The relationship between remotely-sensed spectral heterogeneity and bird diversity is modulated by landscape type
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články
PubMed
38605982
PubMed Central
PMC11004726
DOI
10.1016/j.jag.2024.103763
PII: S1569-8432(24)00117-1
Knihovny.cz E-zdroje
- Klíčová slova
- Bird species richness, Habitat modeling, Landsat 8, Remote sensing, Spectral heterogeneity,
- Publikační typ
- časopisecké články MeSH
To identify areas of high biodiversity and prioritize conservation efforts, it is crucial to understand the drivers of species richness patterns and their scale dependence. While classified land cover products are commonly used to explain bird species richness, recent studies suggest that unclassified remote-sensed images can provide equally good or better results. In our study, we aimed to investigate whether unclassified multispectral data from Landsat 8 can replace image classification for bird diversity modeling. Moreover, we also tested the Spectral Variability Hypothesis. Using the Atlas of Breeding Birds in the Czech Republic 2014-2017, we modeled species richness at two spatial resolutions of approx. 131 km2 (large squares) and 8 km2 (small squares). As predictors of the richness, we assessed 1) classified land cover data (Corine Land Cover 2018 database), 2) spectral heterogeneity (computed in three ways) and landscape composition derived from unclassified remote-sensed reflectance and vegetation indices. Furthermore, we integrated information about the landscape types (expressed by the most prevalent land cover class) into models based on unclassified remote-sensed data to investigate whether the landscape type plays a role in explaining bird species richness. We found that unclassified remote-sensed data, particularly spectral heterogeneity metrics, were better predictors of bird species richness than classified land cover data. The best results were achieved by models that included interactions between the unclassified data and landscape types, indicating that relationships between bird diversity and spectral heterogeneity vary across landscape types. Our findings demonstrate that spectral heterogeneity derived from unclassified multispectral data is effective for assessing bird diversity across the Czech Republic. When explaining bird species richness, it is important to account for the type of landscape and carefully consider the significance of the chosen spatial scale.
Zobrazit více v PubMed
Adler K., Jedicke E. Landscape metrics as indicators of avian community structures – A state of the art review. Ecol Indic. 2022 doi: 10.1016/j.ecolind.2022.109575. DOI
Akaike H. A new look at the statistical model identification. IEEE transactions on automatic control. 1974;19(6):716–723.
Aybar C., Wu Q., Bautista L., Yali R., Barja A. rgee: An R package for interacting with Google Earth Engine. J Open Source Softw. 2020;5 doi: 10.21105/joss.02272. DOI
Bannari A., Morin D., Bonn F., Huete A.R. A review of vegetation indices - Remote Sensing Reviews. Remote Sensing Reviews. 1995;13
Basile M., Storch I., Mikusiński G. Abundance, species richness and diversity of forest bird assemblages – The relative importance of habitat structures and landscape context. Ecol Indic. 2021;133 doi: 10.1016/j.ecolind.2021.108402. DOI
Betts M.G., Forbes G.J., Diamond A.W. Thresholds in songbird occurrence in relation to landscape structure. Conservation Biology. 2007;21 doi: 10.1111/j.1523-1739.2007.00723.x. PubMed DOI
