Structures and kinetics of Thermotoga maritima MetY reveal new insights into the predominant sulfurylation enzyme of bacterial methionine biosynthesis
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34019879
PubMed Central
PMC8191291
DOI
10.1016/j.jbc.2021.100797
PII: S0021-9258(21)00591-3
Knihovny.cz E-resources
- Keywords
- X-ray crystallography, enzyme kinetics, enzyme mechanism, methionine, protein structure,
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Biosynthetic Pathways MeSH
- Kinetics MeSH
- Crystallography, X-Ray MeSH
- Methionine metabolism MeSH
- Models, Molecular MeSH
- Thermotoga maritima chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Methionine MeSH
Bacterial methionine biosynthesis can take place by either the trans-sulfurylation route or direct sulfurylation. The enzymes responsible for trans-sulfurylation have been characterized extensively because they occur in model organisms such as Escherichia coli. However, direct sulfurylation is actually the predominant route for methionine biosynthesis across the phylogenetic tree. In this pathway, most bacteria use an O-acetylhomoserine aminocarboxypropyltransferase (MetY) to catalyze the formation of homocysteine from O-acetylhomoserine and bisulfide. Despite the widespread distribution of MetY, this pyridoxal 5'-phosphate-dependent enzyme remains comparatively understudied. To address this knowledge gap, we have characterized the MetY from Thermotoga maritima (TmMetY). At its optimal temperature of 70 °C, TmMetY has a turnover number (apparent kcat = 900 s-1) that is 10- to 700-fold higher than the three other MetY enzymes for which data are available. We also present crystal structures of TmMetY in the internal aldimine form and, fortuitously, with a β,γ-unsaturated ketimine reaction intermediate. This intermediate is identical to that found in the catalytic cycle of cystathionine γ-synthase (MetB), which is a homologous enzyme from the trans-sulfurylation pathway. By comparing the TmMetY and MetB structures, we have identified Arg270 as a critical determinant of specificity. It helps to wall off the active site of TmMetY, disfavoring the binding of the first MetB substrate, O-succinylhomoserine. It also ensures a strict specificity for bisulfide as the second substrate of MetY by occluding the larger MetB substrate, cysteine. Overall, this work illuminates the subtle structural mechanisms by which homologous pyridoxal 5'-phosphate-dependent enzymes can effect different catalytic, and therefore metabolic, outcomes.
Department of Biochemistry University of Otago Dunedin New Zealand
Department of Cell and Molecular Biology Uppsala University Uppsala Sweden
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
School of Biological Sciences University of Auckland Auckland New Zealand
See more in PubMed
Valley C.C., Cembran A., Perlmutter J.D., Lewis A.K., Labello N.P., Gao J., Sachs J.N. The methionine-aromatic motif plays a unique role in stabilizing protein structure. J. Biol. Chem. 2012;287:34979–34991. PubMed PMC
Aledo J.C. Methionine in proteins: The Cinderella of the proteinogenic amino acids. Protein Sci. 2019;28:1785–1796. PubMed PMC
Ferla M.P., Patrick W.M. Bacterial methionine biosynthesis. Microbiology. 2014;160:1571–1584. PubMed
Hesse H., Kreft O., Maimann S., Zeh M., Hoefgen R. Current understanding of the regulation of methionine biosynthesis in plants. J. Exp. Bot. 2004;55:1799–1808. PubMed
