Deviations of the SLM Produced Lattice Structures and Their Influence on Mechanical Properties

. 2022 Apr 26 ; 15 (9) : . [epub] 20220426

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35591477

Grantová podpora
LM2018110 Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/16_025/0007304 Ministry of Education Youth and Sports
FSI-S-20-6353 Brno University of Technology

Selective laser melting (SLM) is an additive manufacturing technology suitable for producing cellular lattice structures using fine metal powder and a laser beam. However, the shape and dimensional deviations occur on the thin struts during manufacturing, influencing the mechanical properties of the structure. There are attempts in the literature to describe the actual shape of the struts' geometry, however, on a smaller data sample only, and there is a lack of a universal FEA material model applicable to a wider range of lattice structure diameters. To describe the actual dimensions of the struts, a set of lattice structures, with diameters ranging from 0.6 to 3.0 mm, were manufactured using SLM. These samples were digitized using micro-computed tomography (μCT) and fully analyzed for shape and dimensions. The results show large deviations in diameters of inscribed and circumscribed cylinders, indicating an elliptical shape of the struts. With increasing lattice structure diameter, the deviations decreased. In terms of the effect of the shape and dimensions on the mechanical properties, the Gaussian cylinder was found to describe struts in the diameter range of 1.5 to 3.0 mm sufficiently well. For smaller diameters, it is appropriate to represent the actual cross-section by an ellipse. The use of substitute ellipses, in combination with the compression test results, has resulted in FEA material model that can be used for the 0.6 to 3.0 mm struts' diameter range. The model has fixed Young's and tangential modules for these diameters and is controlled only by the yield strength parameter (YST).

Zobrazit více v PubMed

Schleifenbaum H., Meiners W., Wissenbach K., Hinke C. Individualized production by means of high power Selective Laser Melting. CIRP J. Manuf. Sci. Technol. 2010;2:161–169. doi: 10.1016/j.cirpj.2010.03.005. DOI

Leary M., Mazur M., Elambasseril J., McMillan M., Chirent T., Sun Y., Qian M., Easton M., Brandt M. Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater. Des. 2016;98:344–357. doi: 10.1016/j.matdes.2016.02.127. DOI

Vrána R., Koutný D., Paloušek D., Zikmund T. Impact Resistance of Lattice Structure Made by Selective Laser Meltin from AlSi12 alloy. MM Sci. J. 2015;2015:852–855. doi: 10.17973/MMSJ.2015_12_201547. DOI

Yan C., Hao L., Hussein A., Young P., Raymont D. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. J. Mater. 2014;55:533–541. doi: 10.1016/j.matdes.2013.10.027. DOI

Han X., Zhu H., Nie X., Wang G., Zeng X. Investigation on selective laser melting AlSi10Mg cellular lattice strut: Molten pool morphology, surface roughness and dimensional accuracy. Materials. 2018;11:392. doi: 10.3390/ma11030392. PubMed DOI PMC

Vrána R., Koutný D., Paloušek D., Pantělejev L., Jaroš J., Zikmund T., Kaiser J. Selective Laser Melting Strategy for Fabrication of Thin Struts Usable in Lattice Structures. Materials. 2018;11:1763. doi: 10.3390/ma11091763. PubMed DOI PMC

Strano G., Hao L., Everson R.M., Evans K.E. Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 2013;213:589–597. doi: 10.1016/j.jmatprotec.2012.11.011. DOI

Sing S.L., Wiria F.E., Yeong W.Y. Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior. Robot. Comput. Integr. Manuf. 2018;49:170–180. doi: 10.1016/j.rcim.2017.06.006. DOI

Platek P., Sienkiewicz J., Janiszewski J., Jiang F. Investigations on mechanical properties of lattice structures with different values of relative density made from 316L by selective laser melting (SLM) Materials. 2020;13:2204. doi: 10.3390/ma13092204. PubMed DOI PMC

Leach R.K., Bourell D., Carmignato S., Donmez A., Senin N., Dewulf W. Geometrical metrology for metal additive manufacturing. CIRP Ann. 2019;68:677–700. doi: 10.1016/j.cirp.2019.05.004. DOI

Sokolova V., Kantyukov A. Control of deviations in lattice structures manufactured by selective laser melting. Key Eng. Mater. 2019;822:580–584. doi: 10.4028/www.scientific.net/KEM.822.580. DOI

Vaverka O., Koutný D., Vrána R., Pantělejev L., Paloušek D. Effect of Heat Treatment on Mechanical Properties and Residual Stresses in Additively Manufactured Parts; Proceedings of the Engineering Mechanics 2018 24th International Conference; Svratka, Czech Republic. 14–17 May 2018; pp. 897–900.

