Electrocardiographic parameters of left ventricular hypertrophy and prediction of mortality in hemodialysis patients
Language English Country Italy Media print-electronic
Document type Journal Article
PubMed
34014512
PubMed Central
PMC8803820
DOI
10.1007/s40620-021-01068-0
PII: 10.1007/s40620-021-01068-0
Knihovny.cz E-resources
- Keywords
- Cardiovascular mortality, Hemodialysis, Left ventricular hypertrophy, Peguero-Lo presti,
- MeSH
- Renal Dialysis adverse effects MeSH
- Electrocardiography MeSH
- Hypertension * MeSH
- Hypertrophy, Left Ventricular * diagnosis etiology MeSH
- Body Mass Index MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: In hemodialysis patients, left ventricular hypertrophy (LVH) contributes to high cardiovascular mortality. We examined cardiovascular mortality prediction by the recently proposed Peguero-Lo Presti voltage since it identifies more patients with electrocardiographic (ECG) LVH than Cornell or Sokolow-Lyon voltages. METHODS: A total of 308 patients on hemodialysis underwent 24 h ECG recordings. LVH parameters were measured before and after dialysis. The primary endpoint of cardiovascular mortality was recorded during a median 3-year follow up. Risk prediction was assessed by Cox regression, both unadjusted and adjusted for the Charlson Comorbidity Index and the Cardiovascular Mortality Risk Score. RESULTS: The Peguero-Lo Presti voltage identified with 21% the most patients with positive LVH criteria. All voltages significantly increased during dialysis. Factors such as ultrafiltration rate, Kt/V, body mass index, sex, and phosphate were the most relevant for these changes. During follow-up, 26 cardiovascular deaths occurred. Post-dialysis Peguero-Lo Presti cut-off as well as the Peguero-Lo Presti and Cornell voltages were independently associated with cardiovascular mortality in unadjusted and adjusted analysis. The Sokolow-Lyon voltage was not significantly associated with mortality. An optimal cut-off for the prediction of cardiovascular mortality was estimated at 1.38 mV for the Peguero-Lo Presti. CONCLUSIONS: The post-dialysis Peguero-Lo Presti cut-off as well as the Peguero-Lo Presti and Cornell voltages allowed independent risk prediction of cardiovascular mortality in hemodialysis patients. Measuring the ECG LVH parameters after dialysis might allow a standardized interpretation as dialysis-specific factors influence the voltages.
Department of Cardiology Munich University Clinic DZHK Ludwig Maximilians University Munich Germany
Department of Nephrology University of Erlangen Nürnberg Erlangen Germany
KfH Kidney Center Munich Isoldenstraße 15 Munich Germany
National Heart and Lung Institute Imperial College London London UK
Nephrocare München Ost Rosenkavalierplatz 5 Munich Germany
Transplant Center University Hospital Munich Ludwig Maximillians University Munich Germany
TUM Medical Education Center School of Medicine Technical University of Munich Munich Germany
University Hospital for Internal Medicine 3 Medical University Innsbruck Innsbruck Austria
See more in PubMed
Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32(5 Suppl 3):S112–119. doi: 10.1053/ajkd.1998.v32.pm9820470. PubMed DOI
Paoletti E, Bellino D, Cassottana P, Rolla D, Cannella G. Left ventricular hypertrophy in nondiabetic predialysis CKD. Am J Kidney Dis. 2005;46(2):320–327. doi: 10.1053/j.ajkd.2005.04.031. PubMed DOI
Foley RN, Parfrey PS, Harnett JD, Kent GM, Martin CJ, Murray DC, Barre PE. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 1995;47(1):186–192. doi: 10.1038/ki.1995.22. PubMed DOI
