The relationship between remotely-sensed spectral heterogeneity and bird diversity is modulated by landscape type

. 2024 Apr ; 128 () : 103763.

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38605982
Odkazy

PubMed 38605982
PubMed Central PMC11004726
DOI 10.1016/j.jag.2024.103763
PII: S1569-8432(24)00117-1
Knihovny.cz E-zdroje

To identify areas of high biodiversity and prioritize conservation efforts, it is crucial to understand the drivers of species richness patterns and their scale dependence. While classified land cover products are commonly used to explain bird species richness, recent studies suggest that unclassified remote-sensed images can provide equally good or better results. In our study, we aimed to investigate whether unclassified multispectral data from Landsat 8 can replace image classification for bird diversity modeling. Moreover, we also tested the Spectral Variability Hypothesis. Using the Atlas of Breeding Birds in the Czech Republic 2014-2017, we modeled species richness at two spatial resolutions of approx. 131 km2 (large squares) and 8 km2 (small squares). As predictors of the richness, we assessed 1) classified land cover data (Corine Land Cover 2018 database), 2) spectral heterogeneity (computed in three ways) and landscape composition derived from unclassified remote-sensed reflectance and vegetation indices. Furthermore, we integrated information about the landscape types (expressed by the most prevalent land cover class) into models based on unclassified remote-sensed data to investigate whether the landscape type plays a role in explaining bird species richness. We found that unclassified remote-sensed data, particularly spectral heterogeneity metrics, were better predictors of bird species richness than classified land cover data. The best results were achieved by models that included interactions between the unclassified data and landscape types, indicating that relationships between bird diversity and spectral heterogeneity vary across landscape types. Our findings demonstrate that spectral heterogeneity derived from unclassified multispectral data is effective for assessing bird diversity across the Czech Republic. When explaining bird species richness, it is important to account for the type of landscape and carefully consider the significance of the chosen spatial scale.

Zobrazit více v PubMed

Adler K., Jedicke E. Landscape metrics as indicators of avian community structures – A state of the art review. Ecol Indic. 2022 doi: 10.1016/j.ecolind.2022.109575. DOI

Akaike H. A new look at the statistical model identification. IEEE transactions on automatic control. 1974;19(6):716–723.

Aybar C., Wu Q., Bautista L., Yali R., Barja A. rgee: An R package for interacting with Google Earth Engine. J Open Source Softw. 2020;5 doi: 10.21105/joss.02272. DOI

Bannari A., Morin D., Bonn F., Huete A.R. A review of vegetation indices - Remote Sensing Reviews. Remote Sensing Reviews. 1995;13

Basile M., Storch I., Mikusiński G. Abundance, species richness and diversity of forest bird assemblages – The relative importance of habitat structures and landscape context. Ecol Indic. 2021;133 doi: 10.1016/j.ecolind.2021.108402. DOI

Betts M.G., Forbes G.J., Diamond A.W. Thresholds in songbird occurrence in relation to landscape structure. Conservation Biology. 2007;21 doi: 10.1111/j.1523-1739.2007.00723.x. PubMed DOI

Billeter R., Liira J., Bailey D., Bugter R., Arens P., Augenstein I., Aviron S., Baudry J., Bukacek R., Burel F., Cerny M., De Blust G., De Cock R., Diekötter T., Dietz H., Dirksen J., Dormann C., Durka W., Frenzel M., Hamersky R., Hendrickx F., Herzog F., Klotz S., Koolstra B., Lausch A., Le Coeur D., Maelfait J.P., Opdam P., Roubalova M., Schermann A., Schermann N., Schmidt T., Schweiger O., Smulders M.J.M., Speelmans M., Simova P., Verboom J., Van Wingerden W.K.R.E., Zobel M., Edwards P.J. Indicators for biodiversity in agricultural landscapes: A pan-European study. Journal of Applied Ecology. 2008;45 doi: 10.1111/j.1365-2664.2007.01393.x. DOI

