Computational Approaches of Quasi-Static Compression Loading of SS316L Lattice Structures Made by Selective Laser Melting
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007304
ESIF, EU Operational Programme Research, Development and Education
FSI-S-20-6290
The Ministry of Education, Youth and Sports, faculty specific research projects
FSI-S-20-6296
The Ministry of Education, Youth and Sports, faculty specific research projects
PubMed
34068584
PubMed Central
PMC8126075
DOI
10.3390/ma14092462
PII: ma14092462
Knihovny.cz E-zdroje
- Klíčová slova
- body centered cubic, finite element analysis, quasi-static compression test, selective laser melting, stainless steel 316L,
- Publikační typ
- časopisecké články MeSH
Additive manufacturing methods (AM) allow the production of complex-shaped lattice structures from a wide range of materials with enhanced mechanical properties, e.g., high strength to relative density ratio. These structures can be modified for various applications considering a transfer of a specific load or to absorb a precise amount of energy with the required deformation pattern. However, the structure design requires knowledge of the relationship between nonlinear material properties and lattice structure geometrical imperfections affected by manufacturing process parameters. A detailed analytical and numerical computational investigation must be done to better understand the behavior of lattice structures under mechanical loading. Different computational methods lead to different levels of result accuracy and reveal various deformational features. Therefore, this study focuses on a comparison of computational approaches using a quasi-static compression experiment of body-centered cubic (BCC) lattice structure manufactured of stainless steel 316L by selective laser melting technology. Models of geometry in numerical simulations are supplemented with geometrical imperfections that occur on the lattice structure's surface during the manufacturing process. They are related to the change of lattice struts cross-section size and actual shape. Results of the models supplemented with geometrical imperfections improved the accuracy of the calculations compared to the nominal geometry.
Zobrazit více v PubMed
Bonatti C., Mohr D. Mechanical Performance of Additively-Manufactured Anisotropic and Isotropic Smooth Shell-Lattice Materials: Simulations & Experiments. J. Mech. Phys. Solids. 2019 doi: 10.1016/j.jmps.2018.08.022. DOI
Gibson L.J., Ashby M.F. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press; Cambridge, UK: 2014.
Smith M., Guan Z., Cantwell W.J. Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using the Selective Laser Melting Technique. Int. J. Mech. Sci. 2013;67:28–41. doi: 10.1016/j.ijmecsci.2012.12.004. DOI
Harris J.A., Winter R.E., McShane G.J. Impact Response of Additively Manufactured Metallic Hybrid Lattice Materials. Int. J. Impact Eng. 2017;104:177–191. doi: 10.1016/j.ijimpeng.2017.02.007. DOI
Deshpande V.S., Fleck N.A. Isotropic Constitutive Models for Metallic Foams. J. Mech. Phys. Solids. 2000;48:1253–1283. doi: 10.1016/S0022-5096(99)00082-4. DOI
Rashed M.G., Ashraf M., Mines R.A.W., Hazell P.J. Metallic Microlattice Materials: A Current State of the Art on Manufacturing, Mechanical Properties and Applications. Mater. Des. 2016;95:518–533. doi: 10.1016/j.matdes.2016.01.146. DOI
Banhart J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Prog. Mater. Sci. 2001;46:559–632. doi: 10.1016/S0079-6425(00)00002-5. DOI
Salimon A., Bréchet Y., Ashby M.F., Greer A.L. Potential Applications for Steel and Titanium Metal Foams. J. Mater. Sci. 2005;40:5793–5799. doi: 10.1007/s10853-005-4993-x. DOI
Ozdemir Z., Hernandez-Nava E., Tyas A., Warren J.A., Fay S.D., Goodall R., Todd I., Askes H. Energy Absorption in Lattice Structures in Dynamics: Experiments. Int. J. Impact Eng. 2016;89:49–61. doi: 10.1016/j.ijimpeng.2015.10.007. DOI
Tancogne-Dejean T., Spierings A.B., Mohr D. Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption under Static and Dynamic Loading. Acta Mater. 2016;116:14–28. doi: 10.1016/j.actamat.2016.05.054. DOI
Ozdemir Z., Tyas A., Goodall R., Askes H. Energy Absorption in Lattice Structures in Dynamics: Nonlinear FE Simulations. Int. J. Impact Eng. 2017:102. doi: 10.1016/j.ijimpeng.2016.11.016. DOI
Zhao M., Liu F., Fu G., Zhang D., Zhang T., Zhou H. Improved Mechanical Properties and Energy Absorption of BCC Lattice Structures with Triply Periodic Minimal Surfaces Fabricated by SLM. Materials. 2018;11:2411. doi: 10.3390/ma11122411. PubMed DOI PMC
Labeas G., Ptochos E. Investigation of Sandwich Structures with Innovative Cellular Metallic Cores under Low Velocity Impact Loading. Plast. Rubber Compos. 2013;42:194–202. doi: 10.1179/1743289811Y.0000000056. DOI
Xiao L., Song W. Additively-Manufactured Functionally Graded Ti-6Al-4V Lattice Structures with High Strength under Static and Dynamic Loading: Experiments. Int. J. Impact Eng. 2018;111:255–272. doi: 10.1016/j.ijimpeng.2017.09.018. DOI
Chen Z., Wang Z., Zhou S., Shao J., Wu X. Novel Negative Poisson’s Ratio Lattice Structures with Enhanced Stiffness and Energy Absorption Capacity. Materials. 2018;11:1095. doi: 10.3390/ma11071095. PubMed DOI PMC
Vrana R., Vaverka O., Cervinek O., Pantelejev L., Hurnik J., Koutny D., Palousek D. Heat Treatment of the SLM Processed Lattice Structure Made of AlSi10Mg and Its Effect on the Impact Energy Absorption; Proceedings of the Conference: Euro PM2019 Congress & Exhibition; Maastricht, The Netherlands. 13–16 October 2019; p. 6.
Maskery I., Hussey A., Panesar A., Aremu A., Tuck C., Ashcroft I., Hague R. An Investigation into Reinforced and Functionally Graded Lattice Structures. J. Cell. Plast. 2017;53:151–165. doi: 10.1177/0021955X16639035. DOI
Zhang L., Feih S., Daynes S., Chang S., Wang M.Y., Wei J., Lu W.F. Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures under Compressive Loading. Addit. Manuf. 2018;23:505–515. doi: 10.1016/j.addma.2018.08.007. DOI
Tancogne-Dejean T., Mohr D. Stiffness and Specific Energy Absorption of Additively-Manufactured Metallic BCC Metamaterials Composed of Tapered Beams. Int. J. Mech. Sci. 2018;141:101–116. doi: 10.1016/j.ijmecsci.2018.03.027. DOI
Al-Saedi D.S.J., Masood S.H., Faizan-Ur-Rab M., Alomarah A., Ponnusamy P. Mechanical Properties and Energy Absorption Capability of Functionally Graded F2BCC Lattice Fabricated by SLM. Mater. Des. 2018;144:32–44. doi: 10.1016/j.matdes.2018.01.059. DOI
Mines R.A.W., Tsopanos S., Shen Y., Hasan R., McKown S.T. Drop Weight Impact Behaviour of Sandwich Panels with Metallic Micro Lattice Cores. Int. J. Impact Eng. 2013;60:120–132. doi: 10.1016/j.ijimpeng.2013.04.007. DOI
Crupi V., Kara E., Epasto G., Guglielmino E., Aykul H. Static Behavior of Lattice Structures Produced via Direct Metal Laser Sintering Technology. Mater. Des. 2017;135:246–256. doi: 10.1016/j.matdes.2017.09.003. DOI
Vrána R., Koutný D., Paloušek D., Pantělejev L., Jaroš J., Zikmund T., Kaiser J. Selective Laser Melting Strategy for Fabrication of Thin Struts Usable in Lattice Structures. Materials. 2018;11:1763. doi: 10.3390/ma11091763. PubMed DOI PMC
Lei H., Li C., Meng J., Zhou H., Liu Y., Zhang X., Wang P., Fang D. Evaluation of Compressive Properties of SLM-Fabricated Multi-Layer Lattice Structures by Experimental Test and μ-CT-Based Finite Element Analysis. Mater. Des. 2019;169:107685. doi: 10.1016/j.matdes.2019.107685. DOI
Luxner M.H., Stampfl J., Pettermann H.E. Linear and Nonlinear Numerical Investigations of Regular Open Cell Structures; Proceedings of the ASME International Mechanical Engineering Congress and Exposition; Anaheim, CA, USA. 13–19 November 2004; New York, NY, USA: American Society of Mechanical Engineers, Aerospace Division (Publication) AD; 2004. pp. 469–475.
Luxner M.H., Stampfl J., Pettermann H.E. Finite Element Modeling Concepts and Linear Analyses of 3D Regular Open Cell Structures. J. Mater. Sci. 2005;40:5859–5866. doi: 10.1007/s10853-005-5020-y. DOI
Luxner M.H., Woesz A., Stampfl J., Fratzl P., Pettermann H.E. A Finite Element Study on the Effects of Disorder in Cellular Structures. Acta Biomater. 2009;5:381–390. doi: 10.1016/j.actbio.2008.07.025. PubMed DOI
Karamooz Ravari M.R., Kadkhodaei M., Badrossamay M., Rezaei R. Numerical Investigation on Mechanical Properties of Cellular Lattice Structures Fabricated by Fused Deposition Modeling. Int. J. Mech. Sci. 2014;88:154–161. doi: 10.1016/j.ijmecsci.2014.08.009. DOI
Dong G., Zhao Y.F. Numerical and Experimental Investigation of the Joint Stiffness in Lattice Structures Fabricated by Additive Manufacturing. Int. J. Mech. Sci. 2018;148:475–485. doi: 10.1016/j.ijmecsci.2018.09.014. DOI
Geng X., Ma L., Liu C., Zhao C., Yue Z.F. A FEM Study on Mechanical Behavior of Cellular Lattice Materials Based on Combined Elements. Mater. Sci. Eng. A. 2018;712:188–198. doi: 10.1016/j.msea.2017.11.082. DOI
Vrána R., Cervinek O., Manas P., Koutný D., Paloušek D. Dynamic Loading of Lattice Structure Made by Selective Laser Melting-Numerical Model with Substitution of Geometrical Imperfections. Materials. 2018;11:2129. doi: 10.3390/ma11112129. PubMed DOI PMC
Gümrük R., Mines R.A.W. Compressive Behaviour of Stainless Steel Micro-Lattice Structures. Int. J. Mech. Sci. 2013;68:125–139. doi: 10.1016/j.ijmecsci.2013.01.006. DOI
Li P., Wang Z., Petrinic N., Siviour C.R. Deformation Behaviour of Stainless Steel Microlattice Structures by Selective Laser Melting. Mater. Sci. Eng. A. 2014;614:116–121. doi: 10.1016/j.msea.2014.07.015. DOI
Liu Y., Dong Z., Liang J., Ge J. Determination of the Strength of a Multilayer BCC Lattice Structure with Face Sheets. Int. J. Mech. Sci. 2019;152:568–575. doi: 10.1016/j.ijmecsci.2019.01.026. DOI
Lozanovski B., Leary M., Tran P., Shidid D., Qian M., Choong P., Brandt M. Computational Modelling of Strut Defects in SLM Manufactured Lattice Structures. Mater. Des. 2019;171:107671. doi: 10.1016/j.matdes.2019.107671. DOI
Tsopanos S., Mines R.A.W., McKown S., Shen Y., Cantwell W.J., Brooks W., Sutcliffe C.J. The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Microlattice Structures. J. Manuf. Sci. Eng. Trans. ASME. 2010;132:0410111–04101112. doi: 10.1115/1.4001743. DOI
Amani Y., Dancette S., Delroisse P., Simar A., Maire E. Compression Behavior of Lattice Structures Produced by Selective Laser Melting: X-Ray Tomography Based Experimental and Finite Element Approaches. Acta Mater. 2018;159:395–407. doi: 10.1016/j.actamat.2018.08.030. DOI
SLM Solutions Material Data Sheet. Fe-Alloy 316L (1.4404)[1] [(accessed on 10 October 2019)]; Available online: https://www.slm-solutions.com/fileadmin/Content/Powder/MDS/MDS_Fe-Alloy_316L_0820_V0.91_EN_LS.pdf.
Gümrük R., Mines R.A.W., Karadeniz S. Determination of Strain Rate Sensitivity of Micro-Struts Manufactured Using the Selective Laser Melting Method. J. Mater. Eng. Perform. 2018;27:1016–1032. doi: 10.1007/s11665-018-3208-y. DOI
Koutny D., Vrana R., Palousek D. Dimensional Accuracy of Single Beams of AlSi10Mg Alloy and 316L Stainless Steel Manufactured by SLM. In: Pogacar D., editor. Proceedings of the 5th International Conference on Additive Technologies iCAT2014; Vienna, Austria. 16–17 October 2014; Ljubljana, Slovenia: Interesansa Zavod; 2014.
Palousek D., Omasta M., Koutny D., Bednar J., Koutecky T., Dokoupil F. Effect of Matte Coating on 3D Optical Measurement Accuracy. Opt. Mater. 2015;40 doi: 10.1016/j.optmat.2014.11.020. DOI
Ushijima K., Cantwell W.J., Mines R.A.W., Tsopanos S., Smith M. An Investigation into the Compressive Properties of Stainless Steel Micro-Lattice Structures. J. Sandw. Struct. Mater. 2011;13:303–329. doi: 10.1177/1099636210380997. DOI
Yang Y., Shan M., Zhao L., Qi D., Zhang J. Multiple Strut-Deformation Patterns Based Analytical Elastic Modulus of Sandwich BCC Lattices. Mater. Des. 2019;181:107916. doi: 10.1016/j.matdes.2019.107916. DOI
Ren X., Xiao L., Hao Z. Multi-Property Cellular Material Design Approach Based on the Mechanical Behaviour Analysis of the Reinforced Lattice Structure. Mater. Des. 2019;174:107785. doi: 10.1016/j.matdes.2019.107785. DOI
Werner B., Todt M., Pettermann H.E. Nonlinear Finite Element Study of Beams with Elasto-Plastic Damage Behavior in the Post-Buckling Regime. PAMM. 2019;19:2. doi: 10.1002/pamm.201900248. DOI
Labeas G.N., Sunaric M.M. Investigation on the Static Response and Failure Process of Metallic Open Lattice Cellular Structures. Strain. 2010;46:195–204. doi: 10.1111/j.1475-1305.2008.00498.x. DOI
Trevisan F., Calignano F., Lorusso M., Pakkanen J., Aversa A., Ambrosio E.P., Lombardi M., Fino P., Manfredi D. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties. Materials. 2017;10:76. doi: 10.3390/ma10010076. PubMed DOI PMC
Qiu C., Yue S., Adkins N.J.E., Ward M., Hassanin H., Lee P.D., Withers P.J., Attallah M.M. Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting. Mater. Sci. Eng. A. 2015;628:188–197. doi: 10.1016/j.msea.2015.01.031. DOI