The Spectral Species Concept in Living Color
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36247363
PubMed Central
PMC9539608
DOI
10.1029/2022jg007026
PII: JGRG22303
Knihovny.cz E-zdroje
- Klíčová slova
- airborne sensors, biodiversity, ecoinformatics, hyperspectral images, plant optical types, remote sensing, satellite imagery, vegetation communities,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biodiversity monitoring is an almost inconceivable challenge at the scale of the entire Earth. The current (and soon to be flown) generation of spaceborne and airborne optical sensors (i.e., imaging spectrometers) can collect detailed information at unprecedented spatial, temporal, and spectral resolutions. These new data streams are preceded by a revolution in modeling and analytics that can utilize the richness of these datasets to measure a wide range of plant traits, community composition, and ecosystem functions. At the heart of this framework for monitoring plant biodiversity is the idea of remotely identifying species by making use of the 'spectral species' concept. In theory, the spectral species concept can be defined as a species characterized by a unique spectral signature and thus remotely detectable within pixel units of a spectral image. In reality, depending on spatial resolution, pixels may contain several species which renders species-specific assignment of spectral information more challenging. The aim of this paper is to review the spectral species concept and relate it to underlying ecological principles, while also discussing the complexities, challenges and opportunities to apply this concept given current and future scientific advances in remote sensing.
Azim Premji University PES Institute of Technology Campus Bangalore India
Biogeography BayCEER University of Bayreuth Bayreuth Germany
Center for Global Discovery and Conservation Science Arizona State University Tempe AZ USA
Department of Biological Sciences Murray State University Murray KY USA
Department of Biology Ecoinformatics and Biodiversity Aarhus University Aarhus C Denmark
Department of Chemistry Physics Mathematics and Natural Sciences University of Sassari Sassari Italy
Department of Earth and Environmental Science Macquarie University Sydney NSW Australia
Department of Environmental Biology University of Rome La Sapienza Rome Italy
Department of Forest and Wildlife Ecology University of Wisconsin Madison WI USA
Department of Geography Remote Sensing Laboratories University of Zurich Zurich Switzerland
Department of Geography University of California Los Angeles Los Angeles CA USA
Department of Geography University of Zurich Zurich Switzerland
Department of Land Air and Water Resources University of California Davis Davis CA USA
Department of Remote Sensing University of Wuerzburg Wuerzburg Germany
Earth Science Division NASA Headquarters Washington DC USA
Geography Department Humboldt Universität zu Berlin Berlin Germany
Institute of Geography and Geoecology Karlsruhe Institute of Technology Karlsruhe Germany
NASA Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
Natural Environment Centre Finnish Environment Institute Helsinki Finland
Plant Ecology and Nature Conservation Group Wageningen University Wageningen The Netherlands
Remote Sensing Center for Earth System Research University of Leipzig Leipzig Germany
School of Geography University of Nottingham University Park Nottingham UK
UMR TETIS IRSTEA Montpellier Maison de la Télédétection Montpellier Cedex 5 France
Zobrazit více v PubMed
Andrew, M. E. , & Ustin, S. L. (2008). The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sensing of Environment, 112, 4301–4317. 10.1016/j.rse.2008.07.016 DOI
