• This record comes from PubMed

Structures and kinetics of Thermotoga maritima MetY reveal new insights into the predominant sulfurylation enzyme of bacterial methionine biosynthesis

. 2021 Jan-Jun ; 296 () : 100797. [epub] 20210518

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 34019879
PubMed Central PMC8191291
DOI 10.1016/j.jbc.2021.100797
PII: S0021-9258(21)00591-3
Knihovny.cz E-resources

Bacterial methionine biosynthesis can take place by either the trans-sulfurylation route or direct sulfurylation. The enzymes responsible for trans-sulfurylation have been characterized extensively because they occur in model organisms such as Escherichia coli. However, direct sulfurylation is actually the predominant route for methionine biosynthesis across the phylogenetic tree. In this pathway, most bacteria use an O-acetylhomoserine aminocarboxypropyltransferase (MetY) to catalyze the formation of homocysteine from O-acetylhomoserine and bisulfide. Despite the widespread distribution of MetY, this pyridoxal 5'-phosphate-dependent enzyme remains comparatively understudied. To address this knowledge gap, we have characterized the MetY from Thermotoga maritima (TmMetY). At its optimal temperature of 70 °C, TmMetY has a turnover number (apparent kcat = 900 s-1) that is 10- to 700-fold higher than the three other MetY enzymes for which data are available. We also present crystal structures of TmMetY in the internal aldimine form and, fortuitously, with a β,γ-unsaturated ketimine reaction intermediate. This intermediate is identical to that found in the catalytic cycle of cystathionine γ-synthase (MetB), which is a homologous enzyme from the trans-sulfurylation pathway. By comparing the TmMetY and MetB structures, we have identified Arg270 as a critical determinant of specificity. It helps to wall off the active site of TmMetY, disfavoring the binding of the first MetB substrate, O-succinylhomoserine. It also ensures a strict specificity for bisulfide as the second substrate of MetY by occluding the larger MetB substrate, cysteine. Overall, this work illuminates the subtle structural mechanisms by which homologous pyridoxal 5'-phosphate-dependent enzymes can effect different catalytic, and therefore metabolic, outcomes.

See more in PubMed

Valley C.C., Cembran A., Perlmutter J.D., Lewis A.K., Labello N.P., Gao J., Sachs J.N. The methionine-aromatic motif plays a unique role in stabilizing protein structure. J. Biol. Chem. 2012;287:34979–34991. PubMed PMC

Aledo J.C. Methionine in proteins: The Cinderella of the proteinogenic amino acids. Protein Sci. 2019;28:1785–1796. PubMed PMC

Ferla M.P., Patrick W.M. Bacterial methionine biosynthesis. Microbiology. 2014;160:1571–1584. PubMed

Hesse H., Kreft O., Maimann S., Zeh M., Hoefgen R. Current understanding of the regulation of methionine biosynthesis in plants. J. Exp. Bot. 2004;55:1799–1808. PubMed

Ravanel S., Gakiere B., Job D., Douce R. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. U. S. A. 1998;95:7805–7812. PubMed PMC

Rowbury R.J. Synthesis of cystathionine and its control in Salmonella typhimurium. Nature. 1964;203:977–978. PubMed

Rowbury R.J., Woods D.D. O-Succinylhomoserine as an intermediate in the synthesis of cystathionine by Escherichia coli. J. Gen. Microbiol. 1964;36:341–358. PubMed

Smith D.A., Childs J.D. Methionine genes and enzymes of Salmonella typhimurium. Heredity. 1966;21:265–286. PubMed

Bastard K., Perret A., Mariage A., Bessonnet T., Pinet-Turpault A., Petit J.L., Darii E., Bazire P., Vergne-Vaxelaire C., Brewee C., Debard A., Pellouin V., Besnard-Gonnet M., Artiguenave F., Médigue C. Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nat. Chem. Biol. 2017;13:858–866. PubMed

Berney M., Berney-Meyer L., Wong K.W., Chen B., Chen M., Kim J., Wang J., Harris D., Parkhill J., Chan J., Wang F., Jacobs W.R., Jr. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 2015;112:10008–10013. PubMed PMC

Chaton C.T., Rodriguez E.S., Reed R.W., Li J., Kenner C.W., Korotkov K.V. Structural analysis of mycobacterial homoserine transacetylases central to methionine biosynthesis reveals druggable active site. Sci. Rep. 2019;9:20267. PubMed PMC

Liang J., Han Q., Tan Y., Ding H., Li J. Current advances on structure-function relationships of pyridoxal 5′-phosphate-dependent enzymes. Front. Mol. Biosci. 2019;6:4. PubMed PMC

Toney M.D. Controlling reaction specificity in pyridoxal phosphate enzymes. Biochim. Biophys. Acta. 2011;1814:1407–1418. PubMed PMC

Raboni S., Spyrakis F., Campanini B., Amadasi A., Bettati S., Peracchi A., Mozzarelli A., Contestabile R. Comprehensive Natural Products II: Chemistry and Biology. Elsevier Ltd; New York, NY: 2010. Pyridoxal 5′-phosphate-dependent enzymes: Catalysis, conformation, and genomics; pp. 273–350.