Billeter R., Liira J., Bailey D., Bugter R., Arens P., Augenstein I., Aviron S., Baudry J., Bukacek R., Burel F., Cerny M., De Blust G., De Cock R., Diekötter T., Dietz H., Dirksen J., Dormann C., Durka W., Frenzel M., Hamersky R., Hendrickx F., Herzog F., Klotz S., Koolstra B., Lausch A., Le Coeur D., Maelfait J.P., Opdam P., Roubalova M., Schermann A., Schermann N., Schmidt T., Schweiger O., Smulders M.J.M., Speelmans M., Simova P., Verboom J., Van Wingerden W.K.R.E., Zobel M., Edwards P.J. Indicators for biodiversity in agricultural landscapes: A pan-European study. Journal of Applied Ecology. 2008;45 doi: 10.1111/j.1365-2664.2007.01393.x. DOI
Bino G., Levin N., Darawshi S., Van Der Hal N., Reich-Solomon A., Kark S. Accurate prediction of bird species richness patterns in an urban environment using Landsat-derived NDVI and spectral unmixing. Int J Remote Sens. 2008;29 doi: 10.1080/01431160701772534. DOI
Borcard D., Legendre P., Drapeau P. Partialling out the spatial component of ecological variation. Ecology. 1992;73 doi: 10.2307/1940179. DOI
Bradley B.A., Fleishman E. Can remote sensing of land cover improve species distribution modelling? J Biogeogr. 2008 doi: 10.1111/j.1365-2699.2008.01928.x. DOI
Carrete M., Grande J.M., Tella J.L., Sánchez-Zapata J.A., Donázar J.A., Díaz-Delgado R., Romo A. Habitat, human pressure, and social behavior: Partialling out factors affecting large-scale territory extinction in an endangered vulture. Biol Conserv. 2007;136 doi: 10.1016/j.biocon.2006.11.025. DOI
Chen J., Chen J., Liao A., Cao X., Chen L., Chen X., He C., Han G., Peng S., Lu M., Zhang W., Tong X., Mills J. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing. 2015;103 doi: 10.1016/j.isprsjprs.2014.09.002. DOI
Cooper W.J., McShea W.J., Forrester T., Luther D.A. The value of local habitat heterogeneity and productivity when estimating avian species richness and species of concern. Ecosphere. 2020;11 doi: 10.1002/ecs2.3107. DOI
Coops N.C., Wulder M.A. Breaking the Habit(at) Trends Ecol Evol. 2019 doi: 10.1016/j.tree.2019.04.013. PubMed DOI
Culbert P.D., Radeloff V.C., St-Louis V., Flather C.H., Rittenhouse C.D., Albright T.P., Pidgeon A.M. Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image texture. Remote Sens Environ. 2012;118 doi: 10.1016/j.rse.2011.11.004. DOI
Duro D.C., Girard J., King D.J., Fahrig L., Mitchell S., Lindsay K., Tischendorf L. Predicting species diversity in agricultural environments using Landsat TM imagery. Remote Sens Environ. 2014;144 doi: 10.1016/j.rse.2014.01.001. DOI
Engemann K., Enquist B.J., Sandel B., Boyle B., Jørgensen P.M., Morueta-Holme N., Peet R.K., Violle C., Svenning J.C. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot. Ecol Evol. 2015;5 doi: 10.1002/ece3.1405. PubMed DOI PMC
Farwell L.S., Elsen P.R., Razenkova E., Pidgeon A.M., Radeloff V.C. Habitat heterogeneity captured by 30-m resolution satellite image texture predicts bird richness across the United States. Ecological Applications. 2020;30 doi: 10.1002/eap.2157. PubMed DOI
Farwell L.S., Gudex-Cross D., Anise I.E., Bosch M.J., Olah A.M., Radeloff V.C., Razenkova E., Rogova N., Silveira E.M.O., Smith M.M., Pidgeon A.M. Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness. Remote Sens Environ. 2021;253 doi: 10.1016/j.rse.2020.112175. DOI
Field R., Hawkins B.A., Cornell H.V., Currie D.J., Diniz-Filho J.A.F., Guégan J.F., Kaufman D.M., Kerr J.T., Mittelbach G.G., Oberdorff T., O’Brien E.M., Turner J.R.G. Spatial species-richness gradients across scales: A meta-analysis. J Biogeogr. 2009;36 doi: 10.1111/j.1365-2699.2008.01963.x. DOI