Bino G., Levin N., Darawshi S., Van Der Hal N., Reich-Solomon A., Kark S. Accurate prediction of bird species richness patterns in an urban environment using Landsat-derived NDVI and spectral unmixing. Int J Remote Sens. 2008;29 doi: 10.1080/01431160701772534. DOI

Borcard D., Legendre P., Drapeau P. Partialling out the spatial component of ecological variation. Ecology. 1992;73 doi: 10.2307/1940179. DOI

Bradley B.A., Fleishman E. Can remote sensing of land cover improve species distribution modelling? J Biogeogr. 2008 doi: 10.1111/j.1365-2699.2008.01928.x. DOI

Carrete M., Grande J.M., Tella J.L., Sánchez-Zapata J.A., Donázar J.A., Díaz-Delgado R., Romo A. Habitat, human pressure, and social behavior: Partialling out factors affecting large-scale territory extinction in an endangered vulture. Biol Conserv. 2007;136 doi: 10.1016/j.biocon.2006.11.025. DOI

Chen J., Chen J., Liao A., Cao X., Chen L., Chen X., He C., Han G., Peng S., Lu M., Zhang W., Tong X., Mills J. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing. 2015;103 doi: 10.1016/j.isprsjprs.2014.09.002. DOI

Cooper W.J., McShea W.J., Forrester T., Luther D.A. The value of local habitat heterogeneity and productivity when estimating avian species richness and species of concern. Ecosphere. 2020;11 doi: 10.1002/ecs2.3107. DOI

Coops N.C., Wulder M.A. Breaking the Habit(at) Trends Ecol Evol. 2019 doi: 10.1016/j.tree.2019.04.013. PubMed DOI

Culbert P.D., Radeloff V.C., St-Louis V., Flather C.H., Rittenhouse C.D., Albright T.P., Pidgeon A.M. Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image texture. Remote Sens Environ. 2012;118 doi: 10.1016/j.rse.2011.11.004. DOI

Duro D.C., Girard J., King D.J., Fahrig L., Mitchell S., Lindsay K., Tischendorf L. Predicting species diversity in agricultural environments using Landsat TM imagery. Remote Sens Environ. 2014;144 doi: 10.1016/j.rse.2014.01.001. DOI

Engemann K., Enquist B.J., Sandel B., Boyle B., Jørgensen P.M., Morueta-Holme N., Peet R.K., Violle C., Svenning J.C. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot. Ecol Evol. 2015;5 doi: 10.1002/ece3.1405. PubMed DOI PMC

Farwell L.S., Elsen P.R., Razenkova E., Pidgeon A.M., Radeloff V.C. Habitat heterogeneity captured by 30-m resolution satellite image texture predicts bird richness across the United States. Ecological Applications. 2020;30 doi: 10.1002/eap.2157. PubMed DOI

Farwell L.S., Gudex-Cross D., Anise I.E., Bosch M.J., Olah A.M., Radeloff V.C., Razenkova E., Rogova N., Silveira E.M.O., Smith M.M., Pidgeon A.M. Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness. Remote Sens Environ. 2021;253 doi: 10.1016/j.rse.2020.112175. DOI

Field R., Hawkins B.A., Cornell H.V., Currie D.J., Diniz-Filho J.A.F., Guégan J.F., Kaufman D.M., Kerr J.T., Mittelbach G.G., Oberdorff T., O’Brien E.M., Turner J.R.G. Spatial species-richness gradients across scales: A meta-analysis. J Biogeogr. 2009;36 doi: 10.1111/j.1365-2699.2008.01963.x. DOI

Foody G.M., Cutler M.E.J. Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing. J Biogeogr. 2003;30 doi: 10.1046/j.1365-2699.2003.00887.x. DOI