Ravanel S., Gakiere B., Job D., Douce R. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. U. S. A. 1998;95:7805–7812. PubMed PMC
Rowbury R.J. Synthesis of cystathionine and its control in Salmonella typhimurium. Nature. 1964;203:977–978. PubMed
Rowbury R.J., Woods D.D. O-Succinylhomoserine as an intermediate in the synthesis of cystathionine by Escherichia coli. J. Gen. Microbiol. 1964;36:341–358. PubMed
Smith D.A., Childs J.D. Methionine genes and enzymes of Salmonella typhimurium. Heredity. 1966;21:265–286. PubMed
Bastard K., Perret A., Mariage A., Bessonnet T., Pinet-Turpault A., Petit J.L., Darii E., Bazire P., Vergne-Vaxelaire C., Brewee C., Debard A., Pellouin V., Besnard-Gonnet M., Artiguenave F., Médigue C. Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nat. Chem. Biol. 2017;13:858–866. PubMed
Berney M., Berney-Meyer L., Wong K.W., Chen B., Chen M., Kim J., Wang J., Harris D., Parkhill J., Chan J., Wang F., Jacobs W.R., Jr. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 2015;112:10008–10013. PubMed PMC
Chaton C.T., Rodriguez E.S., Reed R.W., Li J., Kenner C.W., Korotkov K.V. Structural analysis of mycobacterial homoserine transacetylases central to methionine biosynthesis reveals druggable active site. Sci. Rep. 2019;9:20267. PubMed PMC
Liang J., Han Q., Tan Y., Ding H., Li J. Current advances on structure-function relationships of pyridoxal 5′-phosphate-dependent enzymes. Front. Mol. Biosci. 2019;6:4. PubMed PMC
Toney M.D. Controlling reaction specificity in pyridoxal phosphate enzymes. Biochim. Biophys. Acta. 2011;1814:1407–1418. PubMed PMC
Raboni S., Spyrakis F., Campanini B., Amadasi A., Bettati S., Peracchi A., Mozzarelli A., Contestabile R. Comprehensive Natural Products II: Chemistry and Biology. Elsevier Ltd; New York, NY: 2010. Pyridoxal 5′-phosphate-dependent enzymes: Catalysis, conformation, and genomics; pp. 273–350.
Richard J.P., Amyes T.L., Crugeiras J., Rios A. Pyridoxal 5′-phosphate: Electrophilic catalyst extraordinaire. Curr. Opin. Chem. Biol. 2009;13:475–483. PubMed PMC
Eliot A.C., Kirsch J.F. Pyridoxal phosphate enzymes: Mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 2004;73:383–415. PubMed
Mitchell A.L., Attwood T.K., Babbitt P.C., Blum M., Bork P., Bridge A., Brown S.D., Chang H.Y., El-Gebali S., Fraser M.I., Gough J., Haft D.R., Huang H., Letunic I., Lopez R. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47:D351–D360. PubMed PMC
Hacham Y., Gophna U., Amir R. In vivo analysis of various substrates utilized by cystathionine γ-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis. Mol. Biol. Evol. 2003;20:1513–1520. PubMed
Jeske L., Placzek S., Schomburg I., Chang A., Schomburg D. BRENDA in 2019: A European ELIXIR core data resource. Nucleic Acids Res. 2019;47:D542–D549. PubMed PMC
Hwang B.J., Park S.D., Kim Y., Kim P., Lee H.S. Biochemical analysis on the parallel pathways of methionine biosynthesis in Corynebacterium glutamicum. J. Microbiol. Biotechnol. 2007;17:1010–1017. PubMed
Kulikova V.V., Revtovich S.V., Bazhulina N.P., Anufrieva N.V., Kotlov M.I., Koval V.S., Morozova E.A., Hayashi H., Belyi Y.F., Demidkina T.V. Identification of O-acetylhomoserine sulfhydrylase, a putative enzyme responsible for methionine biosynthesis in Clostridioides difficile: Gene cloning and biochemical characterizations. IUBMB Life. 2019;71:1815–1823. PubMed