Foody G.M., Cutler M.E.J. Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing. J Biogeogr. 2003;30 doi: 10.1046/j.1365-2699.2003.00887.x. DOI
Gholizadeh H., Gamon J.A., Zygielbaum A.I., Wang R., Schweiger A.K., Cavender-Bares J. Remote sensing of biodiversity: Soil correction and data dimension reduction methods improve assessment of α-diversity (species richness) in prairie ecosystems. Remote Sens Environ. 2018;206 doi: 10.1016/j.rse.2017.12.014. DOI
Gillespie T.W., Foody G.M., Giorgi A.P. Measuring and Modelling Biodiversity from Space Progress in Physical Geography. Prog Phys Geogr. 2008;32
Goetz S.J., Steinberg D., Betts M.G., Holmes R.T., Doran P.J., Dubayah R., Hofton M. Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology. 2010;91 doi: 10.1890/09-1670.1. PubMed DOI
Gómez C., White J.C., Wulder M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing. 2016 doi: 10.1016/j.isprsjprs.2016.03.008. DOI
Gong P., Wang J., Yu L., Zhao Y., Zhao Y., Liang L., Niu Z., Huang X., Fu H., Liu S., Li C., Li X., Fu W., Liu C., Xu Y., Wang X., Cheng Q., Hu L., Yao W., Zhang H., Zhu P., Zhao Z., Zhang H., Zheng Y., Ji L., Zhang Y., Chen H., Yan A., Guo J., Yu L., Wang L., Liu X., Shi T., Zhu M., Chen Y., Yang G., Tang P., Xu B., Giri C., Clinton N., Zhu Z., Chen J., Chen Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int J Remote Sens. Jun 2013;34 doi: 10.1080/01431161.2012.748992. DOI
Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ. 2017;202 doi: 10.1016/j.rse.2017.06.031. DOI
Gottschalk T.K., Huettmann F., Ehlers M. Thirty years of analysing and modelling avian habitat relationships using satellite imagery data: A review. Int J Remote Sens. 2005 doi: 10.1080/01431160512331338041. DOI
Hagemeijer W.J., Blair M.J. Poyser; London: 1997. The EBCC atlas of European breeding birds; p. 479.
Hall K., Johansson L.J., Sykes M.T., Reitalu T., Larsson K., Prentice H.C. Inventorying management status and plant species richness in seminatural grasslands using high spatial resolution imagery. Appl Veg Sci. 2010;13 doi: 10.1111/j.1654-109X.2009.01063.x. DOI
Hanski I. Spatially realistic theory of metapopulation ecology. Naturwissenschaften. 2001 doi: 10.1007/s001140100246. PubMed DOI
He K.S., Bradley B.A., Cord A.F., Rocchini D., Tuanmu M.N., Schmidtlein S., Turner W., Wegmann M., Pettorelli N. Will remote sensing shape the next generation of species distribution models? Remote Sens Ecol Conserv. 2015;1 doi: 10.1002/rse2.7. DOI
Hortal J., Lobo J.M. An ED-based protocol for optimal sampling of biodiversity. Biodivers Conserv. 2005;14 doi: 10.1007/s10531-004-0224-z. DOI
Hunt M.L., Blackburn G.A., Siriwardena G.M., Carrasco L., Rowland C.S. Using satellite data to assess spatial drivers of bird diversity. Remote Sens Ecol Conserv. 2022 doi: 10.1002/rse2.322. PubMed DOI PMC
Lande R., Engen S., Saether B.-E. Stochastic Population Dynamics in Ecology and Conservation. Stochastic Population Dynamics in Ecology and Conservation. 2010 doi: 10.1093/acprof:oso/9780198525257.001.0001. DOI
Lausch A., Bannehr L., Beckmann M., Boehm C., Feilhauer H., Hacker J.M., Heurich M., Jung A., Klenke R., Neumann C., Pause M., Rocchini D., Schaepman M.E., Schmidtlein S., Schulz K., Selsam P., Settele J., Skidmore A.K., Cord A.F. Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecol Indic. 2016 doi: 10.1016/j.ecolind.2016.06.022. DOI
Leibold M.A., Chase J.M. Metacommunity Ecology, Volume 59. Metacommunity Ecology. 2017;59 doi: 10.2307/j.ctt1wf4d24. DOI