Gholizadeh H., Gamon J.A., Zygielbaum A.I., Wang R., Schweiger A.K., Cavender-Bares J. Remote sensing of biodiversity: Soil correction and data dimension reduction methods improve assessment of α-diversity (species richness) in prairie ecosystems. Remote Sens Environ. 2018;206 doi: 10.1016/j.rse.2017.12.014. DOI

Gillespie T.W., Foody G.M., Giorgi A.P. Measuring and Modelling Biodiversity from Space Progress in Physical Geography. Prog Phys Geogr. 2008;32

Goetz S.J., Steinberg D., Betts M.G., Holmes R.T., Doran P.J., Dubayah R., Hofton M. Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology. 2010;91 doi: 10.1890/09-1670.1. PubMed DOI

Gómez C., White J.C., Wulder M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing. 2016 doi: 10.1016/j.isprsjprs.2016.03.008. DOI

Gong P., Wang J., Yu L., Zhao Y., Zhao Y., Liang L., Niu Z., Huang X., Fu H., Liu S., Li C., Li X., Fu W., Liu C., Xu Y., Wang X., Cheng Q., Hu L., Yao W., Zhang H., Zhu P., Zhao Z., Zhang H., Zheng Y., Ji L., Zhang Y., Chen H., Yan A., Guo J., Yu L., Wang L., Liu X., Shi T., Zhu M., Chen Y., Yang G., Tang P., Xu B., Giri C., Clinton N., Zhu Z., Chen J., Chen Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int J Remote Sens. Jun 2013;34 doi: 10.1080/01431161.2012.748992. DOI

Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ. 2017;202 doi: 10.1016/j.rse.2017.06.031. DOI

Gottschalk T.K., Huettmann F., Ehlers M. Thirty years of analysing and modelling avian habitat relationships using satellite imagery data: A review. Int J Remote Sens. 2005 doi: 10.1080/01431160512331338041. DOI

Hagemeijer W.J., Blair M.J. Poyser; London: 1997. The EBCC atlas of European breeding birds; p. 479.

Hall K., Johansson L.J., Sykes M.T., Reitalu T., Larsson K., Prentice H.C. Inventorying management status and plant species richness in seminatural grasslands using high spatial resolution imagery. Appl Veg Sci. 2010;13 doi: 10.1111/j.1654-109X.2009.01063.x. DOI

Hanski I. Spatially realistic theory of metapopulation ecology. Naturwissenschaften. 2001 doi: 10.1007/s001140100246. PubMed DOI

He K.S., Bradley B.A., Cord A.F., Rocchini D., Tuanmu M.N., Schmidtlein S., Turner W., Wegmann M., Pettorelli N. Will remote sensing shape the next generation of species distribution models? Remote Sens Ecol Conserv. 2015;1 doi: 10.1002/rse2.7. DOI

Hortal J., Lobo J.M. An ED-based protocol for optimal sampling of biodiversity. Biodivers Conserv. 2005;14 doi: 10.1007/s10531-004-0224-z. DOI

Hunt M.L., Blackburn G.A., Siriwardena G.M., Carrasco L., Rowland C.S. Using satellite data to assess spatial drivers of bird diversity. Remote Sens Ecol Conserv. 2022 doi: 10.1002/rse2.322. PubMed DOI PMC

Lande R., Engen S., Saether B.-E. Stochastic Population Dynamics in Ecology and Conservation. Stochastic Population Dynamics in Ecology and Conservation. 2010 doi: 10.1093/acprof:oso/9780198525257.001.0001. DOI

Lausch A., Bannehr L., Beckmann M., Boehm C., Feilhauer H., Hacker J.M., Heurich M., Jung A., Klenke R., Neumann C., Pause M., Rocchini D., Schaepman M.E., Schmidtlein S., Schulz K., Selsam P., Settele J., Skidmore A.K., Cord A.F. Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecol Indic. 2016 doi: 10.1016/j.ecolind.2016.06.022. DOI

Leibold M.A., Chase J.M. Metacommunity Ecology, Volume 59. Metacommunity Ecology. 2017;59 doi: 10.2307/j.ctt1wf4d24. DOI