Kulikova V.V., Anufrieva N.V., Kotlov M.I., Morozova E.A., Koval V.S., Belyi Y.F., Revtovich S.V., Demidkina T.V. O-acetylhomoserine sulfhydrylase from Clostridium novyi. Cloning, expression of the gene and characterization of the enzyme. Protein Expr. Purif. 2021;180:105810. PubMed
Tran T.H., Krishnamoorthy K., Begley T.P., Ealick S.E. A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes. Acta Crystallogr. D Biol. Crystallogr. 2011;67:831–838. PubMed PMC
Imagawa T., Utsunomiya H., Tsuge H., Ebihara A., Kanagawa M., Nakagawa N., Kuroishi C., Agari Y., Kuramitsu S., Yokoyama S. 2007. PDB ID 2CB1: Crystal structure of O-actetyl homoserine sulfhydrylase from Thermus thermophilus HB8, OAH2. DOI
Imagawa T., Kousumi Y., Tsuge H., Utsunomiya H., Ebihara A., Nakagawa N., Yokoyama S., Kuramitsu S., RIKEN Structural Genomics/Proteomics Initiative . 2005. PDB ID 2CTZ: Crystal structure of O-actetyl homoserine sulfhydrylase from Thermus thermophilus HB8. DOI
Halavaty A.S., Brunzelle J.S., Wawrzak Z., Onopriyenko O., Savchenko A., Anderson W.F., Center for Structural Genomics of Infectious Diseases . 2014. PDB ID 4OC9: 2.35 Å resolution crystal structure of putative O-acetylhomoserine (thiol)-lyase (MetY) from Campylobacter jejuni subsp. jejuni NCTC 11168 with N′-pyridoxyl-lysine-5′-monophosphate at position 205. DOI
Aitken S.M., Lodha P.H., Morneau D.J. The enzymes of the transsulfuration pathways: Active-site characterizations. Biochim. Biophys. Acta. 2011;1814:1511–1517. PubMed
Aitken S.M., Kirsch J.F. The enzymology of cystathionine biosynthesis: Strategies for the control of substrate and reaction specificity. Arch. Biochem. Biophys. 2005;433:166–175. PubMed
Brzovic P., Holbrook E.L., Greene R.C., Dunn M.F. Reaction mechanism of Escherichia coli cystathionine γ-synthase: Direct evidence for a pyridoxamine derivative of vinylglyoxylate as a key intermediate in pyridoxal phosphate dependent γ-elimination and γ-replacement reactions. Biochemistry. 1990;29:442–451. PubMed
Aitken S.M., Kim D.H., Kirsch J.F. Escherichia coli cystathionine γ-synthase does not obey ping-pong kinetics. Novel continuous assays for the elimination and substitution reactions. Biochemistry. 2003;42:11297–11306. PubMed
Clausen T., Huber R., Prade L., Wahl M.C., Messerschmidt A. Crystal structure of Escherichia coli cystathionine γ-synthase at 1.5 Å resolution. EMBO J. 1998;17:6827–6838. PubMed PMC
Messerschmidt A., Worbs M., Steegborn C., Wahl M.C., Huber R., Laber B., Clausen T. Determinants of enzymatic specificity in the Cys-Met-metabolism PLP-dependent enzymes family: Crystal structure of cystathionine γ-lyase from yeast and intrafamiliar structure comparison. Biol. Chem. 2003;384:373–386. PubMed
Ferla M.P., Brewster J.L., Hall K.R., Evans G.B., Patrick W.M. Primordial-like enzymes from bacteria with reduced genomes. Mol. Microbiol. 2017;105:508–524. PubMed
Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. PubMed
Frick B., Schröcksnadel K., Neurauter G., Wirleitner B., Artner-Dworzak E., Fuchs D. Rapid measurement of total plasma homocysteine by HPLC. Clin. Chim. Acta. 2003;331:19–23. PubMed
Kusmierek K., Chwatko G., Glowacki R., Bald E. Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009;877:3300–3308. PubMed
Choi C.K., Dong M.W. Sample preparation for HPLC analysis of drug products. In: Ahuja S., Dong M.W., editors. Handbook of Pharmaceutical Analysis by HPLC. Elsevier; Amsterdam, The Netherlands: 2005. pp. 123–144.