Hickson LJ, Negrotto SM, Onuigbo M, Scott CG, Rule AD, Norby SM, Albright RC, Casey ET, Dillon JJ, Pellikka PA, Pislaru SV, Best PJM, Villarraga HR, Lin G, Williams AW, Nkomo VT. Echocardiography criteria for structural heart disease in patients with end-stage renal disease initiating hemodialysis. J Am Coll Cardiol. 2016;67(10):1173–1182. doi: 10.1016/j.jacc.2015.12.052. PubMed DOI PMC
Ozkahya M, Ok E, Cirit M, Aydin S, Akçiçek F, Başçi A, Dorhout Mees EJ. Regression of left ventricular hypertrophy in haemodialysis patients by ultrafiltration and reduced salt intake without antihypertensive drugs. Nephrol Dial Transplant. 1998;13(6):1489–1493. doi: 10.1093/ndt/13.6.1489. PubMed DOI
Gross ML, Ritz E. Hypertrophy and fibrosis in the cardiomyopathy of uremia–beyond coronary heart disease. Semin Dial. 2008;21(4):308–318. doi: 10.1111/j.1525-139X.2008.00454.x. PubMed DOI
Zoccali C, Benedetto FA, Mallamaci F, Tripepi G, Giacone G, Stancanelli B, Cataliotti A, Malatino LS. Left ventricular mass monitoring in the follow-up of dialysis patients: prognostic value of left ventricular hypertrophy progression. Kidney Int. 2004;65(4):1492–1498. doi: 10.1111/j.1523-1755.2004.00530.x. PubMed DOI
Roy-Chaudhury P, Tumlin JA, Koplan BA, Costea AI, Kher V, Williamson D, Pokhariyal S, Charytan DM. Primary outcomes of the monitoring in dialysis study indicate that clinically significant arrhythmias are common in hemodialysis patients and related to dialytic cycle. Kidney Int. 2018;93(4):941–951. doi: 10.1016/j.kint.2017.11.019. PubMed DOI
Bleyer AJ, Hartman J, Brannon PC, Reeves-Daniel A, Satko SG, Russell G. Characteristics of sudden death in hemodialysis patients. Kidney Int. 2006;69(12):2268–2273. doi: 10.1038/sj.ki.5000446. PubMed DOI
Poulikakos D, Malik M. Challenges of ECG monitoring and ECG interpretation in dialysis units. J Electrocardiol. 2016 doi: 10.1016/j.jelectrocard.2016.07.019. PubMed DOI
Bacharova L, Schocken D, Estes EH, Strauss D. The role of ECG in the diagnosis of left ventricular hypertrophy. Curr Cardiol Rev. 2014;10(3):257–261. doi: 10.2174/1573403X10666140514103220. PubMed DOI PMC
Skampardoni S, Poulikakos D, Malik M, Green D, Kalra PA. The potential of electrocardiography for cardiac risk prediction in chronic and end-stage kidney disease. Nephrol Dial Transplant. 2018 doi: 10.1093/ndt/gfy255. PubMed DOI PMC
Maanja M, Wieslander B, Schlegel TT, Bacharova L, Abu Daya H, Fridman Y, Wong TC, Schelbert EB, Ugander M (2017) Diffuse myocardial fibrosis reduces electrocardiographic voltage measures of left ventricular hypertrophy independent of left ventricular mass. J Am Heart Assoc 6(1). 10.1161/jaha.116.003795 PubMed PMC
Glassock RJ, Pecoits-Filho R, Barberato SH. Left ventricular mass in chronic kidney disease and ESRD. Clin J Am Soc Nephrol. 2009;4(Suppl 1):S79–S91. doi: 10.2215/cjn.04860709. PubMed DOI
Sundström J, Lind L, Arnlöv J, Zethelius B, Andrén B, Lithell HO. Echocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation. 2001;103(19):2346–2351. doi: 10.1161/01.cir.103.19.2346. PubMed DOI
Peguero JG, Lo Presti S, Perez J, Issa O, Brenes JC, Tolentino A. Electrocardiographic criteria for the diagnosis of left ventricular hypertrophy. J Am Coll Cardiol. 2017;69(13):1694–1703. doi: 10.1016/j.jacc.2017.01.037. PubMed DOI
Porthan K, Kentta T, Niiranen TJ, Nieminen MS, Oikarinen L, Viitasalo M, Hernesniemi J, Jula AM, Salomaa V, Huikuri HV, Albert CM, Tikkanen JT. ECG left ventricular hypertrophy as a risk predictor of sudden cardiac death. Int J Cardiol. 2019;276:125–129. doi: 10.1016/j.ijcard.2018.09.104. PubMed DOI
Rodrigues TS, Azraai M, Crosthwaite A, Patel S, Farouque O, Ramchand J, Lim R, Roberts M, Ierino F, Burrell L (2019) The Peguero-Lo Presti criteria improve the sensitivity of the electrocardiogram to diagnose left ventricular hypertrophy in patients with end-stage kidney disease. Heart Lung Circ 28. 10.1016/j.hlc.2019.06.439
