Influence of Selective Laser Melting Technology Process Parameters on Porosity and Hardness of AISI H13 Tool Steel: Statistical Approach

. 2021 Oct 13 ; 14 (20) : . [epub] 20211013

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34683644

The correct setting of laser beam parameters and scanning strategy for Selective Laser Melting (SLM) technology is a demanding process. Usually, numerous experimental procedures must be taken before the final strategy can be applied. The presented work deals with SLM technology and the impact of its technological parameters on the porosity and hardness of AISI H13 tool steel. In this study, we attempted to map the dependency of porosity and hardness of the tested tool steel on a broad spectrum of scanning speed-laser power combinations. Cubic samples were fabricated under parameters defined by full factorial DOE, and metallurgic specimens were prepared for measurement of the two studied quantities. The gathered data were finally analyzed, and phenomenological models were proposed. Analysis of the data revealed a minimal energy density of 100.3 J/mm3 was needed to obtain a dense structure with a satisfactory hardness level. Apart from this, the model may be used for approximation of non-tested combinations of input parameters.

Zobrazit více v PubMed

Yap C., Chua C., Dong Z., Liu Z., Zhang D., Loh L., Sing S. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015;2:041101. doi: 10.1063/1.4935926. DOI

Maconachie T., Leary M., Lozanovski B., Zhang X., Qian M., Faruque O., Brandt M. SLM lattice structures: Properties, performance, applications and challenges. Mater. Des. 2019;183:108137. doi: 10.1016/j.matdes.2019.108137. DOI

Hao L., Raymont D., Yan C., Hussein A., Young P. The International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP) Taylor & Francis Group; Leiria, Portugal: 2011. Design and additive manufacturing of cellular lattice structures; pp. 249–254. DOI

Durakovic B. Design for additive manufacturing: Benefits, trends and challenges. Period. Eng. Nat. Sci. 2018;6:179–191. doi: 10.21533/pen.v6i2.224. DOI

Kempen K., Thijs L., Yasa E., Badrossamay M., Verheecke W., Kruth J. Process optimization and microstructural analysis for selective laser melting of AlSi10Mg; Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, SFF 2011; Austin, TX, USA. 8–10 August 2011; pp. 484–495.

Fousová M., Vojtěch D., Kubásek J., Jablonská E., Fojt J. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. J. Mech. Behav. Biomed. Mater. 2017;69:368–376. doi: 10.1016/j.jmbbm.2017.01.043. PubMed DOI

Gong H., Rafi K., Gu H., Ram G.J., Starr T., Stucker B. Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting. Mater. Des. 2015;86:545–554. doi: 10.1016/j.matdes.2015.07.147. DOI

Ninpetch P., Kowitwarangkul P., Mahathanabodee S., Chalermkarnnon P., Ratanadecho P. AIP Conference Proceedings. Volume 2279. AIP Publishing LLC; New York, NY, USA: 2020. A review of computer simulations of metal 3D printing; p. 050002. DOI

Zvoníček J., Koutnỳ D., Pantělejev L., Paloušek D. Current Methods of Construction Design. Springer; Berlin, Germany: 2020. Development of process parameters for SLM processing of AlSi7Mg aluminum alloy; pp. 515–524. DOI

Spears T.G., Gold S.A. In-process sensing in selective laser melting (SLM) additive manufacturing. Integr. Mater. Manuf. Innov. 2016;5:16–40. doi: 10.1186/s40192-016-0045-4. DOI

Laakso P., Riipinen T., Laukkanen A., Andersson T., Jokinen A., Revuelta A., Ruusuvuori K. Optimization and simulation of SLM process for high density H13 tool steel parts. Phys. Procedia. 2016;83:26–35. doi: 10.1016/j.phpro.2016.08.004. DOI

Liao H.T., Shie J.R. Optimization on selective laser sintering of metallic powder via design of experiments method. Rapid Prototyp. J. 2007;13:156–162. doi: 10.1108/13552540710750906. DOI

Vrancken B. Ph.D. Thesis. KU Leuven; Leuven, Belgium: 2016. Study of Residual Stresses in Selective Laser Melting.

