rasterdiv-An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34262682
PubMed Central
PMC8252722
DOI
10.1111/2041-210x.13583
PII: MEE313583
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity, ecological informatics, modelling, remote sensing, satellite imagery,
- Publikační typ
- časopisecké články MeSH
Ecosystem heterogeneity has been widely recognized as a key ecological indicator of several ecological functions, diversity patterns and change, metapopulation dynamics, population connectivity or gene flow.In this paper, we present a new R package-rasterdiv-to calculate heterogeneity indices based on remotely sensed data. We also provide an ecological application at the landscape scale and demonstrate its power in revealing potentially hidden heterogeneity patterns.The rasterdiv package allows calculating multiple indices, robustly rooted in Information Theory, and based on reproducible open-source algorithms.
CNR IIA C O Physics Department M Merlin University of Bari Bari Italy
DAGRI Department of Agriculture Food Environment and Forestry University of Florence Firenze Italy
Department of Agriculture Food Environment and Forestry University of Florence Firenze Italy
Department of Civil Environmental and Mechanical Engineering University of Trento Trento Italy
Department of Computational Science University of Zurich Zurich Switzerland
Department of Environmental Biology University of Rome La Sapienza' Rome Italy
Department of Environmental Science Macquarie University Sydney NSW Australia
Department of Geography Earth System Science University of Zurich Zurich Switzerland
Department of Geography Remote Sensing Laboratories University of Zurich Zurich Switzerland
Department of Geosciences and Geography University of Helsinki Helsinki Finland
Department of Life Sciences University of Trieste Trieste Italy
Department of Mathematics University of Trento Povo Italy
Department of Mathematics University of Zurich Zurich Switzerland
Department of Remote Sensing University of Wuerzburg Würzburg Germany
EcoBio UMR 6553 Université de Rennes CNRS Rennes France
Inria Bordeaux Sud Ouest Talence France
Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
Plant Ecology and Nature Conservation Group Wageningen University Wageningen The Netherlands
School of Geography University of Nottingham Nottingham UK
UR Ecologie et Dynamique des Systèmes Anthropisés Université de Picardie Jules Verne Amiens France
Zobrazit více v PubMed
August, P. V. (1983). The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology, 64, 1495–1507.
Blonder, B. (2018). Hypervolume concepts in niche‐ and trait‐based ecology. Ecography, 41, 1441–1455. 10.1111/ecog.03187 DOI
Boltzmann, L. E. (1872). Weitere studien über das waärmegleichgewicht unter gasmolekälen. S K Akad Wiss Wein, 66, 275–370.
Da Re, D. , De Clercq, E. M. , Tordoni, E. , Madder, M. , Rousseau, R. , & Vanwambeke, S. O. (2019). Looking for ticks from space: Using remotely sensed spectral diversity to assess
Doxa, A. , & Prastacos, P. (2020). Using Rao's quadratic entropy to define environmental heterogeneity priority areas in the European Mediterranean biome. Biological Conservation, 241, 108366.
Ettema, C. H. , & Wardle, D. A. (2002). Spatial soil ecology. Trends in Ecology & Evolution, 17, 177–183.
Fahrig, L. (2007). Landscape heterogeneity and metapopulation dynamics. In Wu J. & Hobbs R. (Eds.), Key topics in landscape ecology (pp. 78–91). Cambridge University Press.
Féret, J.‐B. , & de Boissieu, F. (2020). biodivMapR: An R package for α‐and β‐diversity mapping using remotely sensed images. Methods in Ecology and Evolution, 11, 64–70.
Godinho, S. , Guiomar, N. , & Gil, A. (2018). Estimating tree canopy cover percentage in a mediterranean silvopastoral systems using Sentinel‐2A imagery and the stochastic gradient boosting algorithm. International Journal of Remote Sensing, 39, 4640–4662.
Gorelick, R. (2011). Do we have a consistent terminology for species diversity? The fallacy of true diversity. Oecologia, 167, 885–888. PubMed
Grelle, C. E. V. (2003). Forest structure and vertical stratification of small mammals in a secondary Atlantic forest, southeastern Brazil. Studies on Neotropical Fauna and Environment, 38, 81–85.
