Influence of Process Energy on the Formation of Imperfections in Body-Centered Cubic Cells with Struts in the Vertical Orientation Produced by Laser Powder Bed Fusion from the Magnesium Alloy WE43
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. FV 22-08
The Ministry of Education, Youth and Sports (MEYS, MŠMT in Czech) institutional support
FSI-S-23-8340
Brno University of Technology, Faculty of Mechanical Engineering, faculty specific research project
PubMed
38399006
PubMed Central
PMC10893238
DOI
10.3390/mi15020278
PII: mi15020278
Knihovny.cz E-zdroje
- Klíčová slova
- laser powder bed fusion, lattice structure, magnesium alloy WE43, relative density, scanning strategy,
- Publikační typ
- časopisecké články MeSH
The low specific density and good strength-to-weight ratio make magnesium alloys a promising material for lightweight applications. The combination of the properties of magnesium alloys and Additive Manufacturing by the Laser Powder Bed Fusion (LPBF) process enables the production of complex geometries such as lattice or bionic structures. Magnesium structures are intended to drastically reduce the weight of components and enable a reduction in fuel consumption, particularly in the aerospace and automotive industries. However, the LPBF processing of magnesium structures is a challenge. In order to produce high-quality structures, the process parameters must be developed in such a way that imperfections such as porosity, high surface roughness and dimensional inaccuracy are suppressed. In this study, the contour scanning strategy is used to produce vertical and inclined struts with diameters ranging from 0.5 to 3 mm. The combination of process parameters such as laser power, laser speed and overlap depend on the inclination and diameter of the strut. The process parameters with an area energy of 1.15-1.46 J/mm2 for struts with a diameter of 0.5 mm and an area energy of 1.62-3.69 J/mm2 for diameters of 1, 2 and 3 mm achieve a relative material density of 99.2 to 99.6%, measured on the metallographic sections. The results are verified by CT analyses of BCCZ cells, which achieve a relative material density of over 99.3%. The influence of the process parameters on the quality of struts is described and discussed.
Zobrazit více v PubMed
Wong K.V., Hernandez A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012;2012:208760. doi: 10.5402/2012/208760. DOI
Bhuvanesh Kumar M., Sathiya P. Methods and Materials for Additive Manufacturing: A Critical Review on Advancements and Challenges. Thin-Walled Struct. 2021;159:107228. doi: 10.1016/j.tws.2020.107228. DOI
Wang X., Xu S., Zhou S., Xu W., Leary M., Choong P., Qian M., Brandt M., Xie Y.M. Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review. Biomaterials. 2016;83:127–141. doi: 10.1016/j.biomaterials.2016.01.012. PubMed DOI
Zhang W.-N., Wang L.-Z., Feng Z.-X., Chen Y.-M. Research Progress on Selective Laser Melting (SLM) of Magnesium Alloys: A Review. Optik. 2020;207:163842. doi: 10.1016/j.ijleo.2019.163842. DOI
Staiger M.P., Pietak A.M., Huadmai J., Dias G. Magnesium and Its Alloys as Orthopedic Biomaterials: A Review. Biomaterials. 2006;27:1728–1734. doi: 10.1016/j.biomaterials.2005.10.003. PubMed DOI
Kulekci M.K. Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 2008;39:851–865. doi: 10.1007/s00170-007-1279-2. DOI
Bai J., Yang Y., Wen C., Chen J., Zhou G., Jiang B., Peng X., Pan F. Applications of Magnesium Alloys for Aerospace: A Review. J. Magnes. Alloys. 2023;11:3609–3619. doi: 10.1016/j.jma.2023.09.015. DOI
