LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems

. 2023 Sep ; 76 () : 102082.

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37662896
Odkazy

PubMed 37662896
PubMed Central PMC10316066
DOI 10.1016/j.ecoinf.2023.102082
PII: S1574-9541(23)00111-5
Knihovny.cz E-zdroje

The "Height Variation Hypothesis" is an indirect approach used to estimate forest biodiversity through remote sensing data, stating that greater tree height heterogeneity (HH) measured by CHM LiDAR data indicates higher forest structure complexity and tree species diversity. This approach has traditionally been analyzed using only airborne LiDAR data, which limits its application to the availability of the dedicated flight campaigns. In this study we analyzed the relationship between tree species diversity and HH, calculated with four different heterogeneity indices using two freely available CHMs derived from the new space-borne GEDI LiDAR data. The first, with a spatial resolution of 30 m, was produced through a regression tree machine learning algorithm integrating GEDI LiDAR data and Landsat optical information. The second, with a spatial resolution of 10 m, was created using Sentinel-2 images and a deep learning convolutional neural network. We tested this approach separately in 30 forest plots situated in the northern Italian Alps, in 100 plots in the forested area of Traunstein (Germany) and successively in all the 130 plots through a cross-validation analysis. Forest density information was also included as influencing factor in a multiple regression analysis. Our results show that the GEDI CHMs can be used to assess biodiversity patterns in forest ecosystems through the estimation of the HH that is correlated to the tree species diversity. However, the results also indicate that this method is influenced by different factors including the GEDI CHMs dataset of choice and their related spatial resolution, the heterogeneity indices used to calculate the HH and the forest density. Our finding suggest that GEDI LIDAR data can be a valuable tool in the estimation of forest tree heterogeneity and related tree species diversity in forest ecosystems, which can aid in global biodiversity estimation.

Zobrazit více v PubMed

Acharya R.P., Maraseni T., Cockfield G. Global trend of forest ecosystem services valuation–an analysis of publications. Ecosyst. Serv. 2019;39

Arroyo-Rodríguez V., Fahrig L., Tabarelli M., Watling J.I., Tischendorf L., Benchimol M., Cazetta E., Faria D., Leal I.R., Melo F.P., et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 2020;23(9):1404–1420. PubMed

Betts M.G., Wolf C., Ripple W.J., Phalan B., Millers K.A., Duarte A., Butchart S.H., Levi T. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature. 2017;547(7664):441–444. PubMed

Botta-Dukát Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 2005;16(5):533–540.

Brokaw N.V., Scheiner S.M. Species composition in gaps and structure of a tropical forest. Ecology. 1989;70(3):538–541.

Burns P., Clark M., Salas L., Hancock S., Leland D., Jantz P., Dubayah R., Goetz S.J. Incorporating canopy structure from simulated gedi lidar into bird species distribution models. Environ. Res. Lett. 2020;15(9)

de Lima R.A., Oliveira A.A., Pitta G.R., de Gasper A.L., Vibrans A.C., Chave J., Ter Steege H., Prado P.I. The erosion of biodiversity and biomass in the atlantic forest biodiversity hotspot. Nat. Commun. 2020;11(1):1–16. PubMed PMC

De Pauw K., Sanczuk P., Meeussen C., Depauw L., De Lombaerde E., Govaert S., Vanneste T., Brunet J., Cousins S.A., Gasperini C., et al. Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytol. 2022;233(1):219–235. PubMed

DeJong T.M. A comparison of three diversity indices based on their components of richness and evenness. Oikos. 1975:222–227.

Dorado-Roda I., Pascual A., Godinho S., Silva C.A., Botequim B., Rodríguez-Gonzálvez P., González-Ferreiro E., Guerra-Hernández J. Assessing the accuracy of gedi data for canopy height and aboveground biomass estimates in mediterranean forests. Remote Sens. 2021;13(12):2279.