Richard J.P., Amyes T.L., Crugeiras J., Rios A. Pyridoxal 5′-phosphate: Electrophilic catalyst extraordinaire. Curr. Opin. Chem. Biol. 2009;13:475–483. PubMed PMC

Eliot A.C., Kirsch J.F. Pyridoxal phosphate enzymes: Mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 2004;73:383–415. PubMed

Mitchell A.L., Attwood T.K., Babbitt P.C., Blum M., Bork P., Bridge A., Brown S.D., Chang H.Y., El-Gebali S., Fraser M.I., Gough J., Haft D.R., Huang H., Letunic I., Lopez R. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47:D351–D360. PubMed PMC

Hacham Y., Gophna U., Amir R. In vivo analysis of various substrates utilized by cystathionine γ-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis. Mol. Biol. Evol. 2003;20:1513–1520. PubMed

Jeske L., Placzek S., Schomburg I., Chang A., Schomburg D. BRENDA in 2019: A European ELIXIR core data resource. Nucleic Acids Res. 2019;47:D542–D549. PubMed PMC

Hwang B.J., Park S.D., Kim Y., Kim P., Lee H.S. Biochemical analysis on the parallel pathways of methionine biosynthesis in Corynebacterium glutamicum. J. Microbiol. Biotechnol. 2007;17:1010–1017. PubMed

Kulikova V.V., Revtovich S.V., Bazhulina N.P., Anufrieva N.V., Kotlov M.I., Koval V.S., Morozova E.A., Hayashi H., Belyi Y.F., Demidkina T.V. Identification of O-acetylhomoserine sulfhydrylase, a putative enzyme responsible for methionine biosynthesis in Clostridioides difficile: Gene cloning and biochemical characterizations. IUBMB Life. 2019;71:1815–1823. PubMed

Kulikova V.V., Anufrieva N.V., Kotlov M.I., Morozova E.A., Koval V.S., Belyi Y.F., Revtovich S.V., Demidkina T.V. O-acetylhomoserine sulfhydrylase from Clostridium novyi. Cloning, expression of the gene and characterization of the enzyme. Protein Expr. Purif. 2021;180:105810. PubMed

Tran T.H., Krishnamoorthy K., Begley T.P., Ealick S.E. A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes. Acta Crystallogr. D Biol. Crystallogr. 2011;67:831–838. PubMed PMC

Imagawa T., Utsunomiya H., Tsuge H., Ebihara A., Kanagawa M., Nakagawa N., Kuroishi C., Agari Y., Kuramitsu S., Yokoyama S. 2007. PDB ID 2CB1: Crystal structure of O-actetyl homoserine sulfhydrylase from Thermus thermophilus HB8, OAH2. DOI

Imagawa T., Kousumi Y., Tsuge H., Utsunomiya H., Ebihara A., Nakagawa N., Yokoyama S., Kuramitsu S., RIKEN Structural Genomics/Proteomics Initiative . 2005. PDB ID 2CTZ: Crystal structure of O-actetyl homoserine sulfhydrylase from Thermus thermophilus HB8. DOI

Halavaty A.S., Brunzelle J.S., Wawrzak Z., Onopriyenko O., Savchenko A., Anderson W.F., Center for Structural Genomics of Infectious Diseases . 2014. PDB ID 4OC9: 2.35 Å resolution crystal structure of putative O-acetylhomoserine (thiol)-lyase (MetY) from Campylobacter jejuni subsp. jejuni NCTC 11168 with N′-pyridoxyl-lysine-5′-monophosphate at position 205. DOI

Aitken S.M., Lodha P.H., Morneau D.J. The enzymes of the transsulfuration pathways: Active-site characterizations. Biochim. Biophys. Acta. 2011;1814:1511–1517. PubMed

Aitken S.M., Kirsch J.F. The enzymology of cystathionine biosynthesis: Strategies for the control of substrate and reaction specificity. Arch. Biochem. Biophys. 2005;433:166–175. PubMed

Brzovic P., Holbrook E.L., Greene R.C., Dunn M.F. Reaction mechanism of Escherichia coli cystathionine γ-synthase: Direct evidence for a pyridoxamine derivative of vinylglyoxylate as a key intermediate in pyridoxal phosphate dependent γ-elimination and γ-replacement reactions. Biochemistry. 1990;29:442–451. PubMed