Levin N., Shmida A., Levanoni O., Tamari H., Kark S. Predicting mountain plant richness and rarity from space using satellite-derived vegetation indices. Divers Distrib. 2007;13 doi: 10.1111/j.1472-4642.2007.00372.x. DOI
Leyequien E., Verrelst J., Slot M., Schaepman-Strub G., Heitkönig I.M.A., Skidmore A. Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity. International Journal of Applied Earth Observation and Geoinformation. 2007 doi: 10.1016/j.jag.2006.08.002. DOI
Lindenmayer D.B., Cunningham R.B., Donnelly C.F., Nix H., Lindenmayer B.D. Effects of forest fragmentation on bird assemblages in a novel landscape context. Ecol Monogr. 2002;72 doi: 10.1890/0012-9615(2002)072[0001:EOFFOB]2.0.CO;2. DOI
Lopatin J., Dolos K., Hernández H.J., Galleguillos M., Fassnacht F.E. Comparing Generalized Linear Models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote Sens Environ. 2016;173 doi: 10.1016/j.rse.2015.11.029. DOI
Ludwig A., Doktor D., Feilhauer H. Is spectral pixel-to-pixel variation a reliable indicator of grassland biodiversity? A systematic assessment of the spectral variation hypothesis using spatial simulation experiments. Remote Sens Environ. 2024;302 doi: 10.1016/j.rse.2023.113988. DOI
Ma L., Li M., Ma X., Cheng L., Du P., Liu Y. A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing. 2017 doi: 10.1016/j.isprsjprs.2017.06.001. DOI
McGarigal K., Wan H.Y., Zeller K.A., Timm B.C., Cushman S.A. Multi-scale habitat selection modeling: a review and outlook. Landsc Ecol. 2016;31 doi: 10.1007/s10980-016-0374-x. DOI
Morelli F., Møller A.P., Nelson E., Benedetti Y., Liang W., Šímová P., Moretti M., Tryjanowski P. The common cuckoo is an effective indicator of high bird species richness in Asia and Europe. Sci Rep. 2017;7 doi: 10.1038/s41598-017-04794-3. PubMed DOI PMC
Morelli F., Benedetti Y., Šímová P. Landscape metrics as indicators of avian diversity and community measures. Ecol Indic. 2018;90 doi: 10.1016/j.ecolind.2018.03.011. DOI
Moudrý V., Šímová P. Influence of positional accuracy, sample size and scale on modelling species distributions: A review. International Journal of Geographical Information Science. 2012 doi: 10.1080/13658816.2012.721553. DOI
Moudrý V., Komárek J., Šímová P. Which breeding bird categories should we use in models of species distribution? Ecol Indic. 2017;74 doi: 10.1016/j.ecolind.2016.11.006. DOI
Moudrý V., Cord A.F., Gábor L., Laurin G.V., Barták V., Gdulová K., Malavasi M., Rocchini D., Stereńczak K., Prošek J., Klápště P., Wild J. Vegetation structure derived from airborne laser scanning to assess species distribution and habitat suitability: The way forward. Divers Distrib. 2023;29 doi: 10.1111/ddi.13644. DOI
Moudrý V., Keil P., Cord A.F., Gábor L., Lecours V., Zarzo-Arias A., Barták V., Malavasi M., Rocchini D., Torresani M., Gdulová K., Grattarola F., Leroy F., Marchetto E., Thouverai E., Prošek J., Wild J., Šímová P. Scale mismatches between predictor and response variables in species distribution modelling: A review of practices for appropriate grain selection. Prog Phys Geogr. 2023 doi: 10.1177/03091333231156362. DOI
Mpakairi K.S., Dube T., Dondofema F., Dalu T. Spatio–temporal variation of vegetation heterogeneity in groundwater dependent ecosystems within arid environments. Ecol Inform. 2022;69 doi: 10.1016/j.ecoinf.2022.101667. DOI
Muldavin E.H., Neville P., Harper G. Indices of grassland biodiversity in the Chihuahuan desert ecoregion derived from remote sensing. Conservation Biology. 2001;15 doi: 10.1046/j.1523-1739.2001.015004844.x. DOI
Naimi B. Uncertainty Analysis for Species Distribution Models; R- Cran: 2017. Package “usdm”.
