Dynamic Loading of Lattice Structure Made by Selective Laser Melting-Numerical Model with Substitution of Geometrical Imperfections
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30380684
PubMed Central
PMC6266549
DOI
10.3390/ma11112129
PII: ma11112129
Knihovny.cz E-zdroje
- Klíčová slova
- ANSYS Workbench, aluminum alloy AlSi10Mg, energy absorption, finite element analysis (FEA), lattice structure, low-velocity impact, material model, numerical model,
- Publikační typ
- časopisecké články MeSH
Selective laser melting (SLM) is an additive technology that allows for the production of precisely designed complex structures for energy absorbing applications from a wide range of metallic materials. Geometrical imperfections of the SLM fabricated lattice structures, which form one of the many thin struts, can lead to a great difference in prediction of their behavior. This article deals with the prediction of lattice structure mechanical properties under dynamic loading using finite element method (FEA) with inclusion of geometrical imperfections of the SLM process. Such properties are necessary to know especially for the application of SLM fabricated lattice structures in automotive or aerospace industries. Four types of specimens from AlSi10Mg alloy powder material were manufactured using SLM for quasi-static mechanical testing and determination of lattice structure mechanical properties for the FEA material model, for optical measurement of geometrical accuracy, and for low-velocity impact testing using the impact tester with a flat indenter. Geometries of struts with elliptical and circular cross-sections were identified and tested using FEA. The results showed that, in the case of elliptical cross-section, a significantly better match was found (2% error in the Fmax) with the low-velocity impact experiments during the whole deformation process compared to the circular cross-section. The FEA numerical model will be used for future testing of geometry changes and its effect on mechanical properties.
Zobrazit více v PubMed
Karagiozova D. Dynamic buckling of elastic-plastic square tubes under axial impact—I: Stress wave propagation phenomenon. Int. J. Impact Eng. 2004;30:143–166. doi: 10.1016/S0734-743X(03)00061-7. DOI
Li X., Zhang P., Wang Z., Wu G., Zhao L. Dynamic behavior of aluminum honeycomb sandwich panels under air blast: Experiment and numerical analysis. Compos. Struct. 2014;108:1001–1008. doi: 10.1016/j.compstruct.2013.10.034. DOI
Olabi A.G., Morris E., Hashmi M.S.J. Metallic tube type energy absorbers: A synopsis. Thin Walled Struct. 2007;45:706–726. doi: 10.1016/j.tws.2007.05.003. DOI
Dharmasena K.P., Wadley N.G., Xue Z., Hutchinson J.W. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int. J. Impact Eng. 2008;35:1063–1074. doi: 10.1016/j.ijimpeng.2007.06.008. DOI
Kopanidis A., Theodorakakos A., Gavaises E., Bouris D. 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam. Int. J. Heat Mass Transf. 2010;53:2539–2550. doi: 10.1016/j.ijheatmasstransfer.2009.12.067. DOI
Shimizu T., Matsuzaki K., Nagai H., Kanetake N. Production of high porosity metal foams using EPS beads as space holders. Mater. Sci. Eng. A. 2012;558:343–348. doi: 10.1016/j.msea.2012.08.010. DOI
Zhu L., Guo K., Li Y., Yu T.X., Zhou Q. Experimental study on the dynamic behaviour of aluminium foam sandwich plates under single and repeated impacts at low temperature. Int. J. Impact Eng. 2018;114:123–132. doi: 10.1016/j.ijimpeng.2017.12.001. DOI
Sun B., Zhang R., Zhang Q., Gideon R., Gu B. Drop-weight impact damage of three-dimensional angle-interlock woven composites. J. Compos. Mater. 2013;47:2193–2209. doi: 10.1177/0021998312454904. DOI
Vrana R., Koutny D., Paloušek D. Impact Resistance of Different Types of Lattice Structures Manufactured by SLM. MM Sci. J. 2016;2016:1579–1585. doi: 10.17973/MMSJ.2016_12_2016186. DOI
Mines R.A.W., Tsopanos S., Shen Y., Hasan R., McKown S.T. Drop weight impact behaviour of sandwich panels with metallic micro lattice cores. Int. J. Impact Eng. 2013;60:120–132. doi: 10.1016/j.ijimpeng.2013.04.007. DOI
Harris J.A., Winter R.E., McShane G.J. Impact response of additively manufactured metallic hybrid lattice materials. Int. J. Impact Eng. 2017;104:177–191. doi: 10.1016/j.ijimpeng.2017.02.007. DOI
Yadroitsev I. Selective Laser Melting: Direct Manufacturing of 3D-Objects by Selective Laser Melting of Metal Powders. LAP Lambert; Saarbrücken, Germany: 2009.
Thijs L., Kempen K., Kruth J.-P., van Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61:1809–1819. doi: 10.1016/j.actamat.2012.11.052. DOI
Qiu C., Yue S., Adkins N.J.E., Ward M., Hassanin H., Lee P.D., Withers P.J., Attallah M.M. Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mater. Sci. Eng. A. 2015;628:188–197. doi: 10.1016/j.msea.2015.01.031. DOI
Koutny D., Palousek D., Pantelejev L., Hoeller C., Pichler R., Tesicky L., Kaiser J. Influence of scanning strategies on processing of aluminum alloy EN AW 2618 using selective laser melting. Materials. 2018;11:298. doi: 10.3390/ma11020298. PubMed DOI PMC
Han X., Zhu H., Nie X., Wang G., Zeng X. Investigation on Selective Laser Melting AlSi10Mg Cellular Lattice Strut: Molten Pool Morphology, Surface Roughness and Dimensional Accuracy. Materials. 2018;11:392. doi: 10.3390/ma11030392. PubMed DOI PMC
Ilcik J., Koutny D., Palousek D. Geometrical accuracy of the metal parts produced by selective laser melting: Initial tests; Proceedings of the 54th International Conference of Machine-Design-Departments (ICMD); Hejnice, Czech Republic. 10–12 September 2013; pp. 573–582.
