Pharmacogenetics of the Central Nervous System-Toxicity and Relapse Affecting the CNS in Pediatric Acute Lymphoblastic Leukemia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018132
NCMG (Czech Republic)
not added
St. Anna Kinderkrebsforschung (Austria)
UNKP-19-3-IV (JC Sagi)
New National Excellence Program of the Ministry for Innovation and Technology (Hungary)
07/MGYH-MGYGYT/2018
Hungarian Paediatric Oncology Network (Hungary)
KP2017-0010, TJ2020-0082, TJ2019-0031
Swedish Childhood Cancer Fund (Sweden)
R150-A10181
Danish Cancer Society (Denmark)
not added
Danish Childhood Cancer Fund (Denmark)
Grants No. PD109200 (ÁF Semsei), PD134449 (A Gézsi) and K115861 (DJ Erdélyi)
National Research, Development and Innovation Office (NKFIH)
not added
János Bolyai Research Scholarship of the Hungarian Academy of Sciences (A Gézsi)
PubMed
34066083
PubMed Central
PMC8151239
DOI
10.3390/cancers13102333
PII: cancers13102333
Knihovny.cz E-zdroje
- Klíčová slova
- CNS relapse, CNS toxicity, PRES, childhood leukemia, encephalopathy, genetic polymorphisms,
- Publikační typ
- časopisecké články MeSH
Despite improving cure rates in childhood acute lymphoblastic leukemia (ALL), therapeutic side effects and relapse are ongoing challenges. These can also affect the central nervous system (CNS). Our aim was to identify germline gene polymorphisms that influence the risk of CNS events. Sixty single nucleotide polymorphisms (SNPs) in 20 genes were genotyped in a Hungarian non-matched ALL cohort of 36 cases with chemotherapy related acute toxic encephalopathy (ATE) and 544 controls. Five significant SNPs were further analyzed in an extended Austrian-Czech-NOPHO cohort (n = 107 cases, n = 211 controls) but none of the associations could be validated. Overall populations including all nations' matched cohorts for ATE (n = 426) with seizure subgroup (n = 133) and posterior reversible encephalopathy syndrome (PRES, n = 251) were analyzed, as well. We found that patients with ABCB1 rs1045642, rs1128503 or rs2032582 TT genotypes were more prone to have seizures but those with rs1045642 TT developed PRES less frequently. The same SNPs were also examined in relation to ALL relapse on a case-control matched cohort of 320 patients from all groups. Those with rs1128503 CC or rs2032582 GG genotypes showed higher incidence of CNS relapse. Our results suggest that blood-brain-barrier drug transporter gene-polymorphisms might have an inverse association with seizures and CNS relapse.
2nd Department of Pediatrics Semmelweis University H 1094 Budapest Hungary
Astrid Lindgren Children's Hospital Karolinska University Hospital S 14186 Stockholm Sweden
Central Laboratory Heim Pál Children's Hospital H 1089 Budapest Hungary
Department of Genetics Cell and Immunobiology Semmelweis University H 1089 Budapest Hungary
Department of Paediatrics and Adolescent Medicine Rigshospitalet DK 2100 Copenhagen Denmark
Department of Pediatrics Pécs University H 7623 Pécs Hungary
Zobrazit více v PubMed
Filbin M., Monje M. Developmental origins and emerging therapeutic opportunities for childhood cancer. Nat. Med. 2019;25:367–376. doi: 10.1038/s41591-019-0383-9. PubMed DOI PMC
Pui C., Pei D., Campana D., Cheng C., Sandlund J., Bowman W., Hudson M., Ribeiro R., Raimondi S., Jeha S., et al. A Revised Definition for Cure of Childhood Acute Lymphoblastic Leukemia. Leukemia. 2014;28:2336–2343. doi: 10.1038/leu.2014.142. PubMed DOI PMC
Coleman J.J., Pontefract S.K. Adverse drug reactions. Clin. Med. 2016;16:481–485. doi: 10.7861/clinmedicine.16-5-481. PubMed DOI PMC
Kearns G.L., Abdel-Rahman S.M., Alander S.W., Blowey D.L., Leeder J.S., Kauffman R.E. Developmental pharmacology - Drug disposition, action, and therapy in infants and children. N. Engl. J. Med. 2003;349:1157–1167. doi: 10.1056/NEJMra035092. PubMed DOI