Dubayah R., Armston J., Healey S.P., Bruening J.M., Patterson P.L., Kellner J.R., Duncanson L., Saarela S., Ståhl G., Yang Z., et al. Gedi launches a new era of biomass inference from space. Environ. Res. Lett. 2022;17(9)

Dubayah R., Blair J.B., Goetz S., Fatoyinbo L., Hansen M., Healey S., Hofton M., Hurtt G., Kellner J., Luthcke S., et al. The global ecosystem dynamics investigation: High-resolution laser ranging of the earth’s forests and topography. Sci. Remote Sens. 2020;1

Duncanson L., Kellner J.R., Armston J., Dubayah R., Minor D.M., Hancock S., Healey S.P., Patterson P.L., Saarela S., Marselis S., et al. Aboveground biomass density models for nasa’s global ecosystem dynamics investigation (gedi) lidar mission. Remote Sens. Environ. 2022;270

Duncanson L., Neuenschwander A., Hancock S., Thomas N., Fatoyinbo T., Simard M., Silva C.A., Armston J., Luthcke S.B., Hofton M., et al. Biomass estimation from simulated gedi, icesat-2 and nisar across environmental gradients in sonoma county, california. Remote Sens. Environ. 2020;242

Fagua J.C., Jantz P., Burns P., Massey R., Buitrago J.Y., Saatchi S., Hakkenberg C., Goetz S.J. Mapping tree diversity in the tropical forest region of chocó-colombia. Environ. Res. Lett. 2021;16(5)

Francini S., D’Amico G., Vangi E., Borghi C., Chirici G. Integrating gedi and landsat: spaceborne lidar and four decades of optical imagery for the analysis of forest disturbances and biomass changes in italy. Sensors. 2022;22(5):2015. PubMed PMC

Gholizadeh A., Žižala D., Saberioon M., Boruvka L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and sentinel-2 spectral imaging. Remote Sens. Environ. 2018;218:89–103.

Guerra-Hernández J., Pascual A. Using gedi lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species: a showcase in spain. For. Ecosyst. 2021;8(1):1–17.

Gupta R., Sharma L.K. Mixed tropical forests canopy height mapping from spaceborne lidar gedi and multisensor imagery using machine learning models. Remote Sens. Appl.: Soc. Environ. 2022;27

Hakkenberg C., Zhu K., Peet R., Song C. Mapping multi-scale vascular plant richness in a forest landscape with integrated lidar and hyperspectral remote-sensing. Ecology. 2018;99(2):474–487. PubMed

Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., et al. High-resolution global maps of 21st-century forest cover change. Science. 2013;342(6160):850–853. PubMed

Heumann B.W., Hackett R.A., Monfils A.K. Testing the spectral diversity hypothesis using spectroscopy data in a simulated wetland community. Ecol. Inform. 2015;25:29–34.

Hoffrén R., Lamelas M.T., de la Riva J., Domingo D., Montealegre A.L., García-Martín A., Revilla S. Assessing gedi-nasa system for forest fuels classification using machine learning techniques. Int. J. Appl. Earth Obs. Geoinf. 2023;116

Huang H., Gong P., Cheng X., Clinton N., Li Z. Improving measurement of forest structural parameters by co-registering of high resolution aerial imagery and low density lidar data. Sensors. 2009;9(3):1541–1558. PubMed PMC

Kacic P., Hirner A., Da Ponte E. Fusing sentinel-1 and-2 to model gedi-derived vegetation structure characteristics in gee for the paraguayan chaco. Remote Sens. 2021;13(24):5105.

Kacic P., Kuenzer C. Forest biodiversity monitoring based on remotely sensed spectral diversity—a review. Remote Sens. 2022;14(21):5363.

Kumar P., Dobriyal M., Kale A., Pandey A., Tomar R., Thounaojam E. Calculating forest species diversity with information-theory based indices using sentinel-2a sensor’s of mahavir swami wildlife sanctuary. Plos One. 2022;17(5) PubMed PMC

Lang, N., Jetz, W., Schindler, K., Wegner, J.D., 2022. A high-resolution canopy height model of the earth. arXiv preprint arXiv:2204.08322.