Vrana R., Vaverka O., Koutny D., Docekalova K., Palousek D. Shape and dimensional analysis of lattice structures produced by selective laser melting. MM Sci. J. 2020;2020:3938–3942. doi: 10.17973/MMSJ.2020_06_2020013. DOI

Qiu C., Yue S., Adkins N.J.E., Ward M., Hassanin H., Lee P.D., Withers P.J., Attallah M.M. Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mater. Sci. Eng. A. 2015;628:188–197. doi: 10.1016/j.msea.2015.01.031. DOI

Koutecký T., Zikmund T., Glittová D., Paloušek D., Živčák J., Kaiser J. X-ray micro-CT measurement of large parts at very low temperature. Rev. Sci. Instrum. 2017;88:033707. doi: 10.1063/1.4979077. PubMed DOI

Suard M. Ph.D. Thesis. Université Grenoble Alpes (ComUE); Saint-Martin-d’Hères, France: 2015. Ees par EBM Characterization and Optimization of Lattice Structures made by Electron Beam Melting Caractérisation et Optimisation de Structures Treillis Fabriquées par EBM.

Suard M., Lhuissier P., Dendievel R., Blandin J.J., Vignat F., Villeneuve F. Towards stiffness prediction of cellular structures made by electron beam melting (EBM) Powder Metall. 2014;57:190–195. doi: 10.1179/1743290114Y.0000000093. DOI

Vrána R., Červinek O., Maňas P., Koutny D., Paloušek D. Dynamic Loading of Lattice Structure Made by Selective Laser Melting-Numerical Model with Substitution of Geometrical Imperfections. Materials. 2018;11:2129. doi: 10.3390/ma11112129. PubMed DOI PMC

Luxner M.H., Stampfl J., Pettermann H.E. Finite element modeling concepts and linear analyses of 3D regular open cell structures. J. Mater. Sci. 2005;40:5859–5866. doi: 10.1007/s10853-005-5020-y. DOI

Luxner M.H., Woesz A., Stampfl J., Fratzl P., Pettermann H.E. A finite element study on the effects of disorder in cellular structures. Acta Biomater. 2009;5:381–390. doi: 10.1016/j.actbio.2008.07.025. PubMed DOI

Belardi V.G., Fanelli P., Trupiano S., Vivio F. Multiscale analysis and mechanical characterization of open-cell foams by simplified FE modeling. Eur. J. Mech. A/Solids. 2021;89:104291. doi: 10.1016/j.euromechsol.2021.104291. DOI

Karamooz Ravari M.R., Kadkhodaei M., Badrossamay M., Rezaei R. Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling. Int. J. Mech. Sci. 2014;88:154–161. doi: 10.1016/j.ijmecsci.2014.08.009. DOI

Geng X., Ma L., Liu C., Zhao C., Yue Z.F. A FEM study on mechanical behavior of cellular lattice materials based on combined elements. Mater. Sci. Eng. A. 2018;712:188–198. doi: 10.1016/j.msea.2017.11.082. DOI

Lei H., Li C., Meng J., Zhou H., Liu Y., Zhang X., Wang P., Fang D. Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ-CT-based finite element analysis. Mater. Des. 2019;169:107685. doi: 10.1016/j.matdes.2019.107685. DOI

Akçay F.A., Wu D., Bai Y. Comprehensive studies on strength of 3D-printed aluminum micro lattice structures. Procedia Struct. Integr. 2020;28:1399–1406. doi: 10.1016/j.prostr.2020.10.112. DOI

Dong Z., Zhang X., Shi W., Zhou H., Lei H., Liang J. Study of Size Effect on Microstructure and Mechanical Properties of AlSi10Mg Samples Made by Selective Laser Melting. Materials. 2018;11:2463. doi: 10.3390/ma11122463. PubMed DOI PMC

Zikmund T., Šalplachta J., Zatočilová A., Břínek A., Pantělejev L., Štěpánek R., Koutný D., Paloušek D., Kaiser J. Computed tomography based procedure for reproducible porosity measurement of additive manufactured samples. NDT E Int. 2019;103:111–118. doi: 10.1016/j.ndteint.2019.02.008. DOI

Vrána R., Jaroš J., Koutný D., Nosek J., Zikmund T., Kaiser J., Paloušek D. Contour laser strategy and its benefits for lattice structure manufacturing by selective laser melting technology. J. Manuf. Process. 2022;74:640–657. doi: 10.1016/j.jmapro.2021.12.006. DOI

Großmann A., Gosmann J., Mittelstedt C. Lightweight lattice structures in selective laser melting: Design, fabrication and mechanical properties. Mater. Sci. Eng. A. 2019;766:138356. doi: 10.1016/j.msea.2019.138356. DOI

Kleszczynskia S., Ladewigb A., Friedbergerb K., Zur Jacobsmühlenc J., Merhofc D., Witta G. Position Dependency of Surface Roughness in Parts From Laser Beam; Proceedings of the 26th Internatinal Solid Free Form Fabrication Symposium; Austin, TX, USA. 10–12 August 2015; pp. 360–370.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...