Kim J.A., Ceccarelli R., Lu C.Y. Pharmacogenomic Biomarkers in US FDA-Approved Drug Labels (2000–2020) J. Pers. Med. 2021;11:179. doi: 10.3390/jpm11030179. PubMed DOI PMC
Cunningham L., Aplenc R. Pharmacogenetics of acute lymphoblastic leukemia treatment response. Expert Opin. Pharmacother. 2007;8:2519–2531. doi: 10.1517/14656566.8.15.2519. PubMed DOI
Stary J., Zimmermann M., Campbell M., Castillo L., Dibar E., Donska S., Gonzalez A., Izraeli S., Janic D., Jazbec J., et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: Results of the randomized intercontinental trial ALL IC-BFM 2002. J. Clin. Oncol. 2014;32:174–184. doi: 10.1200/JCO.2013.48.6522. PubMed DOI
Marchiano R.D.M., Sante G.D., Piro G., Carbone C., Tortora G., Boldrini L., Pietragalla A., Daniele G., Tredicine M., Cesario A., et al. Translational Research in the Era of Precision Medicine: Where We Are and Where We Will Go. J. Pers. Med. 2021;11:216. doi: 10.3390/jpm11030216. PubMed DOI PMC
Pui C.H., Howard S.C. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008;9:257–268. doi: 10.1016/S1470-2045(08)70070-6. PubMed DOI
Parasole R., Petruzziello F., Menna G., Mangione A., Cianciulli E., Buffardi S., Marchese L., Nastro A., Misuraca A., Poggi V. Central nervous system complications during treatment of acute lymphoblastic leukemia in a single pediatric institution. Leuk. Lymphoma. 2010;51:1063–1071. doi: 10.3109/10428191003754608. PubMed DOI
Kembhavi S.A., Somvanshi S., Banavali S., Kurkure P., Arora B. Pictorial essay: Acute neurological complications in children with acute lymphoblastic leukemia. Indian J. Radiol. Imaging. 2012;22:98–105. doi: 10.4103/0971-3026.101080. PubMed DOI PMC
Magge R.S., De Angelis L.M. The double-edged sword: Neurotoxicity of chemotherapy. Blood Rev. 2015;29:93–100. doi: 10.1016/j.blre.2014.09.012. PubMed DOI PMC
Vagace J.M., de la Maya M.D., Caceres-Marzal C., Gonzalez de Murillo S., Gervasini G. Central nervous system chemotoxicity during treatment of pediatric acute lymphoblastic leukemia/lymphoma. Crit. Rev. Oncol. Hematol. 2012;84:274–286. doi: 10.1016/j.critrevonc.2012.04.003. PubMed DOI
De Carvalho D.C., Wanderley A.V., dos Santos A.M.R., Fernandes M.R., Cohen Lima de Castro A.d.N., Leitão L.P.C., de Carvalho J.A.N., de Souza T.P., Khayat A.S., dos Santos S.E.B., et al. Pharmacogenomics and variations in the risk of toxicity during the consolidation/maintenance phases of the treatment of pediatric B-cell leukemia patients from an admixed population in the Brazilian Amazon. Leuk. Res. 2018;74:10–13. doi: 10.1016/j.leukres.2018.09.003. PubMed DOI
Stanulla M., Schäffeler E., Arens S., Rathmann A., Schrauder A., Welte K., Eichelbaum M., Zanger U.M., Schrappe M., Schwabb M. GSTP1 and MDR1 genotypes and central nervous system relapse in childhood acute lymphoblastic leukemia. Int. J. Hematol. 2005;81:39–44. doi: 10.1532/IJH97.E0418. PubMed DOI
Mahadeo K.M., Dhall G., Panigrahy A., Lastra C., Ettinger L.J. Subacute methotrexate neurotoxicity and cerebral venous sinus thrombosis in a 12-year old with acute lymphoblastic leukemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Homocysteine-mediated methotrexate neurotoxicity via direct endothelial injury. Pediatr. Hematol. Oncol. 2010;27:46–52. doi: 10.3109/08880010903341904. PubMed DOI
Egbelakin A., Ferguson M., MacGill E., Lehmann A., Topletz A., Quinney S., Li L., McCammack K., Hall S., Renbarger J. Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr. Blood Cancer. 2011;56:7. doi: 10.1002/pbc.22845. PubMed DOI PMC
Froklage F.E., Reijneveld J.C., Heimans J.J. Central neurotoxicity in cancer chemotherapy: Pharmacogenetic insights. Pharmacogenomics. 2011;12:379–395. doi: 10.2217/pgs.10.197. PubMed DOI