Oeser J., Heurich M., Senf C., Pflugmacher D., Belotti E., Kuemmerle T. Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat. Remote Sens Ecol Conserv. 2020;6 doi: 10.1002/rse2.122. DOI
Oindo B.O., de By R.A., Skidmore A.K. Interannual variability of NDVI and bird species diversity in Kenya. International journal of applied earth observation and geoinformation. 2000;2(3–4):172–180.
Palmer, M.W., Earls, P.G., Hoagland, B.W., White, P.S., Wohlgemuth, T., 2002. Quantitative tools for perfecting species lists, in: Environmetrics. DOI: 10.1002/env.516.
Palmer M.W., Wohlgemuth T., Earls P., Arévalo J.R., Thompson S.D. In: Proceedings of the ILTER Regional Workshop: Cooperation in Long Term Ecological Research in Central and Eastern Europe Opportunities for long-term ecological research at the Tallgrass Prairie Preserve. Lajtha K., Vanderbilt K., editors. 2000. Opportunities for long-term ecological research at the Tallgrass Prairie Preserve, Oklahoma; pp. 123–128.
Panda B.P., Prusty B.A.K., Panda B., Pradhan A., Parida S.P. Habitat heterogeneity influences avian feeding guild composition in urban landscapes: evidence from Bhubaneswar. India. Ecol Process. 2021;10 doi: 10.1186/s13717-021-00304-6. DOI
Peres-Neto P.R., Legendre P., Dray S., Borcard D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology. 2006;87 doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2. PubMed DOI
Perrone P., Di Febbraro M., Conti L., Divíšek J., Chytrý M., Keil P., Conti M.L., Rocchini D., Torresani M., Moudrý V., Šímová P., Prajzlerová D., Müllerová J., Wild J., Malavasi M. The relationship between spectral and plant diversity: disentangling the influence of metrics and habitat types. Remote Sens Environ. 2022 doi: 10.1016/j.rse.2023.113591. DOI
Pettorelli N., Laurance W.F., O’Brien T.G., Wegmann M., Nagendra H., Turner W. Satellite remote sensing for applied ecologists: Opportunities and challenges. Journal of Applied Ecology. 2014 doi: 10.1111/1365-2664.12261. DOI
Plexida S.G., Sfougaris A.I., Ispikoudis I.P., Papanastasis V.P. Selecting landscape metrics as indicators of spatial heterogeneity-Acomparison among Greek landscapes. International Journal of Applied Earth Observation and Geoinformation. 2014;26 doi: 10.1016/j.jag.2013.05.001. DOI
R Core Team 2021 R: A language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org/. R Foundation for Statistical Computing 2.