Zhu L., Li N., Childs P.R.N. Light-Weighting in Aerospace Component and System Design. Propuls. Power Res. 2018;7:103–119. doi: 10.1016/j.jppr.2018.04.001. DOI
Budholiya S., Bhat A., Raj S.A., Sultan M.T.H., Shah A.U.M., Basri A.A. State of the Art Review about Bio-Inspired Design and Applications: An Aerospace Perspective. Appl. Sci. 2021;11:5054. doi: 10.3390/app11115054. DOI
Ge S., Wang Y., Tian J., Lei D., Yu Q., Wang G. An in Vitro Study on the Biocompatibility of WE Magnesium Alloys. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016;104:482–487. doi: 10.1002/jbm.b.33388. PubMed DOI
Li Y., Zhou J., Pavanram P., Leeflang M.A., Fockaert L.I., Pouran B., Tümer N., Schröder K.U., Mol J.M.C., Weinans H., et al. Additively Manufactured Biodegradable Porous Magnesium. Acta Biomater. 2018;67:378–392. doi: 10.1016/j.actbio.2017.12.008. PubMed DOI
Levorova J., Duskova J., Drahos M., Vrbova R., Vojtech D., Kubasek J., Bartos M., Dugova L., Ulmann D., Foltan R. In Vivo Study on Biodegradable Magnesium Alloys: Bone Healing around WE43 Screws. J. Biomater. Appl. 2018;32:886–895. doi: 10.1177/0885328217743321. PubMed DOI
Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting. Addit. Manuf. 2014;1–4:77–86. doi: 10.1016/j.addma.2014.08.001. DOI
Galy C., Le Guen E., Lacoste E., Arvieu C. Main Defects Observed in Aluminum Alloy Parts Produced by SLM: From Causes to Consequences. Addit. Manuf. 2018;22:165–175. doi: 10.1016/j.addma.2018.05.005. DOI
Dong Z., Zhang X., Shi W., Zhou H., Lei H., Liang J. Study of Size Effect on Microstructure and Mechanical Properties of AlSi10Mg Samples Made by Selective Laser Melting. Materials. 2018;11:2463. doi: 10.3390/ma11122463. PubMed DOI PMC
Delroisse P., Jacques P.J., Maire E., Rigo O., Simar A. Effect of Strut Orientation on the Microstructure Heterogeneities in AlSi10Mg Lattices Processed by Selective Laser Melting. Scr. Mater. 2017;141:32–35. doi: 10.1016/j.scriptamat.2017.07.020. DOI
Qiu C., Yue S., Adkins N.J.E., Ward M., Hassanin H., Lee P.D., Withers P.J., Attallah M.M. Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting. Mater. Sci. Eng. A. 2015;628:188–197. doi: 10.1016/j.msea.2015.01.031. DOI
Han X., Zhu H., Nie X., Wang G., Zeng X. Investigation on Selective Laser Melting AlSi10Mg Cellular Lattice Strut: Molten Pool Morphology, Surface Roughness and Dimensional Accuracy. Materials. 2018;11:392. doi: 10.3390/ma11030392. PubMed DOI PMC
Vrána R., Koutný D., Paloušek D., Pantělejev L., Jaroš J., Zikmund T., Kaiser J. Selective Laser Melting Strategy for Fabrication of Thin Struts Usable in Lattice Structures. Materials. 2018;11:1763. doi: 10.3390/ma11091763. PubMed DOI PMC
Vrána R., Jaroš J., Koutný D., Nosek J., Zikmund T., Kaiser J., Paloušek D. Contour Laser Strategy and Its Benefits for Lattice Structure Manufacturing by Selective Laser Melting Technology. J. Manuf. Process. 2022;74:640–657. doi: 10.1016/j.jmapro.2021.12.006. DOI
Pawlak A., Rosienkiewicz M., Chlebus E. Design of Experiments Approach in AZ31 Powder Selective Laser Melting Process Optimization. Arch. Civ. Mech. Eng. 2017;17:9–18. doi: 10.1016/j.acme.2016.07.007. DOI
Wei K., Gao M., Wang Z., Zeng X. Effect of Energy Input on Formability, Microstructure and Mechanical Properties of Selective Laser Melted AZ91D Magnesium Alloy. Mater. Sci. Eng. A. 2014;611:212–222. doi: 10.1016/j.msea.2014.05.092. DOI
Wei K., Wang Z., Zeng X. Influence of Element Vaporization on Formability, Composition, Microstructure, and Mechanical Performance of the Selective Laser Melted Mg–Zn–Zr Components. Mater. Lett. 2015;156:187–190. doi: 10.1016/j.matlet.2015.05.074. DOI