Kishi S., Cheng C., French D., Pei D., Das S., Cook E.H., Hijiya N., Rizzari C., Rosner G.L., Frudakis T., et al. Ancestry and pharm acogenetics of antileukemic drug toxicity. Blood. 2007;109:4151–4157. doi: 10.1182/blood-2006-10-054528. PubMed DOI PMC
Erdilyi D.J., Kámory E., Csókay B., Andrikovics H., Tordai A., Kiss C., Filni-Semsei A., Janszky I., Zalka A., Fekete G., et al. Synergistic interaction of ABCB1 and ABCG2 polymorphisms predicts the prevalence of toxic encephalopathy during anticancer chemotherapy. Pharmacogenomics J. 2008;8:321–327. doi: 10.1038/sj.tpj.6500480. PubMed DOI
Talaat R.M., El-Kelliny M.Y.K., El-Akhras B.A., Bakry R.M., Riad K.F., Guirgis A.A. Association of C3435T, C1236T and C4125A polymorphisms of the MDR-1 Gene in Egyptian children with acute lymphoblastic leukaemia. Asian Pacific J. Cancer Prev. 2018;19:2535–2543. doi: 10.22034/APJCP.2018.19.9.2535. PubMed DOI PMC
Ceppi F., Langlois-pelletier C., Gagné V., Rousseau J., Lorenzo S.D., Kevin K.M., Cijov D., Sallan S.E., Lewis B. Polymorphisms of the vincristine pathway and response to treatment in children with childhood acute lymphoblastic leukemia. Pharmacogenomics. 2014;15:1105–1116. doi: 10.2217/pgs.14.68. PubMed DOI PMC
Cole P.D., Beckwith K.A., Vijayanathan V., Roychowdhury S., Smith A.K., Kamen B.A. Folate Homeostasis in Cerebrospinal Fluid During Therapy for Acute Lymphoblastic Leukemia. Pediatr. Neurol. 2009;40:34–41. doi: 10.1016/j.pediatrneurol.2008.09.005. PubMed DOI
Özütemiz C., Roshan S.K., Kroll N.J., Benson J.C., Rykken J.B., Oswood M.C., Zhang L., McKinney A.M. Acute toxic leukoencephalopathy: Etiologies, imaging findings, and outcomes in 101 patients. Am. J. Neuroradiol. 2019;40:267–275. doi: 10.3174/ajnr.A5947. PubMed DOI PMC
Beitinjaneh A., McKinney A.M., Cao Q., Weisdorf D.J. Toxic Leukoencephalopathy following Fludarabine-Associated Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 2011;17:300–308. doi: 10.1016/j.bbmt.2010.04.003. PubMed DOI
Schmiegelow K., Attarbaschi A., Barzilai S., Escherich G., Frandsen T.L., Halsey C., Hough R., Jeha S., Kato M., Liang D.C., et al. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: A Delphi consensus. Lancet Oncol. 2016;17:e231–e239. doi: 10.1016/S1470-2045(16)30035-3. PubMed DOI
Fulbright J.M., Raman S., McClellan W.S., August K.J. Late effects of childhood leukemia therapy. Curr. Hematol. Malig. Rep. 2011;6:195–205. doi: 10.1007/s11899-011-0094-x. PubMed DOI
Anastasopoulou S., Eriksson M.A., Heyman M., Wang C., Niinimäki R., Mikkel S., Vaitkevičienė G.E., Johannsdottir I.M., Myrberg I.H., Jonsson O.G., et al. Posterior reversible encephalopathy syndrome in children with acute lymphoblastic leukemia: Clinical characteristics, risk factors, course, and outcome of disease. Pediatr. Blood Cancer. 2019;66:1–10. doi: 10.1002/pbc.27594. PubMed DOI
Anastasopoulou S., Heyman M., Eriksson M.A., Niinimäki R., Taskinen M., Mikkel S., Vaitkeviciene G.E., Johannsdottir I.M., Myrberg I.H., Jonsson O.G., et al. Seizures during treatment of childhood acute lymphoblastic leukemia: A population-based cohort study. Eur. J. Paediatr. Neurol. 2020;27:72–77. doi: 10.1016/j.ejpn.2020.04.004. PubMed DOI
Olmos-Jiménez R., Díaz-Carrasco M.S., Galera-Miñarro A., Pascual-Gazquez J.F., Espuny-Miró A. Evaluation of standardized triple intrathecal therapy toxicity in oncohematological pediatric patients. Int. J. Clin. Pharm. 2017;39:126–132. doi: 10.1007/s11096-016-0408-0. PubMed DOI
Mateos M.K., Marshall G.M., Barbaro P.M., Quinn M.C., George C., Mayoh C., Sutton R., Revesz T., Giles J.E., Barbaric D., et al. Methotrexate-related central neurotoxicity: Clinical characteristics, risk factors and genome-wide association study in children treated for acute lymphoblastic leukemia. Haematologica. 2021 doi: 10.3324/haematol.2020.268565. PubMed DOI PMC
Ritchey A.K., Pollock B.H., Lauer S.J., Andejeski Y., Buchanan G.R. Improved survival of children with isolated CNS relapse of acute lymphoblastic leukemia: A pediatric oncology group study. J. Clin. Oncol. 1999;17:3745–3752. doi: 10.1200/JCO.1999.17.12.3745. PubMed DOI
Tsurusawa M., Yumura-Yagi K., Ohara A., Hara J., Katano N., Tsuchida M. Survival outcome after the first central nervous system relapse in children with acute lymphoblastic leukemia: A retrospective analysis of 79 patients in a joint program involving the experience of three Japanese study groups. Int. J. Hematol. 2007;85:36–40. doi: 10.1532/IJH97.06085. PubMed DOI
Frishman-Levy L., Izraeli S. Advances in understanding the pathogenesis of CNS acutelymphoblastic leukaemia and potential for therapy. Br. J. Haematol. 2016;176:157–167. doi: 10.1111/bjh.14411. PubMed DOI
Krishnan S., Wade R., Moorman A.V., Mitchell C., Kinsey S.E., Eden T.O.B., Parker C., Vora A., Richards S., Saha V. Temporal changes in the incidence and pattern of central nervous system relapses in children with acute lymphoblastic leukaemia treated on four consecutive Medical Research Council trials, 1985–2001. Leukemia. 2010;24:450–459. doi: 10.1038/leu.2009.264. PubMed DOI PMC
Gao R.W., Dusenbery K.E., Cao Q., Smith A.R., Yuan J. Augmenting Total Body Irradiation with a Cranial Boost before Stem Cell Transplantation Protects Against Post-Transplant Central Nervous System Relapse in Acute Lymphoblastic Leukemia. Biol. Blood Marrow Transplant. 2018;24:501–506. doi: 10.1016/j.bbmt.2017.11.013. PubMed DOI PMC
Fukano R., Nishimura M., Ito N., Nakashima K., Kodama Y., Okamura J., Inagaki J. Efficacy of prophylactic additional cranial irradiation and intrathecal chemotherapy for the prevention of CNS relapse after allogeneic hematopoietic SCT for childhood ALL. Pediatr. Transplant. 2014;18:518–523. doi: 10.1111/petr.12276. PubMed DOI
Laver J.H., Barredo J.C., Amylon M., Schwenn M., Kurtzberg J., Camitta B.M., Pullen J., Link M.P., Borowitz M., Ravindranath Y., et al. Effects of cranial radiation in children with high risk T cell acute lymphoblastic leukemia: A Pediatric Oncology Group report. Leukemia. 2000;14:369–373. doi: 10.1038/sj.leu.2401693. PubMed DOI
Piette C., Suciu S., Bertrand Y., Uyttebroeck A., Vandecruys E., Plat G., Paillard C., Pluchart C., Sirvent N., Maurus R., et al. Long-term outcome evaluation of medium/high risk acute lymphoblastic leukaemia children treated with or without cranial radiotherapy in the EORTC 58832 randomized study. Br. J. Haematol. 2020;189:351–362. doi: 10.1111/bjh.16337. PubMed DOI
Jastaniah W., Elimam N., Abdalla K., AlAzmi A.A., Algamal A., Felimban S. Intrathecal dose intensification by CNS status at diagnosis in the treatment of children with acute lymphoblastic leukemia. Hematology. 2019;24:369–377. doi: 10.1080/16078454.2019.1590962. PubMed DOI
Pui C.H., Mahmoud H.H., Rivera G.K., Hancock M.L., Sandlund J.T., Behm F.G., Head D.R., Relling M.V., Ribeiro R.C., Rubnitz J.E., et al. Early intensification of intrathecal chemotherapy virtually eliminates central nervous system relapse in children with acute lymphoblastic leukemia. Blood. 1998;92:411–415. doi: 10.1182/blood.V92.2.411. PubMed DOI
Kobayashi K., Ito M., Miyajima T., Fujii T., Okuno T. Successful management of intractable epilepsy with intravenous lidocaine and lidocaine tapes. Pediatr. Neurol. 1999;21:476–480. doi: 10.1016/S0887-8994(99)00026-0. PubMed DOI
NOPHO Participating Institutions. [(accessed on 1 October 2020)]; Available online: https://www.nopho.org/organization/treating_clinics/Participating%20Clinics%202019.pdf.
NIH Common terminology criteria for adverse events v4.0. NIH Publ. 2009;2009:1–71.
Zaliova M., Stuchly J., Winkowska L., Musilova A., Fiser K., Slamova M., Starkova J., Vaskova M., Hrusak O., Sramkova L., et al. Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort. Haematologica. 2019;104 doi: 10.3324/haematol.2018.204974. PubMed DOI PMC
Sági J.C., Egyed B., Kelemen A., Kutszegi N., Hegyi M., Gézsi A., Herlitschke M.A., Rzepiel A., Fodor L.E., Ottóffy G., et al. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer. 2018;18:1–14. doi: 10.1186/s12885-018-4629-6. PubMed DOI PMC
Wolthers B.O., Frandsen T.L., Abrahamsson J., Albertsen B.K., Helt L.R., Heyman M., Jónsson G., Kõrgvee L.T., Lund B., Raja R.A., et al. Asparaginase-associated pancreatitis: A study on phenotype and genotype in the NOPHO ALL2008 protocol. Leukemia. 2017;31:325–332. doi: 10.1038/leu.2016.203. PubMed DOI
Højfeldt S.G., Wolthers B.O., Tulstrup M., Abrahamsson J., Gupta R., Harila-Saari A., Heyman M., Henriksen L.T., Jónsson Ò.G., Lähteenmäki P.M., et al. Genetic predisposition to PEG-asparaginase hypersensitivity in children treated according to NOPHO ALL2008. Br. J. Haematol. 2019;184:405–417. doi: 10.1111/bjh.15660. PubMed DOI
Storey J.D. A direct approach to false discovery rates. J. R. Stat. Soc. 2002;64:479–498. doi: 10.1111/1467-9868.00346. DOI
Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Therneau T. A Package for Survival Analysis in R. R package version 3.2-7. R Core Team; Vienna, Austria: 2020.
Stoer N.C., Samuelsen S.O. Weighted Cox-Regression for Nested Case-Control Data. R package version 1.2-2. R Core Team; Vienna, Austria: 2020.
Watanabe K., Arakawa Y., Oguma E., Uehara T., Yanagi M., Oyama C., Ikeda Y., Sasaki K., Isobe K., Mori M., et al. Characteristics of methotrexate-induced stroke-like neurotoxicity. Int. J. Hematol. 2018;108:630–636. doi: 10.1007/s12185-018-2525-0. PubMed DOI
Baker D.K., Relling M.V., Pui C.H., Christensen M.L., Evans W.E., Rodman J.H. Increased teniposide clearance with concomitant anticonvulsant therapy. J. Clin. Oncol. 1992;10:311–315. doi: 10.1200/JCO.1992.10.2.311. PubMed DOI
Schrøder H., Østergaard J.R. Interference of high-dose methotrexate in the metabolism of valproate? Pediatr. Hematol. Oncol. 1994;11:445–449. doi: 10.3109/08880019409140546. PubMed DOI
Hough R.E., Kirkwood A.A., Samarasinghe S., Rowntree C.J., Goulden N.J., Vora A. Major Deviations in the Delivery of Induction Chemotherapy Are Associated with an Increased Risk of Relapse in Acute Lymphoblastic Leukaemia: Results from UKALL2003. Blood. 2019;134:2579. doi: 10.1182/blood-2019-127223. DOI
Aberuyi N., Rahgozar S., Pourabutaleb E., Ghaedi K. Selective dysregulation of ABC transporters in methotrexate-resistant leukemia T-cells can confer cross-resistance to cytarabine, vincristine and dexamethasone, but not doxorubicin. Curr. Res. Transl. Med. 2020;69:103269. doi: 10.1016/j.retram.2020.09.003. PubMed DOI
Ramos-Peñafiel C., Olarte-Carrillo I., Maldonado R.C., de la Cruz Rosas A., Collazo-Jaloma J., Martínez-Tovar A. Association of three factors (ABCB1 gene expression, steroid response, early response at day + 8) on the response to induction in patients with acute lymphoblastic leukemia. Ann. Hematol. 2020;99:2629–2637. doi: 10.1007/s00277-020-04277-y. PubMed DOI