Levin N., Shmida A., Levanoni O., Tamari H., Kark S. Predicting mountain plant richness and rarity from space using satellite-derived vegetation indices. Divers Distrib. 2007;13 doi: 10.1111/j.1472-4642.2007.00372.x. DOI

Leyequien E., Verrelst J., Slot M., Schaepman-Strub G., Heitkönig I.M.A., Skidmore A. Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity. International Journal of Applied Earth Observation and Geoinformation. 2007 doi: 10.1016/j.jag.2006.08.002. DOI

Lindenmayer D.B., Cunningham R.B., Donnelly C.F., Nix H., Lindenmayer B.D. Effects of forest fragmentation on bird assemblages in a novel landscape context. Ecol Monogr. 2002;72 doi: 10.1890/0012-9615(2002)072[0001:EOFFOB]2.0.CO;2. DOI

Lopatin J., Dolos K., Hernández H.J., Galleguillos M., Fassnacht F.E. Comparing Generalized Linear Models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote Sens Environ. 2016;173 doi: 10.1016/j.rse.2015.11.029. DOI

Ludwig A., Doktor D., Feilhauer H. Is spectral pixel-to-pixel variation a reliable indicator of grassland biodiversity? A systematic assessment of the spectral variation hypothesis using spatial simulation experiments. Remote Sens Environ. 2024;302 doi: 10.1016/j.rse.2023.113988. DOI

Ma L., Li M., Ma X., Cheng L., Du P., Liu Y. A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing. 2017 doi: 10.1016/j.isprsjprs.2017.06.001. DOI

McGarigal K., Wan H.Y., Zeller K.A., Timm B.C., Cushman S.A. Multi-scale habitat selection modeling: a review and outlook. Landsc Ecol. 2016;31 doi: 10.1007/s10980-016-0374-x. DOI

Morelli F., Møller A.P., Nelson E., Benedetti Y., Liang W., Šímová P., Moretti M., Tryjanowski P. The common cuckoo is an effective indicator of high bird species richness in Asia and Europe. Sci Rep. 2017;7 doi: 10.1038/s41598-017-04794-3. PubMed DOI PMC

Morelli F., Benedetti Y., Šímová P. Landscape metrics as indicators of avian diversity and community measures. Ecol Indic. 2018;90 doi: 10.1016/j.ecolind.2018.03.011. DOI

Moudrý V., Šímová P. Influence of positional accuracy, sample size and scale on modelling species distributions: A review. International Journal of Geographical Information Science. 2012 doi: 10.1080/13658816.2012.721553. DOI

Moudrý V., Komárek J., Šímová P. Which breeding bird categories should we use in models of species distribution? Ecol Indic. 2017;74 doi: 10.1016/j.ecolind.2016.11.006. DOI

Moudrý V., Cord A.F., Gábor L., Laurin G.V., Barták V., Gdulová K., Malavasi M., Rocchini D., Stereńczak K., Prošek J., Klápště P., Wild J. Vegetation structure derived from airborne laser scanning to assess species distribution and habitat suitability: The way forward. Divers Distrib. 2023;29 doi: 10.1111/ddi.13644. DOI

Moudrý V., Keil P., Cord A.F., Gábor L., Lecours V., Zarzo-Arias A., Barták V., Malavasi M., Rocchini D., Torresani M., Gdulová K., Grattarola F., Leroy F., Marchetto E., Thouverai E., Prošek J., Wild J., Šímová P. Scale mismatches between predictor and response variables in species distribution modelling: A review of practices for appropriate grain selection. Prog Phys Geogr. 2023 doi: 10.1177/03091333231156362. DOI

Mpakairi K.S., Dube T., Dondofema F., Dalu T. Spatio–temporal variation of vegetation heterogeneity in groundwater dependent ecosystems within arid environments. Ecol Inform. 2022;69 doi: 10.1016/j.ecoinf.2022.101667. DOI

Muldavin E.H., Neville P., Harper G. Indices of grassland biodiversity in the Chihuahuan desert ecoregion derived from remote sensing. Conservation Biology. 2001;15 doi: 10.1046/j.1523-1739.2001.015004844.x. DOI

Naimi B. Uncertainty Analysis for Species Distribution Models; R- Cran: 2017. Package “usdm”.