Heaney, L. R. (2001). Small mammal diversity along elevational gradients in the Philippines: An assessment of patterns and hypotheses. Global Ecology and Biogeography, 10, 15–39.
Hesselbarth, M. H. K. , Sciaini, M. , With, K. A. , Wiegand, K. , & Nowosad, J. (2019).
Hijmans, R. J. , & van Etten, J. (2020). raster: Geographic analysis and modeling with raster data. R package version 3.0‐12. Retrieved from http://CRAN.R‐project.org/package=raster
Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427–431. 10.2307/1934352 DOI
Hortal, J. , Triantis, K. A. , Meiri, S. , Thébault, E. , & Sfenthourakis, S. (2009). Island species richness increases with habitat diversity. The American Naturalist, 174, E205–E217. 10.1086/645085 PubMed DOI
Hutchinson, G. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist, 93, 145–159.
Karlson, M. , Ostwald, M. , Reese, H. , Sanou, J. , Tankoano, B. , & Mattsson, E. (2015). Mapping tree canopy cover and aboveground biomass in Sudano‐Sahelian woodlands using Landsat 8 and Random Forest. Remote Sensing, 7, 10017–10041.
Keller, A. , Graefen, A. , Ball, M. , Matzas, M. , Boisguerin, V. , Maixner, F. , Leidinger, P. , Backes, C. , Khairat, R. , Forster, M. , Stade, B. , Franke, A. , Mayer, J. , Spangler, J. , McLaughlin, S. , Shah, M. , Lee, C. , Harkins, T. T. , Sartori, A. , … Zink, A. (2012). New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole‐genome sequencing. Nature Communications, 3, 698. PubMed
Laliberté, E. , Schweiger, A. K. , & Legendre, P. (2019). Partitioning plant spectral diversity into alpha and beta components. Ecology Letters, 23, 370–380. PubMed PMC
Leitão, P. J. , Schwieder, M. , & Senf, C. (2017). sgdm: An R package for performing Sparse Generalized Dissimilarity Modelling with tools for gdm. ISPRS International Journal of Geo‐Information, 6, 23.
Leutner, B. , Horning, N. , Schwalb‐Willmann, J. , & Hijmans, R. J. (2019). RStoolbox: Tools for remote sensing data analysis. R package version 0.2.6. Retrieved from http://CRAN.R‐project.org/package=RStoolbox
Li, H. , & Reynolds, J. (1995). On definition and quantification of heterogeneity. Oikos, 73, 280–284.
Lozier, J. D. , Strange, J. P. , & Koch, J. B. (2013). Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, DOI
Malanson, G. P. , & Cramer, B. E. (1999). Landscape heterogeneity, connectivity, and critical landscapes for conservation. Diversity and Distributions, 5, 27–39.
Metz, M. , Rocchini, D. , & Neteler, M. (2014). Surface temperatures at the continental scale: Tracking changes with remote sensing at unprecedented detail. Remote Sensing, 6, 3822–3840.
Naimi, B. , Hamm, N. A. S. , Groen, T. A. , Skidmore, A. K. , Toxopeus, A. G. , & Alibakhshi, S. (2019). ELSA: Entropy‐based local indicator of spatial association. Spatial Statistics, 29, 66–88.
Nakamura, G. , Goncalves, L. O. , & Duarte, L. D. S. (2020). Revisiting the dimensionality of biological diversity. Ecography, 43(4), 539–548. 10.1111/ecog.04574 DOI
R Core Team . (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Randin, C. F. , Ashcroft, M. , Bolliger, J. , Cavender‐Bares, J. , Coops, N. , Dullinger, S. , Dirnböck, T. , Eckert, S. , Ellis, E. , Giuliani, G. , Guisan, A. , Jetz, W. , Joost, S. , Karger, D. , Lembrechts, J. , Lenoir, J. , Luoto, M. , Morin, X. , Price, B. , … Payne, D. (2020). Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 239, 111626.