Ribeiro I., Proença V., Serra P., Palma J., Domingo-Marimon C., Pons X., Domingos T. Remotely sensed indicators and open-access biodiversity data to assess bird diversity patterns in Mediterranean rural landscapes. Sci Rep. 2019;9 doi: 10.1038/s41598-019-43330-3. PubMed DOI PMC
Rocchini D. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sens Environ. 2007;111 doi: 10.1016/j.rse.2007.03.018. DOI
Rocchini D., Chiarucci A., Loiselle S.A. Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecologica. 2004;26 doi: 10.1016/j.actao.2004.03.008. DOI
Rocchini D., Balkenhol N., Carter G.A., Foody G.M., Gillespie T.W., He K.S., Kark S., Levin N., Lucas K., Luoto M., Nagendra H., Oldeland J., Ricotta C., Southworth J., Neteler M. Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecol Inform. 2010;5 doi: 10.1016/j.ecoinf.2010.06.001. DOI
Rocchini D., Dadalt L., Delucchi L., Neteler M., Palmer M.W. Disentangling the role of remotely sensed spectral heterogeneity as a proxy for North American plant species richness. Community Ecology. 2014;15 doi: 10.1556/ComEc.15.2014.1.4. DOI
Rocchini D., Luque S., Pettorelli N., Bastin L., Doktor D., Faedi N., Feilhauer H., Féret J.B., Foody G.M., Gavish Y., Godinho S., Kunin W.E., Lausch A., Leitão P.J., Marcantonio M., Neteler M., Ricotta C., Schmidtlein S., Vihervaara P., Wegmann M., Nagendra H. Measuring β-diversity by remote sensing: A challenge for biodiversity monitoring. Methods Ecol Evol. 2018;9 doi: 10.1111/2041-210X.12941. DOI
Rocchini D., Marcantonio M., Da Re D., Bacaro G., Feoli E., Foody G.M., Furrer R., Harrigan R.J., Kleijn D., Iannacito M., Lenoir J., Lin M., Malavasi M., Marchetto E., Meyer R.S., Moudry V., Schneider F.D., Šímová P., Thornhill A.H., Thouverai E., Vicario S., Wayne R.K., Ricotta C. From zero to infinity: Minimum to maximum diversity of the planet by spatio-parametric Rao’s quadratic entropy. Global Ecology and Biogeography. 2021;30 doi: 10.1111/geb.13270. DOI
Rocchini D., Thouverai E., Marcantonio M., Iannacito M., Da Re D., Torresani M., Bacaro G., Bazzichetto M., Bernardi A., Foody G.M., Furrer R., Kleijn D., Larsen S., Lenoir J., Malavasi M., Marchetto E., Messori F., Montaghi A., Moudrý V., Naimi B., Ricotta C., Rossini M., Santi F., Santos M.J., Schaepman M.E., Schneider F.D., Schuh L., Silvestri S., Ŝímová P., Skidmore A.K., Tattoni C., Tordoni E., Vicario S., Zannini P., Wegmann M. rasterdiv—An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back. Methods Ecol Evol. 2021;12 doi: 10.1111/2041-210X.13583. PubMed DOI PMC
Roth T., Weber D. Top predators as indicators for species richness? Prey species are just as useful. Journal of Applied Ecology. 2008;45 doi: 10.1111/j.1365-2664.2007.01435.x. DOI
Rugani B., Rocchini D. Boosting the use of spectral heterogeneity in the impact assessment of agricultural land use on biodiversity. J Clean Prod. 2017;140 doi: 10.1016/j.jclepro.2016.09.018. DOI
Schindler S., Von Wehrden H., Poirazidis K., Wrbka T., Kati V. Multiscale performance of landscape metrics as indicators of species richness of plants, insects and vertebrates. Ecol Indic. 2013;31 doi: 10.1016/j.ecolind.2012.04.012. DOI
Schindler S., von Wehrden H., Poirazidis K., Hochachka W.M., Wrbka T., Kati V. Performance of methods to select landscape metrics for modelling species richness. Ecol Modell. 2015;295 doi: 10.1016/j.ecolmodel.2014.05.012. DOI
Schmidtlein S., Fassnacht F.E. The spectral variability hypothesis does not hold across landscapes. Remote Sens Environ. 2017;192 doi: 10.1016/j.rse.2017.01.036. DOI
Shao G., Wu J. On the accuracy of landscape pattern analysis using remote sensing data. Landsc Ecol. 2008 doi: 10.1007/s10980-008-9215-x. DOI
Sheeren D., Bonthoux S., Balent G. Modeling bird communities using unclassified remote sensing imagery: Effects of the spatial resolution and data period. Ecol Indic. 2014;43 doi: 10.1016/j.ecolind.2014.02.023. DOI
Šímová P., Gdulová K. Landscape indices behavior: A review of scale effects. Applied Geography. 2012 doi: 10.1016/j.apgeog.2012.01.003. DOI
Šímová P., Moudrý V., Komárek J., Hrach K., Fortin M.J. Fine scale waterbody data improve prediction of waterbird occurrence despite coarse species data. Ecography. 2019;42 doi: 10.1111/ecog.03724. DOI
Šťastný K., Bejček V., Mikuláš I., Telenský T. Aventinum; 2021. Atlas hnízdního rozšíření ptáků v České republice; pp. 2014–2017.