Aitken S.M., Kim D.H., Kirsch J.F. Escherichia coli cystathionine γ-synthase does not obey ping-pong kinetics. Novel continuous assays for the elimination and substitution reactions. Biochemistry. 2003;42:11297–11306. PubMed

Clausen T., Huber R., Prade L., Wahl M.C., Messerschmidt A. Crystal structure of Escherichia coli cystathionine γ-synthase at 1.5 Å resolution. EMBO J. 1998;17:6827–6838. PubMed PMC

Messerschmidt A., Worbs M., Steegborn C., Wahl M.C., Huber R., Laber B., Clausen T. Determinants of enzymatic specificity in the Cys-Met-metabolism PLP-dependent enzymes family: Crystal structure of cystathionine γ-lyase from yeast and intrafamiliar structure comparison. Biol. Chem. 2003;384:373–386. PubMed

Ferla M.P., Brewster J.L., Hall K.R., Evans G.B., Patrick W.M. Primordial-like enzymes from bacteria with reduced genomes. Mol. Microbiol. 2017;105:508–524. PubMed

Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. PubMed

Frick B., Schröcksnadel K., Neurauter G., Wirleitner B., Artner-Dworzak E., Fuchs D. Rapid measurement of total plasma homocysteine by HPLC. Clin. Chim. Acta. 2003;331:19–23. PubMed

Kusmierek K., Chwatko G., Glowacki R., Bald E. Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009;877:3300–3308. PubMed

Choi C.K., Dong M.W. Sample preparation for HPLC analysis of drug products. In: Ahuja S., Dong M.W., editors. Handbook of Pharmaceutical Analysis by HPLC. Elsevier; Amsterdam, The Netherlands: 2005. pp. 123–144.

Good N.E., Winget G.D., Winter W., Conolloy T.N., Izawa S., Singh R.M.M. Hydrogen ion buffers for biological research. Biochemistry. 1966;5:467–477. PubMed

Huber R., Langworthy T.A., König H., Thomm M., Woese C.R., Sleytr U.B., Stetter K.O. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 1986;144:324–333.

Wang Z.W., Tong W., Wang Q.H., Bai X., Chen Z., Zhao J.J., Xu N.Z., Liu S.Q. The temperature dependent proteomic analysis of Thermotoga maritima. PLoS One. 2012;7 PubMed PMC

Kerr D.S. O-acetylhomoserine sulfhydrylase from Neurospora. Purification and consideration of its function in homocysteine and methionine synthesis. J. Biol. Chem. 1971;246:95–102. PubMed

Ozaki H., Shiio I. Methionine biosynthesis in Brevibacterium flavum: Properties and essential role of O-acetylhomoserine sulfhydrylase. J. Biochem. 1982;91:1163–1171. PubMed

Shimizu H., Yamagata S., Masui R., Inoue Y., Shibata T., Yokoyama S., Kuramitsu S., Iwama T. Cloning and overexpression of the oah1 gene encoding O-acetyl-L-homoserine sulfhydrylase of Thermus thermophilus HB8 and characterization of the gene product. Biochim. Biophys. Acta. 2001;1549:61–72. PubMed

Yamagata S. O-acetylhomoserine sulfhydrylase of the fission yeast Schizosaccharomyces pombe: Partial purification, characterization, and its probable role in homocysteine biosynthesis. J. Biochem. 1984;96:1511–1523. PubMed

Iwama T., Hosokawa H., Lin W.M., Shimizu H., Kawai K., Yamagata S. Comparative characterization of the oah2 gene homologous to the oah1 of Thermus thermophilus HB8. Biosci. Biotechnol. Biochem. 2004;68:1357–1361. PubMed

Omura H., Ikemoto M., Kobayashi M., Shimizu S., Yoshida T., Nagasawa T. Purification, characterization and gene cloning of thermostable O-acetyl-L-homoserine sulfhydrylase forming γ-cyano-α-aminobutyric acid. J. Biosci. Bioeng. 2003;96:53–58. PubMed

Yamagata S. Homocysteine synthesis in yeast. Partial purification and properties of O-acetylhomoserine sulfhydrylase. J. Biochem. 1971;70:1035–1045. PubMed

Goudarzi M., Born T.L. Purification and characterization of Thermotoga maritima homoserine transsuccinylase indicates it is a transacetylase. Extremophiles. 2006;10:469–478. PubMed

Kaplan M.M., Flavin M. Cystathionine γ-synthetase of Salmonella: Structural properties of a new enzyme in bacterial methionine biosynthesis. J. Biol. Chem. 1966;241:5781–5789. PubMed

Clausen T., Huber R., Laber B., Pohlenz H.D., Messerschmidt A. Crystal structure of the pyridoxal-5′-phosphate dependent cystathionine β-lyase from Escherichia coli at 1.83 Å. J. Mol. Biol. 1996;262:202–224. PubMed