Oeser J., Heurich M., Senf C., Pflugmacher D., Belotti E., Kuemmerle T. Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat. Remote Sens Ecol Conserv. 2020;6 doi: 10.1002/rse2.122. DOI

Oindo B.O., de By R.A., Skidmore A.K. Interannual variability of NDVI and bird species diversity in Kenya. International journal of applied earth observation and geoinformation. 2000;2(3–4):172–180.

Palmer, M.W., Earls, P.G., Hoagland, B.W., White, P.S., Wohlgemuth, T., 2002. Quantitative tools for perfecting species lists, in: Environmetrics. DOI: 10.1002/env.516.

Palmer M.W., Wohlgemuth T., Earls P., Arévalo J.R., Thompson S.D. In: Proceedings of the ILTER Regional Workshop: Cooperation in Long Term Ecological Research in Central and Eastern Europe Opportunities for long-term ecological research at the Tallgrass Prairie Preserve. Lajtha K., Vanderbilt K., editors. 2000. Opportunities for long-term ecological research at the Tallgrass Prairie Preserve, Oklahoma; pp. 123–128.

Panda B.P., Prusty B.A.K., Panda B., Pradhan A., Parida S.P. Habitat heterogeneity influences avian feeding guild composition in urban landscapes: evidence from Bhubaneswar. India. Ecol Process. 2021;10 doi: 10.1186/s13717-021-00304-6. DOI

Peres-Neto P.R., Legendre P., Dray S., Borcard D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology. 2006;87 doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2. PubMed DOI

Perrone P., Di Febbraro M., Conti L., Divíšek J., Chytrý M., Keil P., Conti M.L., Rocchini D., Torresani M., Moudrý V., Šímová P., Prajzlerová D., Müllerová J., Wild J., Malavasi M. The relationship between spectral and plant diversity: disentangling the influence of metrics and habitat types. Remote Sens Environ. 2022 doi: 10.1016/j.rse.2023.113591. DOI

Pettorelli N., Laurance W.F., O’Brien T.G., Wegmann M., Nagendra H., Turner W. Satellite remote sensing for applied ecologists: Opportunities and challenges. Journal of Applied Ecology. 2014 doi: 10.1111/1365-2664.12261. DOI

Plexida S.G., Sfougaris A.I., Ispikoudis I.P., Papanastasis V.P. Selecting landscape metrics as indicators of spatial heterogeneity-Acomparison among Greek landscapes. International Journal of Applied Earth Observation and Geoinformation. 2014;26 doi: 10.1016/j.jag.2013.05.001. DOI

R Core Team 2021 R: A language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org/. R Foundation for Statistical Computing 2.

Ribeiro I., Proença V., Serra P., Palma J., Domingo-Marimon C., Pons X., Domingos T. Remotely sensed indicators and open-access biodiversity data to assess bird diversity patterns in Mediterranean rural landscapes. Sci Rep. 2019;9 doi: 10.1038/s41598-019-43330-3. PubMed DOI PMC

Rocchini D. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sens Environ. 2007;111 doi: 10.1016/j.rse.2007.03.018. DOI

Rocchini D., Chiarucci A., Loiselle S.A. Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecologica. 2004;26 doi: 10.1016/j.actao.2004.03.008. DOI

Rocchini D., Balkenhol N., Carter G.A., Foody G.M., Gillespie T.W., He K.S., Kark S., Levin N., Lucas K., Luoto M., Nagendra H., Oldeland J., Ricotta C., Southworth J., Neteler M. Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecol Inform. 2010;5 doi: 10.1016/j.ecoinf.2010.06.001. DOI