Good N.E., Winget G.D., Winter W., Conolloy T.N., Izawa S., Singh R.M.M. Hydrogen ion buffers for biological research. Biochemistry. 1966;5:467–477. PubMed
Huber R., Langworthy T.A., König H., Thomm M., Woese C.R., Sleytr U.B., Stetter K.O. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 1986;144:324–333.
Wang Z.W., Tong W., Wang Q.H., Bai X., Chen Z., Zhao J.J., Xu N.Z., Liu S.Q. The temperature dependent proteomic analysis of Thermotoga maritima. PLoS One. 2012;7 PubMed PMC
Kerr D.S. O-acetylhomoserine sulfhydrylase from Neurospora. Purification and consideration of its function in homocysteine and methionine synthesis. J. Biol. Chem. 1971;246:95–102. PubMed
Ozaki H., Shiio I. Methionine biosynthesis in Brevibacterium flavum: Properties and essential role of O-acetylhomoserine sulfhydrylase. J. Biochem. 1982;91:1163–1171. PubMed
Shimizu H., Yamagata S., Masui R., Inoue Y., Shibata T., Yokoyama S., Kuramitsu S., Iwama T. Cloning and overexpression of the oah1 gene encoding O-acetyl-L-homoserine sulfhydrylase of Thermus thermophilus HB8 and characterization of the gene product. Biochim. Biophys. Acta. 2001;1549:61–72. PubMed
Yamagata S. O-acetylhomoserine sulfhydrylase of the fission yeast Schizosaccharomyces pombe: Partial purification, characterization, and its probable role in homocysteine biosynthesis. J. Biochem. 1984;96:1511–1523. PubMed
Iwama T., Hosokawa H., Lin W.M., Shimizu H., Kawai K., Yamagata S. Comparative characterization of the oah2 gene homologous to the oah1 of Thermus thermophilus HB8. Biosci. Biotechnol. Biochem. 2004;68:1357–1361. PubMed
Omura H., Ikemoto M., Kobayashi M., Shimizu S., Yoshida T., Nagasawa T. Purification, characterization and gene cloning of thermostable O-acetyl-L-homoserine sulfhydrylase forming γ-cyano-α-aminobutyric acid. J. Biosci. Bioeng. 2003;96:53–58. PubMed
Yamagata S. Homocysteine synthesis in yeast. Partial purification and properties of O-acetylhomoserine sulfhydrylase. J. Biochem. 1971;70:1035–1045. PubMed
Goudarzi M., Born T.L. Purification and characterization of Thermotoga maritima homoserine transsuccinylase indicates it is a transacetylase. Extremophiles. 2006;10:469–478. PubMed
Kaplan M.M., Flavin M. Cystathionine γ-synthetase of Salmonella: Structural properties of a new enzyme in bacterial methionine biosynthesis. J. Biol. Chem. 1966;241:5781–5789. PubMed
Clausen T., Huber R., Laber B., Pohlenz H.D., Messerschmidt A. Crystal structure of the pyridoxal-5′-phosphate dependent cystathionine β-lyase from Escherichia coli at 1.83 Å. J. Mol. Biol. 1996;262:202–224. PubMed
Soo V.W.C., Yosaatmadja Y., Squire C.J., Patrick W.M. Mechanistic and evolutionary insights from the reciprocal promiscuity of two pyridoxal phosphate-dependent enzymes. J. Biol. Chem. 2016;291:19873–19887. PubMed PMC
Clausen T., Huber R., Messerschmidt A., Pohlenz H.D., Laber B. Slow-binding inhibition of Escherichia coli cystathionine β-lyase by L-aminoethoxyvinylglycine: A kinetic and X-ray study. Biochemistry. 1997;36:12633–12643. PubMed
Liebschner D., Afonine P.V., Moriarty N.W., Poon B.K., Sobolev O.V., Terwilliger T.C., Adams P.D. Polder maps: Improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D Struct. Biol. 2017;73:148–157. PubMed PMC