Stenvinkel P, Carrero JJ, Axelsson J, Lindholm B, Heimburger O, Massy Z. Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? Clin J Am Soc Nephrol. 2008;3(2):505–521. doi: 10.2215/cjn.03670807. PubMed DOI PMC
Ortiz A, Massy ZA, Fliser D, Lindholm B, Wiecek A, Martinez-Castelao A, Covic A, Goldsmith D, Suleymanlar G, London GM, Zoccali C. Clinical usefulness of novel prognostic biomarkers in patients on hemodialysis. Nat Rev Nephrol. 2011;8(3):141–150. doi: 10.1038/nrneph.2011.170. PubMed DOI
Schmaderer C, Tholen S, Hasenau AL, Hauser C, Suttmann Y, Wassertheurer S, Mayer CC, Bauer A, Rizas KD, Kemmner S, Kotliar K, Haller B, Mann J, Renders L, Heemann U, Baumann M. Rationale and study design of the prospective, longitudinal, observational cohort study "rISk strAtification in end-stage renal disease" (ISAR) study. BMC Nephrol. 2016;17(1):161. doi: 10.1186/s12882-016-0374-8. PubMed DOI PMC
Liu J, Huang Z, Gilbertson DT, Foley RN, Collins AJ. An improved comorbidity index for outcome analyses among dialysis patients. Kidney Int. 2010;77(2):141–151. doi: 10.1038/ki.2009.413. PubMed DOI
Anker SD, Gillespie IA, Eckardt KU, Kronenberg F, Richards S, Drueke TB, Stenvinkel P, Pisoni RL, Robinson BM, Marcelli D, Froissart M, Floege J. Development and validation of cardiovascular risk scores for haemodialysis patients. Int J Cardiol. 2016;216:68–77. doi: 10.1016/j.ijcard.2016.04.151. PubMed DOI
Casale PN, Devereux RB, Alonso DR, Campo E, Kligfield P. Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: validation with autopsy findings. Circulation. 1987;75(3):565–572. doi: 10.1161/01.cir.75.3.565. PubMed DOI
Sokolow M, Lyon TP. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am Heart J. 1949;37(2):161–186. doi: 10.1016/0002-8703(49)90562-1. PubMed DOI
Schemper M, Smith TL. A note on quantifying follow-up in studies of failure time. Control Clin Trials. 1996;17(4):343–346. doi: 10.1016/0197-2456(96)00075-X. PubMed DOI
Hothorn T, Lausen B. On the exact distribution of maximally selected rank statistics. Comput Stat Data Anal. 2003;43(2):121–137. doi: 10.1016/s0167-9473(02)00225-6. DOI
Lausen B, Hothorn T, Bretz F, Schumacher M. Assessment of optimal selected prognostic factors. Biom J. 2004;46(3):364–374. doi: 10.1002/bimj.200310030. DOI
Covic AC, Buimistriuc LD, Green D, Stefan A, Badarau S, Kalra PA. The prognostic value of electrocardiographic estimation of left ventricular hypertrophy in dialysis patients. Ann Noninvasive Electrocardiol. 2013;18(2):188–198. doi: 10.1111/anec.12007. PubMed DOI PMC
Levy D, Labib SB, Anderson KM, Christiansen JC, Kannel WB, Castelli WP. Determinants of sensitivity and specificity of electrocardiographic criteria for left ventricular hypertrophy. Circulation. 1990;81(3):815–820. doi: 10.1161/01.cir.81.3.815. PubMed DOI
Stewart GA, Foster J, Cowan M, Rooney E, McDonagh T, Dargie HJ, Rodger RS, Jardine AG. Echocardiography overestimates left ventricular mass in hemodialysis patients relative to magnetic resonance imaging. Kidney Int. 1999;56(6):2248–2253. doi: 10.1046/j.1523-1755.1999.00786.x. PubMed DOI
Drighil A, Madias JE, Yazidi A, Bennani M, Bennis A, Ramdan B, Tahiri A. P-wave and QRS complex measurements in patients undergoing hemodialysis. J Electrocardiol. 2008;41(1):60.e61–67. doi: 10.1016/j.jelectrocard.2006.03.002. PubMed DOI
Muiesan ML, Salvetti M, Di Castelnuovo A, Paini A, Assanelli D, Costanzo S, Badilini F, Vaglio M, Donati MB, Agabiti Rosei E, de Gaetano G, Iacoviello L. Obesity and ECG left ventricular hypertrophy. J Hypertens. 2017;35(1):162–169. doi: 10.1097/hjh.0000000000001121. PubMed DOI
Hancock EW, Deal BJ, Mirvis DM, Okin P, Kligfield P, Gettes LS, Bailey JJ, Childers R, Gorgels A, Josephson M, Kors JA, Macfarlane P, Mason JW, Pahlm O, Rautaharju PM, Surawicz B, van Herpen G, Wagner GS, Wellens H (2009) AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V: electrocardiogram changes associated with cardiac chamber hypertrophy: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol 53(11):992–1002. 10.1016/j.jacc.2008.12.015 PubMed
