2001). DOI

Homolova, L., Maenovsky, Z., Clevers, J., Garcia-Santos, G. & Schaeprnan, M. E. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 15, 1–16 (2013). DOI

Khosravipour, A., Skidmore, A. K. & Isenburg, M. Generating spike-free digital surface models using LiDAR raw point clouds: a new approach for forestry applications. Int. J. Appl. Earth Obs. Geoinf. 52, 104–114 (2016).

Verger, A. & Descals, A. Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)—300 m Version 1; Algorithm Theoretical Basis Document (ATBD), Issue 1.00 (Framework Service Contract No. 199494-JRC) (Copernicus Global Land Operations CGLOPS-1, 2020).

Copernicus Global Land Service: FAPAR Copernicus https://land.copernicus.eu/global/about (2020).

Schmidt, K. S. et al. Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogramm. Eng. Remote Sens. 70, 703–715 (2004). DOI

Arvor, D., Durieux, L., Andres, S. & Laporte, M. A. Advances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 82, 125–137 (2013). DOI

Lucas, R., Rowlands, A., Brown, A., Keyworth, S. & Bunting, P. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. Remote Sens. 62, 165–185 (2007). DOI

Skidmore, A. K. An expert system classifies eucalypt forest types using Landsat thematic mapper data and a digital terrain model. Photogramm. Eng. Remote Sens. 55, 1449–1464 (1989).

Tuanmu, M. N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014). DOI

Lausch, A. et al. Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecol. Model. 295, 31–41 (2015). DOI

Buchhorn, M. et al. Copernicus global land cover layers—Collection 2. Remote Sens. 12, 1044 (2020). DOI

Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 26, 930–941 (2017). DOI

Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013). PubMed DOI

Pekel, J., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016). PubMed DOI

Ye, H. et al. Improving remote sensing-based net primary production estimation in the grazed land with defoliation formulation model. J. Mt. Sci. 16, 323–336 (2019). DOI

Curran, P. J. & Steele, C. M. MERIS: the re-branding of an ocean sensor. Int. J. Remote Sens. 26, 1781–1798 (2005). DOI

Garrigues, S., Allard, D., Baret, F. & Weiss, M. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ. 105, 286–298 (2006). DOI

Wu, S. B. et al. Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations. ISPRS J. Photogramm. Remote Sens. 171, 36–48 (2021). DOI

Salcedo-Sanz, S. et al. Machine learning information fusion in Earth observation: a comprehensive review of methods, applications and data sources. Inf. Fusion 63, 256–272 (2020). DOI

Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018). PubMed DOI

Healy, C., Gotelli, N. J. & Potvin, C. Partitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantation. J. Ecol. 96, 903–913 (2008). DOI

Richards, J. A., Woodgate, P. W. & Skidmore, A. K. An explanation of enhanced radar backscattering from flooded forests. Int. J. Remote Sens. 8, 1093–1100 (1987). DOI

Morsdorf, F. et al. in Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 83–104 (Springer International, 2020).

Gratani, L. & Bombelli, A. Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus. Environ. Exp. Bot. 43, 141–153 (2000). DOI

Kitayama, K. & Aiba, S. I. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J. Ecol. 90, 37–51 (2002). DOI

Nagler, P. L., Glenn, E. P. & Hinojosa-Huerta, O. Synthesis of ground and remote sensing data for monitoring ecosystem functions in the Colorado River Delta, Mexico. Remote Sens. Environ. 113, 1473–1485 (2009). DOI

Brassard, B. W., Chen, H. Y. H., Bergeron, Y. & Pare, D. Differences in fine root productivity between mixed- and single-species stands. Funct. Ecol. 25, 238–246 (2011). DOI

Reich, P. B., Walters, M. B. & Ellsworth, D. S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392 (1992). DOI

Huston, M. A. & Wolverton, S. The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 79, 343–377 (2009). DOI

Jones, M. O., Jones, L. A., Kimball, J. S. & McDonald, K. C. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. 115, 1102–1114 (2011). DOI

Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol. 22, 1456–1468 (2016). DOI

Niklas, K. J. et al. ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groups. Proc. Natl Acad. Sci. USA 104, 8891–8896 (2007). PubMed DOI PMC

Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113 (1999). DOI

Bai, Y. F. et al. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. J. Appl. Ecol. 49, 1204–1215 (2012). DOI

Schmeller, D. S. et al. An operational definition of essential biodiversity variables. Biodivers. Conserv. 26, 2967–2972 (2017). DOI

Potter, C. et al. Recent history of large-scale ecosystem disturbances in North America derived from the AVHRR satellite record. Ecosystems 8, 808–824 (2005). DOI

Roy, D. P., Boschetti, L., Justice, C. O. & Ju, J. The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112, 3690–3707 (2008). DOI

Russell-Smith, J., Ryan, P. G. & Durieu, R. A LANDSAT MSS-derived fire history of Kakadu National Park, monsoonal northern Australia, 1980–94: seasonal extent, frequency and patchiness. J. Appl. Ecol. 34, 748–766 (1997). DOI

Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010). DOI

Nidumolu, U. B., De Bie, C., Van Keulen, H. & Skidmore, A. K. Enhancement of area-specific land-use objectives for land development. Land Degrad. Dev. 15, 513–525 (2004). DOI

Chen, F. et al. Fast automatic airport detection in remote sensing images using convolutional neural networks. Remote Sens. 10, 443 (2018). DOI

Weng, Q. H. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends. Remote Sens. Environ. 117, 34–49 (2012). DOI

Scott, G. J., England, M. R., Starms, W. A., Marcum, R. A. & Davis, C. H. Training deep convolutional neural networks for land-cover classification of high-resolution imagery. IEEE Geosci. Remote Sens. Lett. 14, 549–553 (2017). DOI

Skidmore, A. K., Turner, B. J., Brinkhof, W. & Knowles, E. Performance of a neural network: mapping forests using GIS and remotely sensed data. Photogramm. Eng. Remote Sens. 63, 501–514 (1997).

Joshi, C. et al. Indirect remote sensing of a cryptic forest understorey invasive species. For. Ecol. Manag. 225, 245–256 (2006). DOI

Defries, R. S. et al. Mapping the land surface for global atmosphere–biosphere models—toward continuous distributions of vegetation’s functional properties. J. Geophys. Res. Atmos. 100, 20867–20882 (1995). DOI

Cunliffe, A. M., Brazier, R. E. & Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 183, 129–143 (2016). DOI

Asner, G. P., Wessman, C. A. & Schimel, D. S. Heterogeneity of savanna canopy structure and function from imaging spectrometry and inverse modeling. Ecol. Appl. 8, 1022–1036 (1998). DOI

Peterseil, J. et al. Evaluating the ecological sustainability of Austrian agricultural landscapes—the SINUS approach. Land Use Policy 21, 307–320 (2004). DOI

Saura, S., Bodin, O. & Fortin, M. J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014). DOI

De Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E. & Dent, D. L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 115, 692–702 (2011). DOI

Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018). PubMed DOI

Baldeck, C. A. & Asner, G. P. Improving remote species identification through efficient training data collection. Remote Sens. 6, 2682–2698 (2014). DOI

Fassnacht, F. E. et al. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 186, 64–87 (2016). DOI

Lausch, A. et al. Linking earth observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic. 70, 317–339 (2016). DOI

Shi, Y. F., Wang, T. J., Skidmore, A. K. & Heurich, M. Important LiDAR metrics for discriminating forest tree species in Central Europe. ISPRS J. Photogramm. Remote Sens. 137, 163–174 (2018). DOI

Wilkes, P. et al. Using discrete-return airborne laser scanning to quantify number of canopy strata across diverse forest types. Methods Ecol. Evol. 7, 700–712 (2016). DOI

Hyyppa, J. et al. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 29, 1339–1366 (2008). DOI

Transon, J., d’Andrimont, R., Maugnard, A. & Defourny, P. Survey of hyperspectral earth observation applications from space in the Sentinel-2 context. Remote Sens. 10, 157 (2018). DOI

Guanter, L. et al. The EnMAP spaceborne imaging spectroscopy mission for Earth observation. Remote Sens. 7, 8830–8857 (2015). DOI

Qi, W. L. & Dubayah, R. O. Combining Tandem-X InSAR and simulated GEDI LiDAR observations for forest structure mapping. Remote Sens. Environ. 187, 253–266 (2016). DOI

Ramoelo, A., Cho, M., Mathieu, R. & Skidmore, A. K. Potential of Sentinel-2 spectral configuration to assess rangeland quality. J. Appl. Remote Sens. 9, 094096 (2015). DOI

Madonsela, S. et al. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species. Int. J. Appl. Earth Obs. Geoinf. 58, 65–73 (2017).