Rocchini D., Dadalt L., Delucchi L., Neteler M., Palmer M.W. Disentangling the role of remotely sensed spectral heterogeneity as a proxy for North American plant species richness. Community Ecology. 2014;15 doi: 10.1556/ComEc.15.2014.1.4. DOI

Rocchini D., Luque S., Pettorelli N., Bastin L., Doktor D., Faedi N., Feilhauer H., Féret J.B., Foody G.M., Gavish Y., Godinho S., Kunin W.E., Lausch A., Leitão P.J., Marcantonio M., Neteler M., Ricotta C., Schmidtlein S., Vihervaara P., Wegmann M., Nagendra H. Measuring β-diversity by remote sensing: A challenge for biodiversity monitoring. Methods Ecol Evol. 2018;9 doi: 10.1111/2041-210X.12941. DOI

Rocchini D., Marcantonio M., Da Re D., Bacaro G., Feoli E., Foody G.M., Furrer R., Harrigan R.J., Kleijn D., Iannacito M., Lenoir J., Lin M., Malavasi M., Marchetto E., Meyer R.S., Moudry V., Schneider F.D., Šímová P., Thornhill A.H., Thouverai E., Vicario S., Wayne R.K., Ricotta C. From zero to infinity: Minimum to maximum diversity of the planet by spatio-parametric Rao’s quadratic entropy. Global Ecology and Biogeography. 2021;30 doi: 10.1111/geb.13270. DOI

Rocchini D., Thouverai E., Marcantonio M., Iannacito M., Da Re D., Torresani M., Bacaro G., Bazzichetto M., Bernardi A., Foody G.M., Furrer R., Kleijn D., Larsen S., Lenoir J., Malavasi M., Marchetto E., Messori F., Montaghi A., Moudrý V., Naimi B., Ricotta C., Rossini M., Santi F., Santos M.J., Schaepman M.E., Schneider F.D., Schuh L., Silvestri S., Ŝímová P., Skidmore A.K., Tattoni C., Tordoni E., Vicario S., Zannini P., Wegmann M. rasterdiv—An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back. Methods Ecol Evol. 2021;12 doi: 10.1111/2041-210X.13583. PubMed DOI PMC

Roth T., Weber D. Top predators as indicators for species richness? Prey species are just as useful. Journal of Applied Ecology. 2008;45 doi: 10.1111/j.1365-2664.2007.01435.x. DOI

Rugani B., Rocchini D. Boosting the use of spectral heterogeneity in the impact assessment of agricultural land use on biodiversity. J Clean Prod. 2017;140 doi: 10.1016/j.jclepro.2016.09.018. DOI

Schindler S., Von Wehrden H., Poirazidis K., Wrbka T., Kati V. Multiscale performance of landscape metrics as indicators of species richness of plants, insects and vertebrates. Ecol Indic. 2013;31 doi: 10.1016/j.ecolind.2012.04.012. DOI

Schindler S., von Wehrden H., Poirazidis K., Hochachka W.M., Wrbka T., Kati V. Performance of methods to select landscape metrics for modelling species richness. Ecol Modell. 2015;295 doi: 10.1016/j.ecolmodel.2014.05.012. DOI

Schmidtlein S., Fassnacht F.E. The spectral variability hypothesis does not hold across landscapes. Remote Sens Environ. 2017;192 doi: 10.1016/j.rse.2017.01.036. DOI

Shao G., Wu J. On the accuracy of landscape pattern analysis using remote sensing data. Landsc Ecol. 2008 doi: 10.1007/s10980-008-9215-x. DOI

Sheeren D., Bonthoux S., Balent G. Modeling bird communities using unclassified remote sensing imagery: Effects of the spatial resolution and data period. Ecol Indic. 2014;43 doi: 10.1016/j.ecolind.2014.02.023. DOI

Šímová P., Gdulová K. Landscape indices behavior: A review of scale effects. Applied Geography. 2012 doi: 10.1016/j.apgeog.2012.01.003. DOI

Šímová P., Moudrý V., Komárek J., Hrach K., Fortin M.J. Fine scale waterbody data improve prediction of waterbird occurrence despite coarse species data. Ecography. 2019;42 doi: 10.1111/ecog.03724. DOI

Šťastný K., Bejček V., Mikuláš I., Telenský T. Aventinum; 2021. Atlas hnízdního rozšíření ptáků v České republice; pp. 2014–2017.