Lang N., Kalischek N., Armston J., Schindler K., Dubayah R., Wegner J.D. Global canopy height regression and uncertainty estimation from gedi lidar waveforms with deep ensembles. Remote Sens. Environ. 2022;268

Lang N., Schindler K., Wegner J.D. Country-wide high-resolution vegetation height mapping with sentinel-2. Remote Sens. Environ. 2019;233

Lefsky M.A., Keller M., Pang Y., De Camargo P.B., Hunter M.O. Revised method for forest canopy height estimation from geoscience laser altimeter system waveforms. J. Appl. Remote Sens. 2007;1(1)

Levin N., Shmida A., Levanoni O., Tamari H., Kark S. Predicting mountain plant richness and rarity from space using satellite-derived vegetation indices. Divers. Distrib. 2007;13(6):692–703.

Liu X., Su Y., Hu T., Yang Q., Liu B., Deng Y., Tang H., Tang Z., Fang J., Guo Q. Neural network guided interpolation for mapping canopy height of china’s forests by integrating gedi and icesat-2 data. Remote Sens. Environ. 2022;269

Madonsela S., Cho M.A., Ramoelo A., Mutanga O. Remote sensing of species diversity using landsat 8 spectral variables. ISPRS J. Photogramm. Remote Sens. 2017;133:116–127.

Marselis S.M., Keil P., Chase J.M., Dubayah R. The use of gedi canopy structure for explaining variation in tree species richness in natural forests. Environ. Res. Lett. 2022;17(4)

Marzialetti F., Cascone S., Frate L., Di Febbraro M., Acosta A.T.R., Carranza M.L. Measuring alpha and beta diversity by field and remote-sensing data: A challenge for coastal dunes biodiversity monitoring. Remote Sens. 2021;13(10):1928.

Marzialetti F., Di Febbraro M., Malavasi M., Giulio S., Acosta A.T.R., Carranza M.L. Mapping coastal dune landscape through spectral rao’s q temporal diversity. Remote Sens. 2020;12(14):2315.

Michele T., Duccio R., Marc Z., Ruth S., Giustino T. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE; 2018. Testing the spectral variation hypothesis by using the rao-q index to estimate forest biodiversity: Effect of spatial resolution; pp. 1183–1186.

Miraki M., Sohrabi H., Fatehi P., Kneubuehler M. Individual tree crown delineation from high-resolution uav images in broadleaf forest. Ecol. Inform. 2021;61

Mittermeier R.A., Myers N., Thomsen J.B., Da Fonseca G.A., Olivieri S. Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv. Biol. 1998:516–520.

Moudrỳ V., Cord A.F., Gábor L., Laurin G.V., Barták V., Gdulová K., Malavasi M., Rocchini D., Stereńczak K., Prošek J., et al. Vegetation structure derived from airborne laser scanning to assess species distribution and habitat suitability: The way forward. Divers. Distrib. 2023;29(1):39–50.

Moudrỳ V., Moudrá L., Barták V., Bejček V., Gdulová K., Hendrychová M., Moravec D., Musil P., Rocchini D., Št’astnỳ K., et al. The role of the vegetation structure, primary productivity and senescence derived from airborne lidar and hyperspectral data for birds diversity and rarity on a restored site. Landsc. Urban Plann. 2021;210

Moudrý, V., 2022. Accuracy of recent global canopy height maps and their applicability for biodiversity modelling in temperate biomes.

Oldeland J., Wesuls D., Rocchini D., Schmidt M., Jürgens N. Does using species abundance data improve estimates of species diversity from remotely sensed spectral heterogeneity? Ecol. Ind. 2010;10(2):390–396.

Palmer M.W., Earls P.G., Hoagland B.W., White P.S., Wohlgemuth T. Quantitative tools for perfecting species lists. Environ.: Offic. J. Int. Environ. Soc. 2002;13(2):121–137.