Bush, A. et al. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 1, 0176 (2017). DOI

Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015). PubMed DOI

Meireles, J. E. et al. Leaf reflectance spectra capture the evolutionary history of seed plants. New Phytol. 228, 485–493 (2020). PubMed DOI PMC

McManus, K. M. et al. Phylogenetic structure of foliar spectral traits in tropical forest canopies. Remote Sens. 8, 196 (2016). DOI

Urbano, F. et al. Wildlife tracking data management: a new vision. Phil. Trans. R. Soc. B Biol. Sci. 365, 2177–2185 (2010). DOI

Cubaynes, H. C., Fretwell, P. T., Bamford, C., Gerrish, L. & Jackson, J. A. Whales from space: four mysticete species described using new VHR satellite imagery. Mar. Mammal. Sci. 35, 466–491 (2019). DOI

Yang, Z. et al. Spotting East African mammals in open savannah from space. PLoS ONE 9, e115989 (2014). PubMed DOI PMC

Neumann, W. et al. Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Mov. Ecol. 3, 8 (2015). PubMed DOI PMC

Weiss, J. R., Smythe, W. D. & Lu, W. W. Science Traceability. In Proc. IEEE Aerospace Conference 292–299 (IEEE, 2005).

National Academies of Sciences, Engineering, and Medicine Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space (National Academies Press, 2018).

Verstraete, M. M., Diner, D. J. & Bezy, J. L. Planning for a spaceborne Earth observation mission: from user expectations to measurement requirements. Environ. Sci. Policy 54, 419–427 (2015). DOI

Skidmore, A. K. et al. Agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015). PubMed DOI

Masek, J. G. et al. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 112, 2914–2926 (2008). DOI

O’Connor, B., Bojinski, S., Roosli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. 55, 101033 (2020).

Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650–8655 (2010). PubMed DOI PMC

Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43–59 (2017). DOI

Walters, M. et al. Essential Biodiversity Variables UNEP/CBD/SBSTTA/17/INF/7 (Convention on Biological Diversity, 2013).

Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389 (2017). PubMed DOI

Coll, M. et al. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol. Indic. 60, 947–962 (2016). DOI

Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016). PubMed DOI

Gibert, J. P., Dell, A. I., DeLong, J. P. & Pawar, S. Scaling-up trait variation from individuals to ecosystems. Adv. Ecol. Res. 52, 1–17 (2015). DOI

Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89–210 (2012). DOI

Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002). DOI

Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016). PubMed DOI

Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013). PubMed DOI PMC

Turner, W. Sensing biodiversity. Science 346, 301–302 (2014). PubMed DOI

Schmeller, D. et al. Building capacity in biodiversity monitoring at the global scale. Biodivers. Conserv. 26, 2765–2790 (2017). DOI

Belward, A. S. & Skoien, J. O. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J. Photogramm. Remote Sens. 103, 115–128 (2015). DOI

Vogel, D. Private global business regulation. Annu. Rev. Polit. Sci. 11, 261–282 (2008). DOI

Tranquilli, S. et al. Lack of conservation effort rapidly increases African great ape extinction risk. Conserv. Lett. 5, 48–55 (2012). DOI

Buchanan, G. M. et al. Free satellite data key to conservation. Science 361, 139–140 (2018). PubMed

Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015). DOI

Wulder, M. A. et al. Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 170, 62–76 (2015). DOI

Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006). DOI

Czyz, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol. 10, 7419–7430 (2020). PubMed DOI PMC

Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 976–982 (2018). PubMed DOI

Cavender-Bares, J. et al. Associations of leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote detection of biodiversity. Remote Sens. 8, 221 (2016). DOI

Surface Biology and Geology (SBG) NASA Science https://science.nasa.gov/earth-science/decadal-sbg (2020).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...