Stein A., Gerstner K., Kreft H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett. 2014 doi: 10.1111/ele.12277. PubMed DOI
St-Louis V., Pidgeon A.M., Kuemmerle T., Sonnenschein R., Radeloff V.C., Clayton M.K., Locke B.A., Bash D., Hostert P. Modelling avian biodiversity using raw, unclassified satellite imagery. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369 doi: 10.1098/rstb.2013.0197. PubMed DOI PMC
Tang J., Wang L., Myint S.W. Improving urban classification through fuzzy supervised classification and spectral mixture analysis. Int J Remote Sens. 2007;28 doi: 10.1080/01431160701227687. DOI
Torresani, M., Rocchini, D., Zebisch, M., Sonnenschein, R., & Tonon, G. (2018). Testing the spectral variation hypothesis by using the Rao-Q index to estimate forest biodiversity: Effect of spatial resolution. International Geoscience and Remote Sensing Symposium (IGARSS), 2018-July. DOI: 10.1109/igarss.2018.8666630.
Torresani M., Rocchini D., Sonnenschein R., Zebisch M., Marcantonio M., Ricotta C., Tonon G. Estimating tree species diversity from space in an alpine conifer forest: The Rao’s Q diversity index meets the spectral variation hypothesis. Ecol Inform. 2019;52 doi: 10.1016/j.ecoinf.2019.04.001. DOI
Tuanmu M.N., Jetz W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography. 2015;24 doi: 10.1111/geb.12365. DOI
Ustin S.L., Gamon J.A. Remote sensing of plant functional types. New Phytologist. 2010 doi: 10.1111/j.1469-8137.2010.03284.x. PubMed DOI
Walz U. Landscape structure, landscape metrics and biodiversity. Living Reviews in Landscape Research. 2011;5 doi: 10.12942/lrlr-2011-3. DOI
Wang R., Gamon J.A. Remote sensing of terrestrial plant biodiversity. Remote Sens Environ. 2019;231 doi: 10.1016/j.rse.2019.111218. DOI
Warren S.D., Alt M., Olson K.D., Irl S.D.H., Steinbauer M.J., Jentsch A. The relationship between the spectral diversity of satellite imagery, habitat heterogeneity, and plant species richness. Ecol Inform. 2014;24 doi: 10.1016/j.ecoinf.2014.08.006. DOI
Wood E.M., Pidgeon A.M., Radeloff V.C., Keuler N.S. Image Texture Predicts Avian Density and Species Richness. PLoS One. 2013;8 doi: 10.1371/journal.pone.0063211. PubMed DOI PMC
Xue J., Su B. Significant remote sensing vegetation indices: A review of developments and applications. J Sens. 2017 doi: 10.1155/2017/1353691. DOI
Zhang R., Zhu D. Study of land cover classification based on knowledge rules using high-resolution remote sensing images. Expert Syst Appl. 2011;38 doi: 10.1016/j.eswa.2010.09.019. DOI
Zitske B.P., Betts M.G., Diamond A.W. Negative Effects of Habitat Loss on Survival of Migrant Warblers in a Forest Mosaic. Conservation Biology. 2011;25 doi: 10.1111/j.1523-1739.2011.01709.x. PubMed DOI
Zizka A., Antonelli A., Silvestro D. sampbias, a method for quantifying geographic sampling biases in species distribution data. Ecography. 2021;44 doi: 10.1111/ecog.05102. DOI