Pan Y., Birdsey R.A., Phillips O.L., Jackson R.B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 2013;44(1):593–622.

Polychronaki A., Spindler N., Schmidt A., Stoinschek B., Zebisch M., Renner K., Sonnenschein R., Notarnicola C. Integrating rapideye and ancillary data to map alpine habitats in south tyrol, italy. Int. J. Appl. Earth Obs. Geoinf. 2015;37:65–71.

Potapov P., Li X., Hernandez-Serna A., Tyukavina A., Hansen M.C., Kommareddy A., Pickens A., Turubanova S., Tang H., Silva C.E., et al. Mapping global forest canopy height through integration of gedi and landsat data. Remote Sens. Environ. 2021;253

Potapov P., Tyukavina A., Turubanova S., Talero Y., Hernandez-Serna A., Hansen M., Saah D., Tenneson K., Poortinga A., Aekakkararungroj A., et al. Annual continuous fields of woody vegetation structure in the lower mekong region from 2000–2017 landsat time-series. Remote Sens. Environ. 2019;232

Primack R.B., et al. vol. 23. Sinauer Associates Sunderland; 2006. (Essentials of conservation biology).

Quirós E., Polo M.-E., Fragoso-Campón L. Gedi elevation accuracy assessment: a case study of southwest spain. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 2021;14:5285–5299.

Rao C.R. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 1982;21(1):24–43.

Ricotta C. Additive partitioning of rao’s quadratic diversity: a hierarchical approach. Ecol. Model. 2005;183(4):365–371.

Ricotta C., Pavoine S., Bacaro G., Acosta A.T. Functional rarefaction for species abundance data. Methods Ecol. Evol. 2012;3(3):519–525.

Ricotta C., Szeidl L. Towards a unifying approach to diversity measures: bridging the gap between the shannon entropy and rao’s quadratic index. Theor. Popul. Biol. 2006;70(3):237–243. PubMed

Rishmawi K., Huang C., Schleeweis K., Zhan X. Integration of viirs observations with gedi-lidar measurements to monitor forest structure dynamics from 2013 to 2020 across the conterminous united states. Remote Sens. 2022;14(10):2320.

Rishmawi K., Huang C., Zhan X. Monitoring key forest structure attributes across the conterminous united states by integrating gedi lidar measurements and viirs data. Remote Sens. 2021;13(3):442.

Rocchini D. Effects of spatial and spectral resolution in estimating ecosystem α)diversity by satellite imagery. Remote Sens. Environ. 2007;111(4):423–434.

Rocchini D., Chiarucci A., Loiselle S.A. Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecol. 2004;26(2):117–120.

Rocchini D., Marcantonio M., Ricotta C. Measuring rao’s q diversity index from remote sensing: An open source solution. Ecol. Ind. 2017;72:234–238.

Rocchini D., Salvatori N., Beierkuhnlein C., Chiarucci A., De Boissieu F., Förster M., Garzon-Lopez C.X., Gillespie T.W., Hauffe H.C., He K.S., et al. From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing. Ecol. Inform. 2021;61

Rocchini D., Santos M.J., Ustin S.L., Féret J.-B., Asner G.P., Beierkuhnlein C., Dalponte M., Feilhauer H., Foody G.M., Geller G.N., et al. The spectral species concept in living color. Journal of Geophysical Research. Biogeosciences. 2022 PubMed PMC

Rocchini D., Thouverai E., Marcantonio M., Iannacito M., Da Re D., Torresani M., Bacaro G., Bazzichetto M., Bernardi A., Foody G.M., et al. rasterdiv—an information theory tailored r package for measuring ecosystem heterogeneity from space: To the origin and back. Methods Ecol. Evol. 2021;12(6):1093–1102. PubMed PMC

Rocchini D., Torresani M., Beierkuhnlein C., Feoli E., Foody G.M., Lenoir J., Malavasi M., Moudrỳ V., Šímová P., Ricotta C. Double down on remote sensing for biodiversity estimation: a biological mindset. Commun. Ecol. 2022:1–10.

