Selective Laser Melting Strategy for Fabrication of Thin Struts Usable in Lattice Structures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30231524
PubMed Central
PMC6164021
DOI
10.3390/ma11091763
PII: ma11091763
Knihovny.cz E-zdroje
- Klíčová slova
- AlSi10Mg aluminum alloy, contour strategy, input energy, linear energy, melt-pool size, porosity, roughness, scanning strategy, selective laser melting (SLM),
- Publikační typ
- časopisecké články MeSH
This paper deals with the selective laser melting (SLM) processing strategy for strut-lattice structure production which uses only contour lines and allows the porosity and roughness level to be managed based on combination of the input and linear energy parameters. To evaluate the influence of a laser scanning strategy on material properties and surface roughness a set of experiments was performed. The single welds test was used to find the appropriate processing parameters to achieve continuous welds with known width. Strut samples were used to find a suitable value of weld overlapping and to clarify the influence of input and linear laser energy on the strut porosity and surface roughness. The samples of inclined hollow struts were used to compare the wall thickness with single welds width; the results showed about 25% wider welds in the case of a hollow strut. Using the proposed SLM strategy it is possible to reach a significantly lower porosity and surface roughness of the struts. The best results for struts with an inclination of 35.26° were achieved with 25% track overlapping, input energy in the range from 9 J to 10.5 J and linear energy Elin from 0.25 to 0.4 J/mm; in particular, the relative density of 99.83% and the surface roughness on the side of the strut of Ra 14.6 μm in an as-built state was achieved.
Zobrazit více v PubMed
Kopanidis A., Theodorakakos A., Gavaises E., Bouris D. 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam. Int. J. Heat Mass Transf. 2010;53:2539–2550. doi: 10.1016/j.ijheatmasstransfer.2009.12.067. DOI
Mohmmed R., Ahmed A., Elgalib M.A., Ali H. Low Velocity Impact Properties of Foam Sandwich Composites: A Brief Review. Int. J. Eng. Sci. Innov. Technol. 2014;3:579–591.
Mohmmed R., Zhang F., Sun B., Gu B. Finite element analyses of low-velocity impact damage of foam sandwiched composites with different ply angles face sheets. Mater. Des. 2013;47:189–199. doi: 10.1016/j.matdes.2012.12.016. DOI
Shimizu T., Matsuzaki K., Nagai H., Kanetake N. Production of high porosity metal foams using EPS beads as space holders. Mater. Sci. Eng. A. 2012;558:343–348. doi: 10.1016/j.msea.2012.08.010. DOI
Zhu L., Guo K., Li Y., Yu T.X., Zhou Q. Experimental study on the dynamic behaviour of aluminium foam sandwich plates under single and repeated impacts at low temperature. Int. J. Impact Eng. 2018;114:123–132. doi: 10.1016/j.ijimpeng.2017.12.001. DOI
Harris J.A., Winter R.E., McShane G.J. Impact response of additively manufactured metallic hybrid lattice materials. Int. J. Impact Eng. 2017;104:177–191. doi: 10.1016/j.ijimpeng.2017.02.007. DOI
Mines R.A.W., Tsopanos S., Shen Y., Hasan R., McKown S.T. Drop weight impact behaviour of sandwich panels with metallic micro lattice cores. Int. J. Impact Eng. 2013;60:120–132. doi: 10.1016/j.ijimpeng.2013.04.007. DOI
Qiu C., Yue S., Adkins N.J.E., Ward M., Hassanin H., Lee P.D., Withers P.J., Attallah M.M. Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mater. Sci. Eng. A. 2015;628:188–197. doi: 10.1016/j.msea.2015.01.031. DOI
Attar H., Ehtemam-Haghighia S., Kent D., Dargusch M.S. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review. Int. J. Mach. Tools Manuf. 2018;133:85–102. doi: 10.1016/j.ijmachtools.2018.06.003. DOI
Yan C., Hao L., Hussein A., Young P., Raymont D. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. J. Mater. Des. 2014;55:533–541. doi: 10.1016/j.matdes.2013.10.027. DOI
Brandl E., Heckenberger U., Holzinger V., Buchbinder D. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. J. Mater. Des. 2012;34:159–169. doi: 10.1016/j.matdes.2011.07.067. DOI
Kempen K., Thijs L., van Humbeeck J., Kruth J.-P. Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting. Phys. Procedia. 2012;39:439–446. doi: 10.1016/j.phpro.2012.10.059. DOI
Thijs L., Kempen K., Kruth J.-P., van Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61:1809–1819. doi: 10.1016/j.actamat.2012.11.052. DOI
Yadroitsev I. Selective Laser Melting: Direct Manufacturing of 3D-Objects by Selective Laser Melting of Metal Powders. LAP Lambert; Saarbrücken, Germany: 2009.
Koutny D., Palousek D., Pantelejev L., Hoeller C., Pichler R., Tesicky L., Kaiser J. Influence of scanning strategies on processing of aluminum alloy EN AW 2618 using selective laser melting. Materials. 2018;11:298. doi: 10.3390/ma11020298. PubMed DOI PMC
Abele E., Stoffregen H.A., Klimkeit K., Hoche H., Oechsner M. Optimisation of process parameters for lattice structures. Rapid Prototyp. J. 2015;21:117–127. doi: 10.1108/RPJ-10-2012-0096. DOI
Leary M., Mazur M., Elambasseril J., McMillan M., Chirent T., Sun Y., Qian M., Easton M., Brandt M. Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater. Des. 2016;98:344–357. doi: 10.1016/j.matdes.2016.02.127. DOI
Koutny D., Vrana R., Paloušek D. Dimensional accuracy of single beams of AlSi10Mg alloy and 316L stainless steel manufactured by SLM; Proceedings of the 5th International Conference on Additive Technologies iCAT2014; Vienna, Austria. 16–17 October 2014; pp. 142–147.
Yu G., Gu D., Dai D., Xia M., Ma C., Shi Q. On the role of processing parameters in thermal behavior, surface morphology and accuracy during laser 3D printing of aluminum alloy. J. Phys. D Appl. Phys. 2016:1–15. doi: 10.1088/0022-3727/49/13/135501. DOI
Yu G., Gu D., Dai D., Xia M., Ma C., Chang K. Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy. Appl. Phys. A. 2016;122:1–12. doi: 10.1007/s00339-016-0428-6. DOI
Wei P., Wei Z. The AlSi10Mg samples produced by selective laser melting: Single track, densification, microstructure and mechanical behavior. Appl. Surf. Sci. 2017;408:38–50. doi: 10.1016/j.apsusc.2017.02.215. DOI
Delroisse P., Jacques P.J., Maire E., Rigo O., Simar A. Effect of strut orientation on the microstructure heterogeneities in AlSi10Mg lattices processed by selective laser melting. Scr. Mater. 2017;141:32–35. doi: 10.1016/j.scriptamat.2017.07.020. DOI
Attar H., Calin M., Zhang L.C., Scudino S., Eckert J. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng. A. 2014;593:170–177. doi: 10.1016/j.msea.2013.11.038. DOI
Vrana R., Vosynek P., Koutny D., Navrat T., Palousek D. Evaluation of mechanical behavior of 3D printed lattice structure by SLM: Experiment and FEA; Proceedings of the Engineering Mechanics 2018 24th International Conference; Svratka, The Czech Republic. 14–17 May 2018; pp. 897–900.
Vrana R., Koutny D., Paloušek D., Zikmund T. Influence of selective laser melting process parameters on impact resistance of lattice structure made from AlSi10Mg; Proceedings of the World PM 2016 Congress and Exhibition; Hamburg, Germany. 9–13 October 2016;
Vrana R., Koutny D., Paloušek D. Impact Resistance of Different Types of Lattice Structures Manufactured by SLM. MM Sci. J. 2016;2016:1579–1585. doi: 10.17973/MMSJ.2016_12_2016186. DOI
Vrana R., Koutny D., Paloušek D., Zikmund T. Impact resistance of lattice structure made by selective laser melting from AlSi12 alloy. MM Sci. J. 2015;2015:1579–1585. doi: 10.17973/MMSJ.2015_12_201547. DOI
Vrana R., Koutny D., Paloušek D., Koukal O., Zikmund T., Krejci P. Impact resistance of lattice structure made by selective laser melting technology; Proceedings of the Euro PM 2015: International Power Metallurgy Congress and Exhibition; Reims, France. 4–7 September 2015;
Palousek D., Omasta M., Koutny D., Bednar J., Koutecky T., Dokoupil F. Effect of matte coating on 3D optical measurement accuracy. Opt. Matfer. 2015;40:1–9. doi: 10.1016/j.optmat.2014.11.020. DOI
Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 2014;1:77–86. doi: 10.1016/j.addma.2014.08.001. DOI
Deviations of the SLM Produced Lattice Structures and Their Influence on Mechanical Properties