Chen H., Zhang Y., Giam A., Yan W. Experimental and Computational Study on Thermal and Fluid Behaviours of Powder Layer during Selective Laser Melting Additive Manufacturing. Addit. Manuf. 2022;52:102645. doi: 10.1016/j.addma.2022.102645. DOI
Song B., Dong S., Deng S., Liao H., Coddet C. Microstructure and Tensile Properties of Iron Parts Fabricated by Selective Laser Melting. Opt. Laser Technol. 2014;56:451–460. doi: 10.1016/j.optlastec.2013.09.017. DOI
Attar H., Calin M., Zhang L.C., Scudino S., Eckert J. Manufacture by Selective Laser Melting and Mechanical Behavior of Commercially Pure Titanium. Mater. Sci. Eng. A. 2014;593:170–177. doi: 10.1016/j.msea.2013.11.038. DOI
Attar H., Bönisch M., Calin M., Zhang L.-C., Scudino S., Eckert J. Selective Laser Melting of in Situ Titanium–Titanium Boride Composites: Processing, Microstructure and Mechanical Properties. Acta Mater. 2014;76:13–22. doi: 10.1016/j.actamat.2014.05.022. DOI
Hyer H., Zhou L., Benson G., McWilliams B., Cho K., Sohn Y. Additive Manufacturing of Dense WE43 Mg Alloy by Laser Powder Bed Fusion. Addit. Manuf. 2020;33:101123. doi: 10.1016/j.addma.2020.101123. DOI
Pauly S., Schricker C., Scudino S., Deng L., Kühn U. Processing a Glass-Forming Zr-Based Alloy by Selective Laser Melting. Mater. Des. 2017;135:133–141. doi: 10.1016/j.matdes.2017.08.070. DOI
Kempen K., Thijs L., Van Humbeeck J., Kruth J.-P. Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting. Phys. Procedia. 2012;39:439–446. doi: 10.1016/j.phpro.2012.10.059. DOI
Krištofová P., Roudnická M., Kubásek J., Paloušek D., Suchý J., Vojtěch D. Influence of Production Parameters on the Properties of 3D Printed Magnesium Alloy Mg-4Y-3RE-Zr (WE43) Manuf. Technol. 2019;19:613–618. doi: 10.21062/ujep/343.2019/a/1213-2489/MT/19/4/6013. DOI
Tammas-Williams S., Zhao H., Léonard F., Derguti F., Todd I., Prangnell P.B. XCT Analysis of the Influence of Melt Strategies on Defect Population in Ti–6Al–4V Components Manufactured by Selective Electron Beam Melting. Mater. Charact. 2015;102:47–61. doi: 10.1016/j.matchar.2015.02.008. DOI
Abele E., Stoffregen H.A., Kniepkamp M., Lang S., Hampe M. Selective Laser Melting for Manufacturing of Thin-Walled Porous Elements. J. Mater. Process. Technol. 2015;215:114–122. doi: 10.1016/j.jmatprotec.2014.07.017. DOI
King W.E., Barth H.D., Castillo V.M., Gallegos G.F., Gibbs J.W., Hahn D.E., Kamath C., Rubenchik A.M. Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing. J. Mater. Process. Technol. 2014;214:2915–2925. doi: 10.1016/j.jmatprotec.2014.06.005. DOI
Zhang C., Liao Q., Zhang X., Ma F., Wu M., Xu Q. Characterization of Porosity in Lack of Fusion Pores in Selective Laser Melting Using the Wavefunction. Mater. Res. Express. 2023;10:016501. doi: 10.1088/2053-1591/acaf24. DOI
Véle F., Ackermann M., Bittner V., Šafka J. Influence of Selective Laser Melting Technology Process Parameters on Porosity and Hardness of Aisi H13 Tool Steel: Statistical Approach. Materials. 2021;14:6052. doi: 10.3390/ma14206052. PubMed DOI PMC
Metel A.S., Stebulyanin M.M., Fedorov S.V., Okunkova A.A. Power Density Distribution for Laser Additive Manufacturing (SLM): Potential, Fundamentals and Advanced Applications. Technologies. 2018;7:5. doi: 10.3390/technologies7010005. DOI
Nudelis N., Mayr P. A Novel Classification Method for Pores in Laser Powder Bed Fusion. Metals. 2021;11:1912. doi: 10.3390/met11121912. DOI
Vrána R., Koutecký T., Červinek O., Zikmund T., Pantělejev L., Kaiser J., Koutný D. Deviations of the SLM Produced Lattice Structures and Their Influence on Mechanical Properties. Materials. 2022;15:3144. doi: 10.3390/ma15093144. PubMed DOI PMC