Roy D.P., Kashongwe H.B., Armston J. The impact of geolocation uncertainty on gedi tropical forest canopy height estimation and change monitoring. Sci. Remote Sens. 2021;4

Saarela S., Holm S., Healey S.P., Patterson P.L., Yang Z., Andersen H.-E., Dubayah R.O., Qi W., Duncanson L.I., Armston J.D., et al. Comparing frameworks for biomass prediction for the global ecosystem dynamics investigation. Remote Sens. Environ. 2022;278

Schnitzer S.A., Carson W.P. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology. 2001;82(4):913–919.

Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27(3):379–423.

Silva C.A., Duncanson L., Hancock S., Neuenschwander A., Thomas N., Hofton M., Fatoyinbo L., Simard M., Marshak C.Z., Armston J., et al. Fusing simulated gedi, icesat-2 and nisar data for regional aboveground biomass mapping. Remote Sens. Environ. 2021;253

Skidmore A.K., Coops N.C., Neinavaz E., Ali A., Schaepman M.E., Paganini M., Kissling W.D., Vihervaara P., Darvishzadeh R., Feilhauer H., et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 2021;5(7):896–906. PubMed

Sun H., Hu J., Wang J., Zhou J., Lv L., Nie J. Rspd: A novel remote sensing index of plant biodiversity combining spectral variation hypothesis and productivity hypothesis. Remote Sens. 2021;13(15):3007.

Tagliabue G., Panigada C., Celesti M., Cogliati S., Colombo R., Migliavacca M., Rascher U., Rocchini D., Schüttemeyer D., Rossini M. Sun–induced fluorescence heterogeneity as a measure of functional diversity. Remote Sens. Environ. 2020;247

Tamburlin D., Torresani M., Tomelleri E., Tonon G., Rocchini D. Testing the height variation hypothesis with the r rasterdiv package for tree species diversity estimation. Remote Sens. 2021;13(18):3569.

Thouverai E., Marcantonio M., Lenoir J., Galfré M., Marchetto E., Bacaro G., Gatti R.C., Da Re D., Di Musciano M., Furrer R., et al. Integrals of life: Tracking ecosystem spatial heterogeneity from space through the area under the curve of the parametric rao’s q index. Ecol. Complex. 2023;52

Torresani M., Feilhauer H., Rocchini D., Féret J.-B., Zebisch M., Tonon G. Which optical traits enable an estimation of tree species diversity based on the spectral variation hypothesis? Appl. Veg. Sci. 2021;24(2)

Torresani M., Masiello G., Vendrame N., Gerosa G., Falocchi M., Tomelleri E., Serio C., Rocchini D., Zardi D. Correlation analysis of evapotranspiration, emissivity contrast and water deficit indices: A case study in four eddy covariance sites in italy with different environmental habitats. Land. 2022;11(11):1903.

Torresani M., Rocchini D., Sonnenschein R., Zebisch M., Hauffe H.C., Heym M., Pretzsch H., Tonon G. Height variation hypothesis: A new approach for estimating forest species diversity with chm lidar data. Ecol. Ind. 2020;117

Torresani M., Rocchini D., Sonnenschein R., Zebisch M., Marcantonio M., Ricotta C., Tonon G. Estimating tree species diversity from space in an alpine conifer forest: The rao’s q diversity index meets the spectral variation hypothesis. Ecol. Inform. 2019;52:26–34.

White J.C., Gómez C., Wulder M.A., Coops N.C. Characterizing temperate forest structural and spectral diversity with hyperion eo-1 data. Remote Sens. Environ. 2010;114(7):1576–1589.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Grassland vertical height heterogeneity predicts flower and bee diversity: an UAV photogrammetric approach

. 2024 Jan 08 ; 14 (1) : 809. [epub] 20240108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...