Deviations of the SLM Produced Lattice Structures and Their Influence on Mechanical Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018110
Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/16_025/0007304
Ministry of Education Youth and Sports
FSI-S-20-6353
Brno University of Technology
PubMed
35591477
PubMed Central
PMC9101096
DOI
10.3390/ma15093144
PII: ma15093144
Knihovny.cz E-zdroje
- Klíčová slova
- computed tomography (CT), digitization, finite element analysis (FEA), lattice structure, selective laser melting (SLM), shape and dimension analysis,
- Publikační typ
- časopisecké články MeSH
Selective laser melting (SLM) is an additive manufacturing technology suitable for producing cellular lattice structures using fine metal powder and a laser beam. However, the shape and dimensional deviations occur on the thin struts during manufacturing, influencing the mechanical properties of the structure. There are attempts in the literature to describe the actual shape of the struts' geometry, however, on a smaller data sample only, and there is a lack of a universal FEA material model applicable to a wider range of lattice structure diameters. To describe the actual dimensions of the struts, a set of lattice structures, with diameters ranging from 0.6 to 3.0 mm, were manufactured using SLM. These samples were digitized using micro-computed tomography (μCT) and fully analyzed for shape and dimensions. The results show large deviations in diameters of inscribed and circumscribed cylinders, indicating an elliptical shape of the struts. With increasing lattice structure diameter, the deviations decreased. In terms of the effect of the shape and dimensions on the mechanical properties, the Gaussian cylinder was found to describe struts in the diameter range of 1.5 to 3.0 mm sufficiently well. For smaller diameters, it is appropriate to represent the actual cross-section by an ellipse. The use of substitute ellipses, in combination with the compression test results, has resulted in FEA material model that can be used for the 0.6 to 3.0 mm struts' diameter range. The model has fixed Young's and tangential modules for these diameters and is controlled only by the yield strength parameter (YST).
Zobrazit více v PubMed
Schleifenbaum H., Meiners W., Wissenbach K., Hinke C. Individualized production by means of high power Selective Laser Melting. CIRP J. Manuf. Sci. Technol. 2010;2:161–169. doi: 10.1016/j.cirpj.2010.03.005. DOI
Leary M., Mazur M., Elambasseril J., McMillan M., Chirent T., Sun Y., Qian M., Easton M., Brandt M. Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater. Des. 2016;98:344–357. doi: 10.1016/j.matdes.2016.02.127. DOI
Vrána R., Koutný D., Paloušek D., Zikmund T. Impact Resistance of Lattice Structure Made by Selective Laser Meltin from AlSi12 alloy. MM Sci. J. 2015;2015:852–855. doi: 10.17973/MMSJ.2015_12_201547. DOI
Yan C., Hao L., Hussein A., Young P., Raymont D. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. J. Mater. 2014;55:533–541. doi: 10.1016/j.matdes.2013.10.027. DOI
Han X., Zhu H., Nie X., Wang G., Zeng X. Investigation on selective laser melting AlSi10Mg cellular lattice strut: Molten pool morphology, surface roughness and dimensional accuracy. Materials. 2018;11:392. doi: 10.3390/ma11030392. PubMed DOI PMC
Vrána R., Koutný D., Paloušek D., Pantělejev L., Jaroš J., Zikmund T., Kaiser J. Selective Laser Melting Strategy for Fabrication of Thin Struts Usable in Lattice Structures. Materials. 2018;11:1763. doi: 10.3390/ma11091763. PubMed DOI PMC
Strano G., Hao L., Everson R.M., Evans K.E. Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 2013;213:589–597. doi: 10.1016/j.jmatprotec.2012.11.011. DOI
Sing S.L., Wiria F.E., Yeong W.Y. Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior. Robot. Comput. Integr. Manuf. 2018;49:170–180. doi: 10.1016/j.rcim.2017.06.006. DOI
Platek P., Sienkiewicz J., Janiszewski J., Jiang F. Investigations on mechanical properties of lattice structures with different values of relative density made from 316L by selective laser melting (SLM) Materials. 2020;13:2204. doi: 10.3390/ma13092204. PubMed DOI PMC
Leach R.K., Bourell D., Carmignato S., Donmez A., Senin N., Dewulf W. Geometrical metrology for metal additive manufacturing. CIRP Ann. 2019;68:677–700. doi: 10.1016/j.cirp.2019.05.004. DOI
Sokolova V., Kantyukov A. Control of deviations in lattice structures manufactured by selective laser melting. Key Eng. Mater. 2019;822:580–584. doi: 10.4028/www.scientific.net/KEM.822.580. DOI
Vaverka O., Koutný D., Vrána R., Pantělejev L., Paloušek D. Effect of Heat Treatment on Mechanical Properties and Residual Stresses in Additively Manufactured Parts; Proceedings of the Engineering Mechanics 2018 24th International Conference; Svratka, Czech Republic. 14–17 May 2018; pp. 897–900.