Stein A., Gerstner K., Kreft H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett. 2014 doi: 10.1111/ele.12277. PubMed DOI

St-Louis V., Pidgeon A.M., Kuemmerle T., Sonnenschein R., Radeloff V.C., Clayton M.K., Locke B.A., Bash D., Hostert P. Modelling avian biodiversity using raw, unclassified satellite imagery. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369 doi: 10.1098/rstb.2013.0197. PubMed DOI PMC

Tang J., Wang L., Myint S.W. Improving urban classification through fuzzy supervised classification and spectral mixture analysis. Int J Remote Sens. 2007;28 doi: 10.1080/01431160701227687. DOI

Torresani, M., Rocchini, D., Zebisch, M., Sonnenschein, R., & Tonon, G. (2018). Testing the spectral variation hypothesis by using the Rao-Q index to estimate forest biodiversity: Effect of spatial resolution. International Geoscience and Remote Sensing Symposium (IGARSS), 2018-July. DOI: 10.1109/igarss.2018.8666630.

Torresani M., Rocchini D., Sonnenschein R., Zebisch M., Marcantonio M., Ricotta C., Tonon G. Estimating tree species diversity from space in an alpine conifer forest: The Rao’s Q diversity index meets the spectral variation hypothesis. Ecol Inform. 2019;52 doi: 10.1016/j.ecoinf.2019.04.001. DOI

Tuanmu M.N., Jetz W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography. 2015;24 doi: 10.1111/geb.12365. DOI

Ustin S.L., Gamon J.A. Remote sensing of plant functional types. New Phytologist. 2010 doi: 10.1111/j.1469-8137.2010.03284.x. PubMed DOI

Walz U. Landscape structure, landscape metrics and biodiversity. Living Reviews in Landscape Research. 2011;5 doi: 10.12942/lrlr-2011-3. DOI

Wang R., Gamon J.A. Remote sensing of terrestrial plant biodiversity. Remote Sens Environ. 2019;231 doi: 10.1016/j.rse.2019.111218. DOI

Warren S.D., Alt M., Olson K.D., Irl S.D.H., Steinbauer M.J., Jentsch A. The relationship between the spectral diversity of satellite imagery, habitat heterogeneity, and plant species richness. Ecol Inform. 2014;24 doi: 10.1016/j.ecoinf.2014.08.006. DOI

Wood E.M., Pidgeon A.M., Radeloff V.C., Keuler N.S. Image Texture Predicts Avian Density and Species Richness. PLoS One. 2013;8 doi: 10.1371/journal.pone.0063211. PubMed DOI PMC

Xue J., Su B. Significant remote sensing vegetation indices: A review of developments and applications. J Sens. 2017 doi: 10.1155/2017/1353691. DOI

Zhang R., Zhu D. Study of land cover classification based on knowledge rules using high-resolution remote sensing images. Expert Syst Appl. 2011;38 doi: 10.1016/j.eswa.2010.09.019. DOI

Zitske B.P., Betts M.G., Diamond A.W. Negative Effects of Habitat Loss on Survival of Migrant Warblers in a Forest Mosaic. Conservation Biology. 2011;25 doi: 10.1111/j.1523-1739.2011.01709.x. PubMed DOI

Zizka A., Antonelli A., Silvestro D. sampbias, a method for quantifying geographic sampling biases in species distribution data. Ecography. 2021;44 doi: 10.1111/ecog.05102. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace