Computational Approaches of Quasi-Static Compression Loading of SS316L Lattice Structures Made by Selective Laser Melting

. 2021 May 10 ; 14 (9) : . [epub] 20210510

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34068584

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007304 ESIF, EU Operational Programme Research, Development and Education
FSI-S-20-6290 The Ministry of Education, Youth and Sports, faculty specific research projects
FSI-S-20-6296 The Ministry of Education, Youth and Sports, faculty specific research projects

Additive manufacturing methods (AM) allow the production of complex-shaped lattice structures from a wide range of materials with enhanced mechanical properties, e.g., high strength to relative density ratio. These structures can be modified for various applications considering a transfer of a specific load or to absorb a precise amount of energy with the required deformation pattern. However, the structure design requires knowledge of the relationship between nonlinear material properties and lattice structure geometrical imperfections affected by manufacturing process parameters. A detailed analytical and numerical computational investigation must be done to better understand the behavior of lattice structures under mechanical loading. Different computational methods lead to different levels of result accuracy and reveal various deformational features. Therefore, this study focuses on a comparison of computational approaches using a quasi-static compression experiment of body-centered cubic (BCC) lattice structure manufactured of stainless steel 316L by selective laser melting technology. Models of geometry in numerical simulations are supplemented with geometrical imperfections that occur on the lattice structure's surface during the manufacturing process. They are related to the change of lattice struts cross-section size and actual shape. Results of the models supplemented with geometrical imperfections improved the accuracy of the calculations compared to the nominal geometry.

Zobrazit více v PubMed

Bonatti C., Mohr D. Mechanical Performance of Additively-Manufactured Anisotropic and Isotropic Smooth Shell-Lattice Materials: Simulations & Experiments. J. Mech. Phys. Solids. 2019 doi: 10.1016/j.jmps.2018.08.022. DOI

Gibson L.J., Ashby M.F. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press; Cambridge, UK: 2014.

Smith M., Guan Z., Cantwell W.J. Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using the Selective Laser Melting Technique. Int. J. Mech. Sci. 2013;67:28–41. doi: 10.1016/j.ijmecsci.2012.12.004. DOI

Harris J.A., Winter R.E., McShane G.J. Impact Response of Additively Manufactured Metallic Hybrid Lattice Materials. Int. J. Impact Eng. 2017;104:177–191. doi: 10.1016/j.ijimpeng.2017.02.007. DOI

Deshpande V.S., Fleck N.A. Isotropic Constitutive Models for Metallic Foams. J. Mech. Phys. Solids. 2000;48:1253–1283. doi: 10.1016/S0022-5096(99)00082-4. DOI

Rashed M.G., Ashraf M., Mines R.A.W., Hazell P.J. Metallic Microlattice Materials: A Current State of the Art on Manufacturing, Mechanical Properties and Applications. Mater. Des. 2016;95:518–533. doi: 10.1016/j.matdes.2016.01.146. DOI

Banhart J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Prog. Mater. Sci. 2001;46:559–632. doi: 10.1016/S0079-6425(00)00002-5. DOI

Salimon A., Bréchet Y., Ashby M.F., Greer A.L. Potential Applications for Steel and Titanium Metal Foams. J. Mater. Sci. 2005;40:5793–5799. doi: 10.1007/s10853-005-4993-x. DOI

Ozdemir Z., Hernandez-Nava E., Tyas A., Warren J.A., Fay S.D., Goodall R., Todd I., Askes H. Energy Absorption in Lattice Structures in Dynamics: Experiments. Int. J. Impact Eng. 2016;89:49–61. doi: 10.1016/j.ijimpeng.2015.10.007. DOI

Tancogne-Dejean T., Spierings A.B., Mohr D. Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption under Static and Dynamic Loading. Acta Mater. 2016;116:14–28. doi: 10.1016/j.actamat.2016.05.054. DOI

Ozdemir Z., Tyas A., Goodall R., Askes H. Energy Absorption in Lattice Structures in Dynamics: Nonlinear FE Simulations. Int. J. Impact Eng. 2017:102. doi: 10.1016/j.ijimpeng.2016.11.016. DOI

Zhao M., Liu F., Fu G., Zhang D., Zhang T., Zhou H. Improved Mechanical Properties and Energy Absorption of BCC Lattice Structures with Triply Periodic Minimal Surfaces Fabricated by SLM. Materials. 2018;11:2411. doi: 10.3390/ma11122411. PubMed DOI PMC

Labeas G., Ptochos E. Investigation of Sandwich Structures with Innovative Cellular Metallic Cores under Low Velocity Impact Loading. Plast. Rubber Compos. 2013;42:194–202. doi: 10.1179/1743289811Y.0000000056. DOI

Xiao L., Song W. Additively-Manufactured Functionally Graded Ti-6Al-4V Lattice Structures with High Strength under Static and Dynamic Loading: Experiments. Int. J. Impact Eng. 2018;111:255–272. doi: 10.1016/j.ijimpeng.2017.09.018. DOI

Chen Z., Wang Z., Zhou S., Shao J., Wu X. Novel Negative Poisson’s Ratio Lattice Structures with Enhanced Stiffness and Energy Absorption Capacity. Materials. 2018;11:1095. doi: 10.3390/ma11071095. PubMed DOI PMC

Vrana R., Vaverka O., Cervinek O., Pantelejev L., Hurnik J., Koutny D., Palousek D. Heat Treatment of the SLM Processed Lattice Structure Made of AlSi10Mg and Its Effect on the Impact Energy Absorption; Proceedings of the Conference: Euro PM2019 Congress & Exhibition; Maastricht, The Netherlands. 13–16 October 2019; p. 6.

Maskery I., Hussey A., Panesar A., Aremu A., Tuck C., Ashcroft I., Hague R. An Investigation into Reinforced and Functionally Graded Lattice Structures. J. Cell. Plast. 2017;53:151–165. doi: 10.1177/0021955X16639035. DOI

Zhang L., Feih S., Daynes S., Chang S., Wang M.Y., Wei J., Lu W.F. Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures under Compressive Loading. Addit. Manuf. 2018;23:505–515. doi: 10.1016/j.addma.2018.08.007. DOI

Tancogne-Dejean T., Mohr D. Stiffness and Specific Energy Absorption of Additively-Manufactured Metallic BCC Metamaterials Composed of Tapered Beams. Int. J. Mech. Sci. 2018;141:101–116. doi: 10.1016/j.ijmecsci.2018.03.027. DOI

Al-Saedi D.S.J., Masood S.H., Faizan-Ur-Rab M., Alomarah A., Ponnusamy P. Mechanical Properties and Energy Absorption Capability of Functionally Graded F2BCC Lattice Fabricated by SLM. Mater. Des. 2018;144:32–44. doi: 10.1016/j.matdes.2018.01.059. DOI

Mines R.A.W., Tsopanos S., Shen Y., Hasan R., McKown S.T. Drop Weight Impact Behaviour of Sandwich Panels with Metallic Micro Lattice Cores. Int. J. Impact Eng. 2013;60:120–132. doi: 10.1016/j.ijimpeng.2013.04.007. DOI

Crupi V., Kara E., Epasto G., Guglielmino E., Aykul H. Static Behavior of Lattice Structures Produced via Direct Metal Laser Sintering Technology. Mater. Des. 2017;135:246–256. doi: 10.1016/j.matdes.2017.09.003. DOI

Vrána R., Koutný D., Paloušek D., Pantělejev L., Jaroš J., Zikmund T., Kaiser J. Selective Laser Melting Strategy for Fabrication of Thin Struts Usable in Lattice Structures. Materials. 2018;11:1763. doi: 10.3390/ma11091763. PubMed DOI PMC

Lei H., Li C., Meng J., Zhou H., Liu Y., Zhang X., Wang P., Fang D. Evaluation of Compressive Properties of SLM-Fabricated Multi-Layer Lattice Structures by Experimental Test and μ-CT-Based Finite Element Analysis. Mater. Des. 2019;169:107685. doi: 10.1016/j.matdes.2019.107685. DOI

Luxner M.H., Stampfl J., Pettermann H.E. Linear and Nonlinear Numerical Investigations of Regular Open Cell Structures; Proceedings of the ASME International Mechanical Engineering Congress and Exposition; Anaheim, CA, USA. 13–19 November 2004; New York, NY, USA: American Society of Mechanical Engineers, Aerospace Division (Publication) AD; 2004. pp. 469–475.

Luxner M.H., Stampfl J., Pettermann H.E. Finite Element Modeling Concepts and Linear Analyses of 3D Regular Open Cell Structures. J. Mater. Sci. 2005;40:5859–5866. doi: 10.1007/s10853-005-5020-y. DOI

Luxner M.H., Woesz A., Stampfl J., Fratzl P., Pettermann H.E. A Finite Element Study on the Effects of Disorder in Cellular Structures. Acta Biomater. 2009;5:381–390. doi: 10.1016/j.actbio.2008.07.025. PubMed DOI

Karamooz Ravari M.R., Kadkhodaei M., Badrossamay M., Rezaei R. Numerical Investigation on Mechanical Properties of Cellular Lattice Structures Fabricated by Fused Deposition Modeling. Int. J. Mech. Sci. 2014;88:154–161. doi: 10.1016/j.ijmecsci.2014.08.009. DOI

Dong G., Zhao Y.F. Numerical and Experimental Investigation of the Joint Stiffness in Lattice Structures Fabricated by Additive Manufacturing. Int. J. Mech. Sci. 2018;148:475–485. doi: 10.1016/j.ijmecsci.2018.09.014. DOI

Geng X., Ma L., Liu C., Zhao C., Yue Z.F. A FEM Study on Mechanical Behavior of Cellular Lattice Materials Based on Combined Elements. Mater. Sci. Eng. A. 2018;712:188–198. doi: 10.1016/j.msea.2017.11.082. DOI

Vrána R., Cervinek O., Manas P., Koutný D., Paloušek D. Dynamic Loading of Lattice Structure Made by Selective Laser Melting-Numerical Model with Substitution of Geometrical Imperfections. Materials. 2018;11:2129. doi: 10.3390/ma11112129. PubMed DOI PMC

Gümrük R., Mines R.A.W. Compressive Behaviour of Stainless Steel Micro-Lattice Structures. Int. J. Mech. Sci. 2013;68:125–139. doi: 10.1016/j.ijmecsci.2013.01.006. DOI

Li P., Wang Z., Petrinic N., Siviour C.R. Deformation Behaviour of Stainless Steel Microlattice Structures by Selective Laser Melting. Mater. Sci. Eng. A. 2014;614:116–121. doi: 10.1016/j.msea.2014.07.015. DOI

Liu Y., Dong Z., Liang J., Ge J. Determination of the Strength of a Multilayer BCC Lattice Structure with Face Sheets. Int. J. Mech. Sci. 2019;152:568–575. doi: 10.1016/j.ijmecsci.2019.01.026. DOI

Lozanovski B., Leary M., Tran P., Shidid D., Qian M., Choong P., Brandt M. Computational Modelling of Strut Defects in SLM Manufactured Lattice Structures. Mater. Des. 2019;171:107671. doi: 10.1016/j.matdes.2019.107671. DOI

Tsopanos S., Mines R.A.W., McKown S., Shen Y., Cantwell W.J., Brooks W., Sutcliffe C.J. The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Microlattice Structures. J. Manuf. Sci. Eng. Trans. ASME. 2010;132:0410111–04101112. doi: 10.1115/1.4001743. DOI

Amani Y., Dancette S., Delroisse P., Simar A., Maire E. Compression Behavior of Lattice Structures Produced by Selective Laser Melting: X-Ray Tomography Based Experimental and Finite Element Approaches. Acta Mater. 2018;159:395–407. doi: 10.1016/j.actamat.2018.08.030. DOI

SLM Solutions Material Data Sheet. Fe-Alloy 316L (1.4404)[1] [(accessed on 10 October 2019)]; Available online: https://www.slm-solutions.com/fileadmin/Content/Powder/MDS/MDS_Fe-Alloy_316L_0820_V0.91_EN_LS.pdf.

Gümrük R., Mines R.A.W., Karadeniz S. Determination of Strain Rate Sensitivity of Micro-Struts Manufactured Using the Selective Laser Melting Method. J. Mater. Eng. Perform. 2018;27:1016–1032. doi: 10.1007/s11665-018-3208-y. DOI

Koutny D., Vrana R., Palousek D. Dimensional Accuracy of Single Beams of AlSi10Mg Alloy and 316L Stainless Steel Manufactured by SLM. In: Pogacar D., editor. Proceedings of the 5th International Conference on Additive Technologies iCAT2014; Vienna, Austria. 16–17 October 2014; Ljubljana, Slovenia: Interesansa Zavod; 2014.

Palousek D., Omasta M., Koutny D., Bednar J., Koutecky T., Dokoupil F. Effect of Matte Coating on 3D Optical Measurement Accuracy. Opt. Mater. 2015;40 doi: 10.1016/j.optmat.2014.11.020. DOI

Ushijima K., Cantwell W.J., Mines R.A.W., Tsopanos S., Smith M. An Investigation into the Compressive Properties of Stainless Steel Micro-Lattice Structures. J. Sandw. Struct. Mater. 2011;13:303–329. doi: 10.1177/1099636210380997. DOI

Yang Y., Shan M., Zhao L., Qi D., Zhang J. Multiple Strut-Deformation Patterns Based Analytical Elastic Modulus of Sandwich BCC Lattices. Mater. Des. 2019;181:107916. doi: 10.1016/j.matdes.2019.107916. DOI

Ren X., Xiao L., Hao Z. Multi-Property Cellular Material Design Approach Based on the Mechanical Behaviour Analysis of the Reinforced Lattice Structure. Mater. Des. 2019;174:107785. doi: 10.1016/j.matdes.2019.107785. DOI

Werner B., Todt M., Pettermann H.E. Nonlinear Finite Element Study of Beams with Elasto-Plastic Damage Behavior in the Post-Buckling Regime. PAMM. 2019;19:2. doi: 10.1002/pamm.201900248. DOI

Labeas G.N., Sunaric M.M. Investigation on the Static Response and Failure Process of Metallic Open Lattice Cellular Structures. Strain. 2010;46:195–204. doi: 10.1111/j.1475-1305.2008.00498.x. DOI

Trevisan F., Calignano F., Lorusso M., Pakkanen J., Aversa A., Ambrosio E.P., Lombardi M., Fino P., Manfredi D. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties. Materials. 2017;10:76. doi: 10.3390/ma10010076. PubMed DOI PMC

Qiu C., Yue S., Adkins N.J.E., Ward M., Hassanin H., Lee P.D., Withers P.J., Attallah M.M. Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting. Mater. Sci. Eng. A. 2015;628:188–197. doi: 10.1016/j.msea.2015.01.031. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...