Skalicky P., Koutny D., Pantelejev L., Palousek D. Processing of aluminum alloy EN AW 7075 using selective laser melting: Initial study; Proceedings of the 58th International Conference of Machine-Design-Departments (ICMD2017); Prague, Czech Republic. 6–8 September 2017; pp. 330–335.
Vrana R., Koutny D., Palousek D., Pantelejev L., Jaros J., Zikmund T., Kaiser J. Selective laser melting strategy for fabrication of thin struts usable in lattice structures. Materials. 2018;11:1763. doi: 10.3390/ma11091763. PubMed DOI PMC
Koutny D., Vrana R., Paloušek D. Dimensional accuracy of single beams of AlSi10Mg alloy and 316L stainless steel manufactured by SLM; Proceedings of the 5th International Conference on Additive Technologies (iCAT2014); Vienna, Austria. 16–17 October 2014; pp. 142–147.
Suard M., Lhuissier P., Dendievel R., Vignat F., Blandin J.J., Villeneuve F. Impact of EBM fabrication strategies on geometry and mechanical properties of titanium cellular structures; Proceedings of the Fraunhofer Direct Digital Manufacturing Conference (DDMC 2014); Berlin, Germany. 12–13 March 2014.
Vrana R., Koutny D., Paloušek D., Zikmund T. Influence of selective laser melting process parameters on impact resistance of lattice structure made from AlSi10Mg; Proceedings of the World PM 2016 Congress and Exhibition; Hamburg, Germany. 9–13 October 2016.
Grytten F., Børvik T., Hopperstad O.S., Langseth M. Low velocity perforation of AA5083-H116 aluminium plates. Int. J. Impact Eng. 2009;36:597–610. doi: 10.1016/j.ijimpeng.2008.09.002. DOI
Grytten F., Holmedal B., Hopperstad O.S., Børvik T. Evaluation of identification methods for YLD2004-18p. Int. J. Plast. 2008;24:2248–2277. doi: 10.1016/j.ijplas.2007.11.005. DOI
Mohmmed R., Ahmed A., Elgalib M.A., Ali H. Low Velocity Impact Properties of Foam Sandwich Composites: A Brief Review. Int. J. Eng. Sci. Innov. Technol. 2014;3:579–591.
Mohmmed R., Zhang F., Sun B., Gu B. Finite element analyses of low-velocity impact damage of foam sandwiched composites with different ply angles face sheets. Mater. Des. 2013;47:189–199. doi: 10.1016/j.matdes.2012.12.016. DOI
Labeas G., Ptochos E. Investigation of sandwich structures with innovative cellular metallic cores under low velocity impact loading. Plast. Rubber Compos. 2013;42:194–202. doi: 10.1179/1743289811Y.0000000056. DOI
Ozdemir Z., Tyas A., Goodall R., Askes H. Energy absorption in lattice structures in dynamics: Nonlinear FE simulations. Int. J. Impact Eng. 2017;102:1–15. doi: 10.1016/j.ijimpeng.2016.11.016. DOI
Banerjee A., Dhar S., Acharyya S., Datta D., Nayak N. Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel. Mater. Sci. Eng. A. 2015;640:200–209. doi: 10.1016/j.msea.2015.05.073. DOI
Milani A.S., Dabboussi W., Nemes J.A., Abeyaratne R.C. An improved multi-objective identification of Johnson-Cook material parameters. Int. J. Impact Eng. 2009;36:294–302. doi: 10.1016/j.ijimpeng.2008.02.003. DOI
Brandl E., Heckenberger U., Holzinger V., Buchbinder D. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. J. Mater. Des. 2012;34:159–169. doi: 10.1016/j.matdes.2011.07.067. DOI
Vaverka O., Koutný D., Vrána R., Pantělejev L., Paloušek D. Effect of heat treatment on mechanical properties and residual stresses in additively manufactured parts; Proceedings of the Engineering Mechanics 2018 24th International Conference; Svratka, Czech Republic. 14–17 May 2018.
Kempen K., Thijs L., van Humbeeck J., Kruth J.-P. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Procedia. 2012;39:439–446. doi: 10.1016/j.phpro.2012.10.059. DOI
Tsopanos S., Mines R.A.W., Mckown S., Shen Y., Cantwell W.J., Brooks W., Sutcliffe C.J. The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures. J. Manuf. Sci. Eng. 2010;132:1–12. doi: 10.1115/1.4001743. DOI
Xiao L., Song W. Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments. Int. J. Impact Eng. 2018;111:255–272. doi: 10.1016/j.ijimpeng.2017.09.018. DOI
Palousek D., Omasta M., Koutny D., Bednar J., Koutecky T., Dokoupil F. Effect of matte coating on 3D optical measurement accuracy. Opt. Mater. 2015;40:1–9. doi: 10.1016/j.optmat.2014.11.020. DOI
Ravari M.R.K., Kadkhodaei M., Ghaei A. Effects of asymmetric material response on the mechanical behavior of porous shape memory alloys. J. Intell. Mater. Syst. Struct. 2016;27:1687–1701. doi: 10.1177/1045389X15604232. DOI
Deviations of the SLM Produced Lattice Structures and Their Influence on Mechanical Properties