Agarwal R, Light RP. Determinants and prognostic significance of electrocardiographic left ventricular hypertrophy criteria in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(3):528–536. doi: 10.2215/cjn.07770910. PubMed DOI PMC
Ha LD, Elbadawi A, Froelicher VF. Limited relationship of voltage criteria for electrocardiogram left ventricular hypertrophy to cardiovascular mortality. Am J Med. 2018;131(1):101.e101–101.e108. doi: 10.1016/j.amjmed.2017.06.041. PubMed DOI
Mall G, Huther W, Schneider J, Lundin P, Ritz E. Diffuse intermyocardiocytic fibrosis in uraemic patients. Nephrol Dial Transplant. 1990;5(1):39–44. doi: 10.1093/ndt/5.1.39. PubMed DOI
London GM, Pannier B, Guerin AP, Blacher J, Marchais SJ, Darne B, Metivier F, Adda H, Safar ME. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: follow-up of an interventional study. J Am Soc Nephrol. 2001;12(12):2759–2767. doi: 10.1681/ASN.V12122759. PubMed DOI
Narayanan K, Reinier K, Teodorescu C, Uy-Evanado A, Chugh H, Gunson K, Jui J, Chugh SS. Electrocardiographic versus echocardiographic left ventricular hypertrophy and sudden cardiac arrest in the community. Heart Rhythm. 2014;11(6):1040–1046. doi: 10.1016/j.hrthm.2014.03.023. PubMed DOI PMC
Charytan D. Is left ventricular hypertrophy a modifiable risk factor in end-stage renal disease. Curr Opin Nephrol Hypertens. 2014;23(6):578–585. doi: 10.1097/mnh.0000000000000067. PubMed DOI PMC
Kovesdy CP, Quarles LD. Fibroblast growth factor-23: what we know, what we don't know, and what we need to know. Nephrol Dial Transplant. 2013;28(9):2228–2236. doi: 10.1093/ndt/gft065. PubMed DOI PMC
Culleton BF, Walsh M, Klarenbach SW, Mortis G, Scott-Douglas N, Quinn RR, Tonelli M, Donnelly S, Friedrich MG, Kumar A, Mahallati H, Hemmelgarn BR, Manns BJ. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA. 2007;298(11):1291–1299. doi: 10.1001/jama.298.11.1291. PubMed DOI
McCullough PA, Chan CT, Weinhandl ED, Burkart JM, Bakris GL. Intensive hemodialysis, left ventricular hypertrophy, and cardiovascular disease. Am J Kidney Dis. 2016;68(5s1):S5–S14. doi: 10.1053/j.ajkd.2016.05.025. PubMed DOI
Yang LY, Ge X, Wang YL, Ma KL, Liu H, Zhang XL, Liu BC. Angiotensin receptor blockers reduce left ventricular hypertrophy in dialysis patients: a meta-analysis. Am J Med Sci. 2013;345(1):1–9. doi: 10.1097/MAJ.0b013e318249d387. PubMed DOI
Chertow GM, Levin NW, Beck GJ, Depner TA, Eggers PW, Gassman JJ, Gorodetskaya I, Greene T, James S, Larive B, Lindsay RM, Mehta RL, Miller B, Ornt DB, Rajagopalan S, Rastogi A, Rocco MV, Schiller B, Sergeyeva O, Schulman G, Ting GO, Unruh ML, Star RA, Kliger AS. In-center hemodialysis six times per week versus three times per week. N Engl J Med. 2010;363(24):2287–2300. doi: 10.1056/NEJMoa1001593. PubMed DOI PMC
Gong IY, Al-Amro B, Prasad GVR, Connelly PW, Wald RM, Wald R, Deva DP, Leong-Poi H, Nash MM, Yuan W, Gunaratnam L, Kim SJ, Lok CE, Connelly KA, Yan AT. Cardiovascular magnetic resonance left ventricular strain in end-stage renal disease patients after kidney transplantation. J Cardiovasc Magn Reson. 2018;20(1):83. doi: 10.1186/s12968-018-0504-5. PubMed DOI PMC
Badve SV, Palmer SC, Strippoli GFM, Roberts MA, Teixeira-Pinto A, Boudville N, Cass A, Hawley CM, Hiremath SS, Pascoe EM, Perkovic V, Whalley GA, Craig JC, Johnson DW. The validity of left ventricular mass as a surrogate end point for all-cause and cardiovascular mortality outcomes in people with CKD: a systematic review and meta-analysis. Am J Kidney Dis. 2016;68(4):554–563. doi: 10.1053/j.ajkd.2016.03.418. PubMed DOI