Mertens R., Vrancken B., Holmstock N., Kinds Y., Kruth J.P., Van Humbeeck J. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts. Phys. Procedia. 2016;83:882–890. doi: 10.1016/j.phpro.2016.08.092. DOI

Krell J., Röttger A., Geenen K., Theisen W. General investigations on processing tool steel X40CrMoV5-1 with selective laser melting. J. Mater. Process. Technol. 2018;255:679–688. doi: 10.1016/j.jmatprotec.2018.01.012. DOI

Yan J., Zheng D., Li H., Jia X., Sun J., Li Y., Qian M., Yan M. Selective laser melting of H13: Microstructure and residual stress. J. Mater. Sci. 2017;52:12476–12485. doi: 10.1007/s10853-017-1380-3. DOI

Gu D., Shen Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater. Des. 2009;30:2903–2910. doi: 10.1016/j.matdes.2009.01.013. DOI

Thanki A., Goossens L., Mertens R., Probst G., Dewulf W., Witvrouw A., Yang S. Study of keyhole-porosities in selective laser melting using X-ray computed tomography; Proceedings of the 9th Conference on Industrial Computed Tomography, iCT 2019; Padova, Italy. 13–15 February 2019; pp. 1–7.

Liu Q.C., Elambasseril J., Sun S.J., Leary M., Brandt M., Sharp P.K. Advanced Materials Research. Volume 891. Trans Tech Publications Ltd.; Freynbach, Switzerland: 2014. The effect of manufacturing defects on the fatigue behaviour of Ti-6Al-4V specimens fabricated using selective laser melting; pp. 1519–1524.

Mugwagwaa L., Dimitrova D., Matopea S., Yadroitsevb I. Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manuf. 2018;21:92–99. doi: 10.1016/j.promfg.2018.02.099. DOI

Algara Muñoz V. Master’s Thesis. Universitat Politècnica de Catalunya; Barcelona, Spain: 2017. Analysis of the Optimal Parameters for 3D Printing Aluminum Parts with a SLM 280 Machine.

Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Mater. Sci. Eng. A. 2006;428:148–158. doi: 10.1016/j.msea.2006.04.117. DOI

Hanzl P., Zetek M., Bakša T., Kroupa T. The influence of processing parameters on the mechanical properties of SLM parts. Procedia Eng. 2015;100:1405–1413. doi: 10.1016/j.proeng.2015.01.510. DOI

Ansari M.J., Nguyen D.S., Park H.S. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches. Materials. 2019;12:1272. doi: 10.3390/ma12081272. PubMed DOI PMC

Di W., Yongqiang Y., Xubin S., Yonghua C. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM. Int. J. Adv. Manuf. Technol. 2012;58:1189–1199. doi: 10.1007/s00170-011-3443-y. DOI

Peng T., Chen C. Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting. Int. J. Precis. Eng. Manuf.-Green Technol. 2018;5:55–62. doi: 10.1007/s40684-018-0006-9. DOI

Dai D., Gu D. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres. Appl. Surf. Sci. 2015;355:310–319. doi: 10.1016/j.apsusc.2015.07.044. DOI

Nguyen Q., Luu D., Nai S., Zhu Z., Chen Z., Wei J. The role of powder layer thickness on the quality of SLM printed parts. Arch. Civ. Mech. Eng. 2018;18:948–955. doi: 10.1016/j.acme.2018.01.015. DOI

Gebhardt A., Hötter J.S., Ziebura D. Impact of SLM Build Parameters on the Surface Quality. RTejournal-Forum für Rapid Technologie; Aachen, Germany: 2014.

Kniepkamp M., Harbig J., Seyfert C., Abele E. Towards high build rates: Combining different layer thicknesses within one part in selective laser melting; Proceedings of the SFF Symposium Proceedings; Austin, TX, USA. 13–15 August 2018; pp. 2286–2296.

Ali H., Ghadbeigi H., Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A. 2018;712:175–187. doi: 10.1016/j.msea.2017.11.103. PubMed DOI PMC

Cheng B., Shrestha S., Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addit. Manuf. 2016;12:240–251.

Kurzynowski T., Stopyra W., Gruber K., Ziółkowski G., Kuźnicka B., Chlebus E. Effect of scanning and support strategies on relative density of SLM-ed H13 steel in relation to specimen size. Materials. 2019;12:239. doi: 10.3390/ma12020239. PubMed DOI PMC

Benedyk J. Aerospace and High Performance Alloys Database (AHAD) CINDAS LLC; West Lafayette, IN, USA: 2008. [(accessed on 9 October 2021)]. Version 2.0. Available online: https://cindasdata.com/products/docs/ahad/ahad-example-h13.pdf.

Li G., Li X., Wu J. Study of the thermal fatigue crack initial life of H13 and H21 steels. J. Mater. Process. Technol. 1998;74:23–26. doi: 10.1016/S0924-0136(97)00244-6. DOI

Wanga M., Zhoua Y., Weia Q., Fanb Z. The mechanical behavior of AISI H13 hot-work tool steel processed by selective laser melting under tensile stress; Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference; Austin, TX, USA. 13–15 August 2018.

Safka J., Ackermann M., Volesky L. Journal of Physics: Conference Series. Volume 709. IOP Publishing; Bristol, UK: 2016. Structural properties of H13 tool steel parts produced with use of selective laser melting technology; pp. 1–7. DOI

Mazur M., Leary M., McMillan M., Elambasseril J., Brandt M. SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp. J. 2016;22:504–518. doi: 10.1108/RPJ-06-2014-0075. DOI

Yonehara M., Ikeshoji T.T., Nagahama T., Mizoguchi T., Tano M., Yoshimi T., Kyogoku H. Parameter optimization of the high-power laser powder bed fusion process for H13 tool steel. Int. J. Adv. Manuf. Technol. 2020;110:427–437. doi: 10.1007/s00170-020-05879-6. DOI

Wang M., Li W., Wu Y., Li S., Cai C., Wen S., Wei Q., Shi Y., Ye F., Chen Z. High-temperature properties and microstructural stability of the AISI H13 hot-work tool steel processed by selective laser melting. Metall. Mater. Trans. B. 2018;50:531–542. doi: 10.1007/s11663-018-1442-1. DOI

Cohen J. Statistical Power Analysis for the Behavioral Sciences. Academic Press; Cambridge, MA, USA: 2013. DOI

Wang P., Tan X., He C., Nai M.L.S., Huang R., Tor S.B., Wei J. Scanning optical microscopy for porosity quantification of additively manufactured components. Addit. Manuf. 2018;21:350–358. doi: 10.1016/j.addma.2018.03.019. DOI

Ren B., Zhou R., Li Z., Guan J. Preparation and mechanical properties of selective laser melted H13 steel. J. Mater. Res. 2019;34:1415–1425. doi: 10.1557/jmr.2019.10. DOI

Tucho W.M., Lysne V.H., Austbø H., Sjolyst-Kverneland A., Hansen V. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J. Alloys Compd. 2018;740:910–925. doi: 10.1016/j.jallcom.2018.01.098. DOI

Cherry J., Davies H., Mehmood S., Lavery N., Brown S., Sienz J. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Technol. 2014;76:869–879. doi: 10.1007/s00170-014-6297-2. DOI

Tonelli L., Fortunato A., Ceschini L. CoCr alloy processed by selective laser melting (SLM): Effect of laser energy density on microstructure, surface morphology, and hardness. J. Manuf. Process. 2020;52:106–119. doi: 10.1016/j.jmapro.2020.01.052. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...