Giardina G., Paiardini A., Montioli R., Cellini B., Voltattorni C.B., Cutruzzola F. Radiation damage at the active site of human alanine:glyoxylate aminotransferase reveals that the cofactor position is finely tuned during catalysis. Sci. Rep. 2017;7:11704. PubMed PMC
Tu Y., Kreinbring C.A., Hill M., Liu C., Petsko G.A., McCune C.D., Berkowitz D.B., Liu D., Ringe D. Crystal structures of cystathionine β-synthase from Saccharomyces cerevisiae: One enzymatic step at a time. Biochemistry. 2018;57:3134–3145. PubMed PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC
Ngo H.P., Kim J.K., Kim S.H., Pham T.V., Tran T.H., Nguyen D.D., Kim J.G., Chung S., Ahn Y.J., Kang L.W. Expression, crystallization and preliminary X-ray crystallographic analysis of cystathionine γ-synthase (XometB) from Xanthomonas oryzae pv. oryzae. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012;68:1515–1517. PubMed PMC
Ngo H.P.T., Nguyen T.D.Q., Kang L.W. 2020. PDB ID 6LD8: Crystal structure of cystathionine gamma synthase from Xanthomonas oryzae pv. oryzae in complex with aminoacrylate and cysteine. DOI
Monod J., Jacob F. General conclusions: Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 1961;26:389–401. PubMed
Zierenberg R.A., Adams M.W.W., Arp A.J. Life in extreme environments: Hydrothermal vents. Proc. Natl. Acad. Sci. U. S. A. 2000;97:12961–12962. PubMed PMC
Tawfik D.S., van der Donk W.A. Biocatalysis and biotransformation: Esoteric, niche enzymology. Curr. Opin. Chem. Biol. 2016;31:v–vii. PubMed
Davidi D., Shamshoum M., Guo Z., Bar-On Y.M., Prywes N., Oz A., Jablonska J., Flamholz A., Wernick D.G., Antonovsky N., de Pins B., Shachar L., Hochhauser D., Peleg Y., Albeck S. Highly active rubiscos discovered by systematic interrogation of natural sequence diversity. EMBO J. 2020;39 PubMed PMC
Vickers C.J., Fraga D., Patrick W.M. Quantifying the taxonomic bias in enzymology. Protein Sci. 2021;30:914–921. PubMed PMC
Lesley S.A., Kuhn P., Godzik A., Deacon A.M., Mathews I., Kreusch A., Spraggon G., Klock H.E., McMullan D., Shin T., Vincent J., Robb A., Brinen L.S., Miller M.D., McPhillips T.M. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl. Acad. Sci. U. S. A. 2002;99:11664–11669. PubMed PMC
Liu H., Naismith J.H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 2008;8:91. PubMed PMC
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker J.M., editor. The Proteomics Protocols Handbook. Humana Press; Totowa, NJ: 2005. pp. 571–607.
Dou C., Xia D., Zhang L., Chen X., Flores P., Datta A., Yuan C. Development of a novel enzymatic cycling assay for total homocysteine. Clin. Chem. 2005;51:1987–1989. PubMed
McPhillips T.M., McPhillips S.E., Chiu H.J., Cohen A.E., Deacon A.M., Ellis P.J., Garman E., Gonzalez A., Sauter N.K., Phizackerley R.P., Soltis S.M., Kuhn P. Blu-ice and the distributed control system: Software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 2002;9:401–406. PubMed
Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010;66:125–132. PubMed PMC
Adams P.D., Afonine P.V., Bunkoczi G., Chen V.B., Echols N., Headd J.J., Hung L.W., Jain S., Kapral G.J., Grosse Kunstleve R.W., McCoy A.J., Moriarty N.W., Oeffner R.D., Read R.J., Richardson D.C. The Phenix software for automated determination of macromolecular structures. Methods. 2011;55:94–106. PubMed PMC
Emsley P., Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004;60:2126–2132. PubMed