Asner, G. P. , Knapp, D. E. , Kennedy‐Bowdoin, T. , Jones, M. O. , Martin, R. E. , Boardman, J. , & Hughes, R. F. (2008). Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. Remote Sensing of Environment, 112, 1942–1955. 10.1016/j.rse.2007.11.016 DOI
Asner, G. P. , & Martin, R. E. (2008). Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sensing of Environment, 112, 3958–3970. 10.1016/j.rse.2008.07.003 DOI
Asner, G. P. , & Martin, R. E. (2016). Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Global Ecology and Conservation, 8, 212–219. 10.1016/j.gecco.2016.09.010 DOI
Asner, G. P. , Martin, R. E. , Anderson, C. B. , & Knapp, D. E. (2015). Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sensing of Environment, 158, 15–27. 10.1016/j.rse.2014.11.011 DOI
Asner, G. P. , Martin, R. E. , Knapp, D. E. , Tupayachi, R. , Anderson, C. B. , Sinca, F. , et al. (2017). Airborne laser‐guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 355, 385–389. 10.1126/science.aaj1987 PubMed DOI
Baldeck, C. A. , Colgan, M. S. , Féret, J. B. , Levick, S. R. , Martin, R. E. , & Asner, G. P. (2014). Landsape‐scale variation in plant community composition of an African savanna from airborne species mapping. Ecological Applications, 24, 84–93. 10.1890/13-0307.1 PubMed DOI
Baret, F. , Vanderbilt, V. C. , Steven, M. D. , & Jacquemoud, S. (1994). Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical properties. Remote Sensing of Environment, 48, 253–260. 10.1016/0034-4257(94)90146-5 DOI
Bergen, K. M. , Goetz, S. J. , Dubayah, R. O. , Henebry, G. M. , Imhoff, M. L. , Nelson, R. F. , et al. (2009). Remote sensing of vegetation 3‐D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions. Journal of Geophysical Research, 114, G00E06. 10.1029/2008jg000883 DOI
Blonder, B. , Graae, B. J. , Greer, B. , Haagsma, M. , Helsen, K. , Kapás, R. E. , et al. (2020). Remote sensing of ploidy level in quaking aspen (Populus tremuloides Michx.). Journal of Ecology, 108, 175–188. 10.1111/1365-2745.13296 DOI
Cawse‐Nicholson, K. , Townsend, P. A. , Schimel, D. , Assiri, A. M. , Blake, P. L. , Buongiorno, M. F. , et al. (2021). NASA’s surface biology and geology designated observable: A perspective on surface imaging algorithms. Remote Sensing of Environment, 257, 112349. 10.1016/j.rse.2021.112349 DOI
Chang, C. I. , & Du, Q. (2004). Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 42, 608–619. 10.1109/tgrs.2003.819189 DOI
Dudley, K. L. , Dennison, P. E. , Roth, K. L. , Roberts, D. A. , & Coates, A. R. (2015). A multi‐temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients. Remote Sensing of Environment, 167, 121–134. 10.1016/j.rse.2015.05.004 DOI
Ely, K. S. , Burnett, A. C. , Lieberman‐Cribbin, W. , Serbin, S. P. , & Rogers, A. (2019). Spectroscopy can predict key leaf traits associated with source‐sink balance and carbon—Nitrogen status. Journal of Experimental Botany, 70, 1789–1799. 10.1093/jxb/erz061 PubMed DOI
Ewald, M. , Skowronek, S. , Aerts, R. , Dolos, K. , Lenoir, J. , Nicolas, M. , et al. (2018). Analyzing remotely sensed structural and chemical canopy traits of a forest invaded by Prunus serotina over multiple spatial scales. Biological Invasions, 20, 2257–2271. 10.1007/s10530-018-1700-9 DOI
Fassnacht, F. E. , Latifi, H. , Stereńczak, K. , Modzelewska, A. , Lefsky, M. , Waser, L. T. , et al. (2016). Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment, 186, 64–87. 10.1016/j.rse.2016.08.013 DOI
Feilhauer, H. , Faude, U. , & Schmidtlein, S. (2011). Combining isomap ordination and imaging spectroscopy to map continuous floristic gradients in a heterogeneous landscape. Remote Sensing of Environment, 115, 2513–2524. 10.1016/j.rse.2011.05.011 DOI