Vrana R., Vaverka O., Koutny D., Docekalova K., Palousek D. Shape and dimensional analysis of lattice structures produced by selective laser melting. MM Sci. J. 2020;2020:3938–3942. doi: 10.17973/MMSJ.2020_06_2020013. DOI
Qiu C., Yue S., Adkins N.J.E., Ward M., Hassanin H., Lee P.D., Withers P.J., Attallah M.M. Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mater. Sci. Eng. A. 2015;628:188–197. doi: 10.1016/j.msea.2015.01.031. DOI
Koutecký T., Zikmund T., Glittová D., Paloušek D., Živčák J., Kaiser J. X-ray micro-CT measurement of large parts at very low temperature. Rev. Sci. Instrum. 2017;88:033707. doi: 10.1063/1.4979077. PubMed DOI
Suard M. Ph.D. Thesis. Université Grenoble Alpes (ComUE); Saint-Martin-d’Hères, France: 2015. Ees par EBM Characterization and Optimization of Lattice Structures made by Electron Beam Melting Caractérisation et Optimisation de Structures Treillis Fabriquées par EBM.
Suard M., Lhuissier P., Dendievel R., Blandin J.J., Vignat F., Villeneuve F. Towards stiffness prediction of cellular structures made by electron beam melting (EBM) Powder Metall. 2014;57:190–195. doi: 10.1179/1743290114Y.0000000093. DOI
Vrána R., Červinek O., Maňas P., Koutny D., Paloušek D. Dynamic Loading of Lattice Structure Made by Selective Laser Melting-Numerical Model with Substitution of Geometrical Imperfections. Materials. 2018;11:2129. doi: 10.3390/ma11112129. PubMed DOI PMC
Luxner M.H., Stampfl J., Pettermann H.E. Finite element modeling concepts and linear analyses of 3D regular open cell structures. J. Mater. Sci. 2005;40:5859–5866. doi: 10.1007/s10853-005-5020-y. DOI
Luxner M.H., Woesz A., Stampfl J., Fratzl P., Pettermann H.E. A finite element study on the effects of disorder in cellular structures. Acta Biomater. 2009;5:381–390. doi: 10.1016/j.actbio.2008.07.025. PubMed DOI
Belardi V.G., Fanelli P., Trupiano S., Vivio F. Multiscale analysis and mechanical characterization of open-cell foams by simplified FE modeling. Eur. J. Mech. A/Solids. 2021;89:104291. doi: 10.1016/j.euromechsol.2021.104291. DOI
Karamooz Ravari M.R., Kadkhodaei M., Badrossamay M., Rezaei R. Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling. Int. J. Mech. Sci. 2014;88:154–161. doi: 10.1016/j.ijmecsci.2014.08.009. DOI
Geng X., Ma L., Liu C., Zhao C., Yue Z.F. A FEM study on mechanical behavior of cellular lattice materials based on combined elements. Mater. Sci. Eng. A. 2018;712:188–198. doi: 10.1016/j.msea.2017.11.082. DOI
Lei H., Li C., Meng J., Zhou H., Liu Y., Zhang X., Wang P., Fang D. Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ-CT-based finite element analysis. Mater. Des. 2019;169:107685. doi: 10.1016/j.matdes.2019.107685. DOI
Akçay F.A., Wu D., Bai Y. Comprehensive studies on strength of 3D-printed aluminum micro lattice structures. Procedia Struct. Integr. 2020;28:1399–1406. doi: 10.1016/j.prostr.2020.10.112. DOI
Dong Z., Zhang X., Shi W., Zhou H., Lei H., Liang J. Study of Size Effect on Microstructure and Mechanical Properties of AlSi10Mg Samples Made by Selective Laser Melting. Materials. 2018;11:2463. doi: 10.3390/ma11122463. PubMed DOI PMC
Zikmund T., Šalplachta J., Zatočilová A., Břínek A., Pantělejev L., Štěpánek R., Koutný D., Paloušek D., Kaiser J. Computed tomography based procedure for reproducible porosity measurement of additive manufactured samples. NDT E Int. 2019;103:111–118. doi: 10.1016/j.ndteint.2019.02.008. DOI
Vrána R., Jaroš J., Koutný D., Nosek J., Zikmund T., Kaiser J., Paloušek D. Contour laser strategy and its benefits for lattice structure manufacturing by selective laser melting technology. J. Manuf. Process. 2022;74:640–657. doi: 10.1016/j.jmapro.2021.12.006. DOI
Großmann A., Gosmann J., Mittelstedt C. Lightweight lattice structures in selective laser melting: Design, fabrication and mechanical properties. Mater. Sci. Eng. A. 2019;766:138356. doi: 10.1016/j.msea.2019.138356. DOI
Kleszczynskia S., Ladewigb A., Friedbergerb K., Zur Jacobsmühlenc J., Merhofc D., Witta G. Position Dependency of Surface Roughness in Parts From Laser Beam; Proceedings of the 26th Internatinal Solid Free Form Fabrication Symposium; Austin, TX, USA. 10–12 August 2015; pp. 360–370.