Rao, C. R. (1982). Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21, 24–43.
Rényi, A. (1970). Probability Theory. North Holland Publishing Company.
Ribeiro, I. , Proenca, V. , Serra, P. , Palma, J. , Domingo‐Marimon, C. , Pons, X. , & Domingos, T. (2019). Remotely sensed indicators and open‐access biodiversity data to assess bird diversity patterns in mediterranean rural landscapes. Scientific Reports, 9, 1–13. PubMed PMC
Ricotta, C. , Corona, P. , Marchetti, M. , Chirici, G. , & Innamorati, S. (2003). LaDy: Software for assessing local landscape diversity profiles of raster land cover maps using geographic windows. Environmental Modelling & Software, 18, 373–378.
Rocchini, D. , Delucchi, L. , Bacaro, G. , Cavallini, P. , Feilhauer, H. , Foody, G. M. , He, K. S. , Nagendra, H. , Porta, C. , Ricotta, C. , Schmidtlein, S. , Spano, L. D. , Wegmann, M. , & Neteler, M. (2013). Calculating landscape diversity with information‐theory based indices: A GRASS GIS solution. Ecological Informatics, 17, 82–93.
Rocchini, D. , Luque, S. , Pettorelli, N. , Bastin, L. , Doktor, D. , Faedi, N. , Feilhauer, H. , Féret, J.‐B. , Foody, G. M. , Gavish, Y. , Godinho, S. , Kunin, W. E. , Lausch, A. , Leitão, P. J. , Marcantonio, M. , Neteler, M. , Ricotta, C. , Schmidtlein, S. , Vihervaara, P. , … Nagendra, H. (2018). Measuring β‐diversity by remote sensing: A challenge for biodiversity monitoring. Methods in Ecology and Evolution, 9, 1787–1798.
Rocchini, D. , Marcantonio, M. , Da Re, D. , Chirici, G. , Galluzzi, M. , Lenoir, J. , Ricotta, C. , Torresani, M. , & Ziv, G. (2019). Time‐lapsing biodiversity: An open source method for measuring diversity changes by remote sensing. Remote Sensing of Environment, 231, 111192.
Rocchini, D. , & Neteler, M. (2012). Let the four freedoms paradigm apply to ecology. Trends in Ecology & Evolution, 27, 310–311. PubMed
Rocchini, D. , & Ricotta, C. (2007). Are landscapes as crisp as we may think? Ecological Modelling, 204, 535–539. 10.1016/j.ecolmodel.2006.12.028 DOI
Schimel, D. , & Schneider, F. D. (2019). Flux towers in the sky: Global ecology from space. New Phytologist, 224, 570–584. 10.1111/nph.15934 PubMed DOI
Schneider, F. D. , Morsdorf, F. , Schmid, B. , Petchey, O. L. , Hueni, A. , Schimel, D. S. , & Schaepman, M. E. (2017). Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nature Communications, 8, 1441. PubMed PMC
Senner, N. R. , Stager, M. , & Cheviron, Z. A. (2018). Spatial and temporal heterogeneity in climate change limits species' dispersal capabilities and adaptive potential. Ecography, 41, 1428–1440.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(379–423), 623–656. 10.1002/j.1538-7305.1948.tb00917.x DOI
Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.
Skidmore, A. K. , Franklin, J. , Dawsonc, T. P. , & Pilesjo, P. (2011). Geospatial tools address emerging issues in spatial ecology: A review and commentary on the Special Issue. International Journal of Geographical Information Science, 25, 337–365.
Stein, A. , Gerstner, K. , & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866–880. PubMed
Vranken, I. , Baudry, J. , Aubinet, M. , Visser, M. , & Bogaert, J. (2014). A review on the use of entropy in landscape ecology: Heterogeneity, unpredictability, scale dependence and their links with thermodynamics. Landscape Ecology, 30, 51–65.
Zellweger, F. , De Frenne, P. , Lenoir, J. , Rocchini, D. , & Coomes, D. (2019). Advances in microclimate ecology arising from remote sensing. Trends in Ecology & Evolution, 34, 327–341. PubMed