Feilhauer, H. , Somers, B. , & Van der Linden, S. (2017). Optical trait indicators for remote sensing of plant species composition: Predictive power and seasonal variability. Ecological Indicators, 73, 825–833. 10.1016/j.ecolind.2016.11.003 DOI
Féret, J.‐B. , & Asner, G. P. (2014). Mapping tropical forest canopy diversity using high‐fidelity imaging spectroscopy. Ecological Applications, 24, 1289–1296. 10.1890/13-1824.1 PubMed DOI
Féret, J.‐B. , & De Boissieu, F. (2020). biodivMapR: An R package for α‐ and β‐diversity mapping using remotely sensed images. Methods in Ecology and Evolution, 11, 64–70. 10.1111/2041-210x.13310 DOI
Féret, J.‐B. , François, C. , Asner, G. P. , Gitelson, A. A. , Martin, R. E. , Bidel, L. P. R. , et al. (2008). PROSPECT‐4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 112, 3030–3043. 10.1016/j.rse.2008.02.012 DOI
Foody, G. M. , Pal, M. , Rocchini, D. , Garzon‐Lopez, C. X. , Bastin, L. , & Bastin, L. (2016). The sensitivity of mapping methods to reference data quality: Training supervised image classifications with imperfect reference data. ISPRS International Journal of Geo‐Information, 5, 199. 10.3390/ijgi5110199 DOI
Gholizadeh, H. , Gamon, J. A. , Helzer, C. J. , & Cavender‐Bares, J. (2020). Multi‐temporal assessment of grassland α‐ and β‐diversity using hyperspectral imaging. Ecological Applications, 30, e02145. 10.1002/eap.2145 PubMed DOI
Gholizadeh, H. , Gamon, J. A. , Townsend, P. A. , Zygielbaum, A. I. , Helzer, C. J. , Hmimina, G. Y. , et al. (2019). Detecting prairie biodiversity with airborne remote sensing. Remote Sensing of Environment, 221, 38–49. 10.1016/j.rse.2018.10.037 DOI
Griggs, R. F. (1940). The ecology of rare plants. Bulletin of the Torrey Botanical Club, 67, 575–594. 10.2307/2481578 DOI
Jacquemoud, S. , & Ustin, S. L. (2019). Leaf optical traits. Cambridge University Press.
Jacquemoud, S. , Ustin, S. L. , Verdebout, J. , Schmuck, G. , Andreoli, G. , & Hosgood, B. (1996). Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sensing of Environment, 56, 194–202. 10.1016/0034-4257(95)00238-3 DOI
Joppa, L. N. , Roberts, D. L. , Myers, N. , & Pimm, S. L. (2011). Biodiversity hotspots house most undiscovered plant species. Proceedings of the National Academy of Sciences of the United State of America, 108, 13171–13176. 10.1073/pnas.1109389108 PubMed DOI PMC
Khanna, S. , Santos, M. J. , Ustin, S. L. , & Haverkamp, P. J. (2011). An integrated approach to a biophysiologically based classification of floating aquatic macrophytes. International Journal of Remote Sensing, 32, 1067–1094. 10.1080/01431160903505328 DOI
Kitzes, J. , Blake, R. , Bombaci, S. , Chapman, M. , Duran, S. M. , Huang, T. , et al. (2021). Expanding NEON biodiversity surveys with new instrumentation and machine learning approaches. Ecosphere, 12, e03795. 10.1002/ecs2.3795 DOI
Kokaly, R. F. , Asner, G. P. , Ollinger, S. V. , Martin, M. E. , & Wessman, C. A. (2009). Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of Environment, 113, 78–91. 10.1016/j.rse.2008.10.018 DOI
Kreft, H. , & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, 104, 5925–5930. 10.1073/pnas.0608361104 PubMed DOI PMC
Kun, J. , Li, Q. , Tian, Y.‐C. , & Wu, B.‐F. (2011). A review of classification method of remote sensing imagery. Spectroscopy and Spectral Analysis, 31, 2618–1623. PubMed
Kwok, R. (2018). Ecology’s remote‐sensing revolution. Nature, 556, 137–138. 10.1038/d41586-018-03924-9 PubMed DOI
Lenoir, J. , Gril, E. , Durrieu, S. , Horen, H. , Laslier, M. , Lembrechts, J. , et al. (2022). Unveil the unseen: Using LiDAR to capture time‐lag dynamics in the herbaceous layer of European temperate forests. Journal of Ecology, 110(2), 282–300. 10.1111/1365-2745.13837 DOI
Lu, D. , & Weng, Q. (2005). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28, 823–870.