Olarte Carrillo I., Ramos Peñafiel C., Miranda Peralta E., Rozen Fuller E., Kassack Ipiña J.J., Centeno Cruz F., Garrido Guerrero E., Collazo Jaloma J., Nacho Vargas K., Martínez Tovar A. Clinical significance of the ABCB1 and ABCG2 gene expression levels in acute lymphoblastic leukemia. Hematology. 2017;22:286–291. doi: 10.1080/10245332.2016.1265780. PubMed DOI
Ankathil R. ABCB1 genetic variants in leukemias: Current insights into treatment outcomes. Pharmgenomics. Pers. Med. 2017;10:169–181. doi: 10.2147/PGPM.S105208. PubMed DOI PMC
Ma C.X., Sun Y.H., Wang H.Y. ABCB1 polymorphisms correlate with susceptibility to adult acute leukemia and response to high-dose methotrexate. Tumor Biol. 2015;36:7599–7606. doi: 10.1007/s13277-015-3403-5. PubMed DOI
Ramírez-Pacheco A., Moreno-Guerrero S., Alamillo I., Medina-Sanson A., Lopez B., Moreno-Galván M. Mexican Childhood Acute Lymphoblastic Leukemia: A Pilot Study of the MDR1 and MTHFR Gene Polymorphisms and Their Associations with Clinical Outcomes. Genet. Test. Mol. Biomarkers. 2016;20:597–602. doi: 10.1089/gtmb.2015.0287. PubMed DOI
Zhang Y.X., Ma Y., Zhang H., Zhang W.P., Yang X.Y. Genetic polymorphism in MDR1 C3435T is a determinant of methotrexate cerebrospinal fluid concentrations in Chinese children with acute lymphoblastic leukemia. Int. J. Clin. Pharmacol. Ther. 2020;58:254–260. doi: 10.5414/CP203462. PubMed DOI
Lopez-Lopez E., Gutierrez-Camino A., Astigarraga I., Navajas A., Echebarria-Barona A., Garcia-Miguel P., Garcia De Andoin N., Lobo C., Guerra-Merino I., Martin-Guerrero I., et al. Vincristine pharmacokinetics pathway and neurotoxicity during early phases of treatment in pediatric acute lymphoblastic leukemia. Pharmacogenomics. 2016;17:731–741. doi: 10.2217/pgs-2016-0001. PubMed DOI
Watson M.A., Stewart R.K., Smith G.B.J., Massey T.E., Bell D.A. Human glutathione S-transferase P1 polymorphisms: Relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis. 1998;19:275–280. doi: 10.1093/carcin/19.2.275. PubMed DOI
Krull K.R., Bhojwani D., Conklin H.M., Pei D., Cheng C., Reddick W.E., Sandlund J.T., Pui C.H. Genetic mediators of neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia. J. Clin. Oncol. 2013;31:2182–2188. doi: 10.1200/JCO.2012.46.7944. PubMed DOI PMC
Leonardi D.B., Abbate M., Riccheri M.C., Nuñez M., Alfonso G., Gueron G., De Siervi A., Vazquez E., Cotignola J. Improving risk stratification of patients with childhood acute lymphoblastic leukemia: Glutathione-S-Transferases polymorphisms are associated with increased risk of relapse. Oncotarget. 2017;8:110–117. doi: 10.18632/oncotarget.8606. PubMed DOI PMC
Krajinovic M., Labuda D., Sinnett D. Childhood acute lymphoblastic leukemia: Genetic determinants of susceptibility and disease outcome. Rev. Environ. Health. 2001;16:263–279. doi: 10.1515/REVEH.2001.16.4.263. PubMed DOI
Anderer G., Schrappe M., Brechlin A.M., Lauten M., Muti P., Welte K., Stanulla M. Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics. 2000;10:715–726. doi: 10.1097/00008571-200011000-00006. PubMed DOI
Krajinovic M., Labuda D., Sinnett D. Glutathione S-transferase P1 genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukaemia. Pharmacogenetics. 2002;12:655–658. doi: 10.1097/00008571-200211000-00010. PubMed DOI