Soo V.W.C., Yosaatmadja Y., Squire C.J., Patrick W.M. Mechanistic and evolutionary insights from the reciprocal promiscuity of two pyridoxal phosphate-dependent enzymes. J. Biol. Chem. 2016;291:19873–19887. PubMed PMC

Clausen T., Huber R., Messerschmidt A., Pohlenz H.D., Laber B. Slow-binding inhibition of Escherichia coli cystathionine β-lyase by L-aminoethoxyvinylglycine: A kinetic and X-ray study. Biochemistry. 1997;36:12633–12643. PubMed

Liebschner D., Afonine P.V., Moriarty N.W., Poon B.K., Sobolev O.V., Terwilliger T.C., Adams P.D. Polder maps: Improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D Struct. Biol. 2017;73:148–157. PubMed PMC

Giardina G., Paiardini A., Montioli R., Cellini B., Voltattorni C.B., Cutruzzola F. Radiation damage at the active site of human alanine:glyoxylate aminotransferase reveals that the cofactor position is finely tuned during catalysis. Sci. Rep. 2017;7:11704. PubMed PMC

Tu Y., Kreinbring C.A., Hill M., Liu C., Petsko G.A., McCune C.D., Berkowitz D.B., Liu D., Ringe D. Crystal structures of cystathionine β-synthase from Saccharomyces cerevisiae: One enzymatic step at a time. Biochemistry. 2018;57:3134–3145. PubMed PMC

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC

Ngo H.P., Kim J.K., Kim S.H., Pham T.V., Tran T.H., Nguyen D.D., Kim J.G., Chung S., Ahn Y.J., Kang L.W. Expression, crystallization and preliminary X-ray crystallographic analysis of cystathionine γ-synthase (XometB) from Xanthomonas oryzae pv. oryzae. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012;68:1515–1517. PubMed PMC

Ngo H.P.T., Nguyen T.D.Q., Kang L.W. 2020. PDB ID 6LD8: Crystal structure of cystathionine gamma synthase from Xanthomonas oryzae pv. oryzae in complex with aminoacrylate and cysteine. DOI

Monod J., Jacob F. General conclusions: Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 1961;26:389–401. PubMed

Zierenberg R.A., Adams M.W.W., Arp A.J. Life in extreme environments: Hydrothermal vents. Proc. Natl. Acad. Sci. U. S. A. 2000;97:12961–12962. PubMed PMC

Tawfik D.S., van der Donk W.A. Biocatalysis and biotransformation: Esoteric, niche enzymology. Curr. Opin. Chem. Biol. 2016;31:v–vii. PubMed

Davidi D., Shamshoum M., Guo Z., Bar-On Y.M., Prywes N., Oz A., Jablonska J., Flamholz A., Wernick D.G., Antonovsky N., de Pins B., Shachar L., Hochhauser D., Peleg Y., Albeck S. Highly active rubiscos discovered by systematic interrogation of natural sequence diversity. EMBO J. 2020;39 PubMed PMC

Vickers C.J., Fraga D., Patrick W.M. Quantifying the taxonomic bias in enzymology. Protein Sci. 2021;30:914–921. PubMed PMC

Lesley S.A., Kuhn P., Godzik A., Deacon A.M., Mathews I., Kreusch A., Spraggon G., Klock H.E., McMullan D., Shin T., Vincent J., Robb A., Brinen L.S., Miller M.D., McPhillips T.M. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl. Acad. Sci. U. S. A. 2002;99:11664–11669. PubMed PMC

Liu H., Naismith J.H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 2008;8:91. PubMed PMC

Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker J.M., editor. The Proteomics Protocols Handbook. Humana Press; Totowa, NJ: 2005. pp. 571–607.

Dou C., Xia D., Zhang L., Chen X., Flores P., Datta A., Yuan C. Development of a novel enzymatic cycling assay for total homocysteine. Clin. Chem. 2005;51:1987–1989. PubMed

McPhillips T.M., McPhillips S.E., Chiu H.J., Cohen A.E., Deacon A.M., Ellis P.J., Garman E., Gonzalez A., Sauter N.K., Phizackerley R.P., Soltis S.M., Kuhn P. Blu-ice and the distributed control system: Software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 2002;9:401–406. PubMed

Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010;66:125–132. PubMed PMC

Adams P.D., Afonine P.V., Bunkoczi G., Chen V.B., Echols N., Headd J.J., Hung L.W., Jain S., Kapral G.J., Grosse Kunstleve R.W., McCoy A.J., Moriarty N.W., Oeffner R.D., Read R.J., Richardson D.C. The Phenix software for automated determination of macromolecular structures. Methods. 2011;55:94–106. PubMed PMC

Emsley P., Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004;60:2126–2132. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...