Luque, S. , Pettorelli, N. , Vihervaara, P. , & Wegmann, M. (2018). Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets. Methods in Ecology and Evolution, 9, 1784–1786. 10.1111/2041-210x.13057 DOI
Madritch, M. D. , Kingdon, C. D. , Singh, A. , Mock, K. E. , Lindroth, R. L. , & Townsend, P. A. (2014). Imaging spectroscopy links aspen genotype with below‐ground processes at landscape scales. Philosophical Transactions of the Royal Society B, 369, 20130194. 10.1098/rstb.2013.0194 PubMed DOI PMC
Matson, N. W. H. , Mouillot, D. , Lee, W. G. , & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111, 112–118.
Medail, F. , & Quezel, P. (1997). Hot‐spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden, 84, 112–127. 10.2307/2399957 DOI
Mulatu, K. A. , Decuyper, M. , Brede, B. , Kooistra, L. , Reiche, J. , Mora, B. , & Herold, M. (2019). Linking Terrestrial LiDAR Scanner and Conventional forest structure measurements with multi‐Modal satellite data. Forests, 10, 291. 10.3390/f10030291 DOI
Myers, N. , Mittermeier, R. A. , Mittermeier, C. G. , De Fonseca, G. A. B. , & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. 10.1038/35002501 PubMed DOI
Ollinger, S. V. (2011). Sources of variability in canopy reflectance and the convergent properties of plants. New Phytologist, 189, 375–394. 10.1111/j.1469-8137.2010.03536.x PubMed DOI
Palmer, M. W. , Earls, P. G. , Hoagland, B. W. , White, P. S. , & Wohlgemuth, T. (2002). Quantitative tools for perfecting species lists. Environmetrics, 13, 121–137. 10.1002/env.516 DOI
Petchey, O. L. , Gaston, K. J. , & Gaston, K. J. (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402–411. 10.1046/j.1461-0248.2002.00339.x DOI
Plaza, A. , Benediktsson, J. A. , Boardman, J. W. , Brazile, J. , Bruzzone, L. , Camps‐Valls, L. , et al. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113, 110–122. 10.1016/j.rse.2007.07.028 DOI
Pollock, L. J. , O’Connor, L. M. J. , Mokany, K. , Rosauer, D. F. , Talluto, M. V. , & Thuiller, M. (2020). Protecting biodiversity (in all its complexity): New models and methods. Trends in Ecology & Evolution, 35, 1119–1128. 10.1016/j.tree.2020.08.015 PubMed DOI
Poyry, J. , Bottcher, K. , Fronzek, S. , Gobron, N. , Leinonen, R. , Metsamaki, S. , & Virkkala, R. (2018). Predictive power of remote sensing versus temperature‐derived variables in modelling phenology of herbivorous insects. Remote Sensing in Ecology and Conservation, 4, 113–126. 10.1002/rse2.56 DOI
Randin, C. F. , B Ashcroft, M. , Boliger, J. , Cavender‐Bares, J. , Coops, N. C. , Dullinger, S. , et al. (2020). Modeling biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 239, 111626. 10.1016/j.rse.2019.111626 DOI
Ricotta, C. , Godefroid, S. , & Rocchini, D. (2010). Patterns of native and exotic species richness in the urban flora of Brussels: Rejecting the ‘rich get richer’ model. Biological Invasions, 12, 233–240. 10.1007/s10530-009-9445-0 DOI
Roberts, D. , Gardner, M. , Church, R. , Ustin, S. , Scheer, G. , & Green, R. (1998). Mapping chaparral in the Santa Monica mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 65, 267–279. 10.1016/s0034-4257(98)00037-6 DOI
Rocchini, D. (2007). Distance decay in spectral space in analysing ecosystem β‐diversity. International Journal of Remote Sensing, 28(11), 2635–2644.
Rocchini, D. , Balkenhol, N. , Carter, G. A. , Foody, G. M. , Gillespie, T. W. , He, K. S. , et al. (2010). Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecological Informatics, 5, 318–329. 10.1016/j.ecoinf.2010.06.001 DOI
Rocchini, D. , Luque, S. , Pettorelli, N. , Bastin, L. , Doktor, D. , Faedi, N. , et al. (2018). Measuring β‐diversity by remote sensing: A challenge for biodiversity monitoring. Methods in Ecology and Evolution, 9, 1787–1798. 10.1111/2041-210x.12941 DOI
Rocchini, D. , Marcantonio, M. , Da Re, D. , Bacaro, G. , Feoli, E. , Foody, G. M. , et al. (2021). From zero to infinity: Minimum to maximum diversity of the planet by spatio‐parametric Rao’s quadratic entropy. Global Ecology and Biogeography, 30, 1153–1162. 10.1111/geb.13270 DOI
Rocchini, D. , Marcantonio, M. , & Ricotta, C. (2017). Measuring Rao’s Q diversity index from remote sensing: An open source solution. Ecological Indicators, 72, 234–238. 10.1016/j.ecolind.2016.07.039 DOI
Rocchini, D. , & Ricotta, C. (2007). Are landscapes as crisp as we may think?. Ecological Modelling, 204(3–4), 535–539.
Rocchini, D. , Salvatori, N. , Beierkuhnlein, C. , De Boissieu, F. , Förster, M. , Garzon‐Lopez, C. X. , et al. (2021). From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing. Ecological Informatics, 61, 101195. 10.1016/j.ecoinf.2020.101195 DOI
Rogers, A. , Medlyn, B. E. , Dukes, J. S. , Bonan, G. , Von Caemmerer, S. , Dietze, M. C. , et al. (2017). A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist, 213, 22–42. 10.1111/nph.14283 PubMed DOI
Sabatini, F. M. , Lenoir, J. , Hattab, T. , Arnst, E. A. , Chytrý, M ., Dengler, J. , et al. (2021). sPlotOpen – An environmentally balanced, open‐access, global dataset of vegetation plots. Global Ecology and Biogeography, 30, 1740–1764. 10.1111/geb.13346 DOI
Schaaf, A. N. , Dennison, P. E. , Fryer, G. K. , Roth, K. L. , & Roberts, D. A. (2013). Mapping plant functional types at multiple spatial resolutions using imaging spectrometry data. GIScience and Remote Sensing, 48, 324–344. 10.2747/1548-1603.48.3.324 DOI
Schmidtlein, S. , & Fassnacht, F. E. (2017). The spectral variability hypothesis does not hold across landscapes. Remote Sensing of Environment, 192, 114–125. 10.1016/j.rse.2017.01.036 DOI
Schmidtlein, S. , Zimmermann, P. , Schupferling, R. , & Weiss, C. (2007). Mapping the floristic continuum: Ordination space position estimated from imaging spectroscopy. Journal of Vegetation Science, 18, 131–140. 10.1111/j.1654-1103.2007.tb02523.x DOI
Schweiger, A. K. , & Laliberté, E. (2022). Plant beta‐diversity across biomes captured by imaging spectroscopy. Nature Communications, 13, 2767. 10.1038/s41467-022-30369-6 PubMed DOI PMC
Schweiger, A. K. , Schultz, M. , Risch, A. C. , Kneubuhler, M. , Haller, R. , & Schaepman, M. E. (2017). How to predict plant functional types using imaging spectroscopy: Linking vegetation community traits, plant functional types and spectral response. Methods in Ecology and Evolution, 8, 86–95. 10.1111/2041-210x.12642 DOI
Serbin, S. P. , Dillaway, D. N. , Kruger, E. L. , & Townsend, P. A. (2012). Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature. Journal of Experimental Botany, 63, 489–502. 10.1093/jxb/err294 PubMed DOI PMC
Serbin, S. P. , Singh, A. , McNeil, B. E. , Kingdon, C. C. , & Townsend, P. A. (2014). Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecological Applications, 24, 1651–1669. 10.1890/13-2110.1 PubMed DOI
Simonson, W. D. , Allen, H. D. , & Coomes, D. A. (2012). Use of an airborne lidar system to model plant species composition and diversity of Mediterranean oak forests. Conservation Biology, 26, 840–850. 10.1111/j.1523-1739.2012.01869.x PubMed DOI
Singh, A. , Serbin, S. P. , McNeil, B. E. , Kingdon, C. C. , & Townsend, P. A. (2015). Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. Ecological Applications, 35, 2180–2197. 10.1890/14-2098.1 PubMed DOI
Skidmore, A. K. , Coops, N. C. , Neinavaz, E. , Ali1, A. , Schaepman, M. E. , Paganini, M. , et al. (2021). Priority list of biodiversity metrics to observe from space. Nature Ecology & Evolution, 5, 896–906. 10.1038/s41559-021-01451-x PubMed DOI
Skidmore, A. K. , Pettorelli, N. , Coops, N. C. , Geller, G. N. , Hansen, M. , Lucas, R. , et al. (2015). Agree on biodiversity metrics to track from space. Nature, 523, 403–405. 10.1038/523403a PubMed DOI
Skowronek, S. , Ewald, M. , Isermann, M. , Van De Kerchove, R. , Lenoir, J. , Aerts, R. , et al. (2017). Mapping an invasive bryophyte species using hyperspectral remote sensing data. Biological Invasions, 19, 239–254. 10.1007/s10530-016-1276-1 DOI
Somers, B. , & Asner, G. P. (2014). Tree species mapping in tropical forests using multi‐temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis. International Journal of Applied Earth Observation and Geoinformation, 31, 57–66. 10.1016/j.jag.2014.02.006 DOI
Thorp, K. R. , French, A. N. , & Rango, A. (2013). Effect of image spatial and spectral characteristics on mapping semi‐arid rangeland vegetation using multiple endmember spectral mixture analysis (MESMA). Remote Sensing of Environment, 132, 120–130. 10.1016/j.rse.2013.01.008 DOI
Torresani, M. , Feilhauer, H. , Rocchini, D. , Féret, J.‐B. , Zebisch, M. , & Tonon, G. (2021). Which optical traits enable an estimation of tree species diversity based on the Spectral Variation Hypothesis? Applied Vegetation Science, 24, e12567. 10.1111/avsc.12586 DOI
Underwood, E. , Ustin, S. , & DiPietro, D. (2003). Mapping nonnative plants using hyperspectral imagery. Remote sensing of Environment, 86(2), 150–161.
Underwood, E. C. , Ustin, S. L. , & Ramirez, C. M. (2007). A comparison of spatial and spectral image resolution for mapping invasive plants in coastal California. Environmental Management, 39, 63–83. 10.1007/s00267-005-0228-9 PubMed DOI
Ustin, S. L. , & Gamon, J. A. (2010). Remote sensing of plant functional types. New Phytologist, 186, 795–816. 10.1111/j.1469-8137.2010.03284.x PubMed DOI
Ustin, S. L. , & Middleton, E. M. (2021). Current and near‐term advances in Earth observation for ecological applications. Ecological Processes, 1. 10.1186/s13717-020-00255-4 PubMed DOI PMC
Woodcock, C. E. , & Strahler, A. H. (1987). The factor of scale in remote sensing. Remote sensing of Environment, 21, 311–332. 10.1016/0034-4257(87)90015-0 DOI
Wu, J. , Rogers, A. , Albert, L. P. , Ely, K. , Prohaska, N. , Wolfe, B. T. , et al. (2019). Leaf reflectance spectroscopy captures variation in carboxylation capacity across species, canopy environment and leaf age in lowland moist tropical forests. New Phytologist, 224, 663–674. 10.1111/nph.16029 PubMed DOI
Zhao, Y. , Zeng, Y. , Zheng, Z. , Dong, W. , Zhao, D. , Wu, B. , et al. (2018). Forest species diversity mapping using airborne LiDAR and hyperspectral data in a subtropical forest in China. Remote Sensing of Environment, 213, 104–114. 10.1016/j.rse.2018.05.014 DOI