Endopolyploidy Variation in Wild Barley Seeds across Environmental Gradients in Israel
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34068721
PubMed Central
PMC8151103
DOI
10.3390/genes12050711
PII: genes12050711
Knihovny.cz E-zdroje
- Klíčová slova
- Endoreduplication, Hordeum vulgare ubsp. spontaneum, endosperm, seed development, super cycle value,
- MeSH
- DNA rostlinná genetika MeSH
- endosperm genetika MeSH
- genetická variace genetika MeSH
- ječmen (rod) genetika MeSH
- polyploidie MeSH
- populační genetika metody MeSH
- semena rostlinná genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Izrael MeSH
- Názvy látek
- DNA rostlinná MeSH
Wild barley is abundant, occupying large diversity of sites, ranging from the northern mesic Mediterranean meadows to the southern xeric deserts in Israel. This is also reflected in its wide phenotypic heterogeneity. We investigated the dynamics of DNA content changes in seed tissues in ten wild barley accessions that originated from an environmental gradient in Israel. The flow cytometric measurements were done from the time shortly after pollination up to the dry seeds. We show variation in mitotic cell cycle and endoreduplication dynamics in both diploid seed tissues (represented by seed maternal tissues and embryo) and in the triploid endosperm. We found that wild barley accessions collected at harsher xeric environmental conditions produce higher proportion of endoreduplicated nuclei in endosperm tissues. Also, a comparison of wild and cultivated barley strains revealed a higher endopolyploidy level in the endosperm of wild barley, that is accompanied by temporal changes in the timing of the major developmental phases. In summary, we present a new direction of research focusing on connecting spatiotemporal patterns of endoreduplication in barley seeds and possibly buffering for stress conditions.
Zobrazit více v PubMed
Badr A., Müller K., Schäfer-Pregl R., El Rabey H., Effgen S., Ibrahim H.H., Pozzi C., Rohde W., Salamini F. On the origin and domestication history of barley (Hordeum vulgare) Mol. Biol. Evol. 2000;17:499–510. doi: 10.1093/oxfordjournals.molbev.a026330. PubMed DOI
Mascher M., Schuenemann V.J., Davidovich U., Marom N., Himmelbach A., Hübner S., Korol A., David M., Reiter E., Riehl S., et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat. Genet. 2016;48:1089–1093. doi: 10.1038/ng.3611. PubMed DOI
Jakob S.S., Rödder D., Engler J.O., Shaaf S., Özkan H., Blattner F.R., Kilian B. Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol. Evol. 2014;6:685–702. doi: 10.1093/gbe/evu047. PubMed DOI PMC
Krugman T., Nevo E., Beharav A., Sela H., Fahima T. The Institute of Evolution Wild Cereal Gene Bank at the University of Haifa. Isr. J. Plant. Sci. 2019;65:129–146. doi: 10.1163/22238980-00001065. DOI
Von Korff M., Wang H., Léon J., Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor. Appl. Genet. 2004;109:1736–1745. doi: 10.1007/s00122-004-1818-2. PubMed DOI
Nevo E. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry P., editor. Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. Centre for Agriculture and Bioscience International; Wallingford, UK: 1992. pp. 19–43.
Fetch T.G., Steffenson B.J., Nevo E. Diversity and sources of multiple disease resistance in Hordeum spontaneum. Plant. Dis. 2003;87:1439–1448. doi: 10.1094/PDIS.2003.87.12.1439. PubMed DOI
Grossi M., Giorni E., Rizza F., Stanca A.M., Cattivelli L. Wild and cultivated barleys show differences in the expression pattern of a cold-regulated gene family under different light and temperature conditions. Plant. Mol. Biol. 1998;38:1061–1069. doi: 10.1023/A:1006079916917. PubMed DOI
Cai K., Chen X., Han Z., Wu X., Zhang S., Li Q., Nazir M.M., Zhang G., Zeng F. Screening of worldwide barley collection for drought tolerance: The assessment of various physiological measures as the selection criteria. Front. Plant. Sci. 2020;11:1159. doi: 10.3389/fpls.2020.01159. PubMed DOI PMC
Nevo E., Krugman T., Beiles A. Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant. Breed. 1993;110:338–341. doi: 10.1111/j.1439-0523.1993.tb00599.x. DOI
Nowicka A., Kovacik M., Tokarz B., Vrána J., Zhang Y., Weigt D., Doležel J., Pecinka A. Dynamics of endoreduplication in developing barley seeds. J. Exp. Bot. 2021;72:268–282. doi: 10.1093/jxb/eraa453. PubMed DOI
Tottman D.R., Makepeace R.J., Broad H. An explanation of the decimal code for the growth stages of cereals, with illustrations. Ann. Appl. Biol. 1979;93:221–234. doi: 10.1111/j.1744-7348.1979.tb06534.x. DOI
Evers T., Millar S. Cereal grain structure and development: Some implications for quality. J. Cereal Sci. 2002;36:261–284. doi: 10.1006/jcrs.2002.0435. DOI
Radchuk V., Borisjuk L. Physical, metabolic and developmental functions of the seed coat. Front. Plant. Sci. 2014;5:510. doi: 10.3389/fpls.2014.00510. PubMed DOI PMC
Evers A.D., Blakeney A., O’Brien L. Cereal structure and composition. Aust. J. Agric. Res. 1999;50:629–650. doi: 10.1071/AR98158. DOI
Olsen O.-A. Endosperm development: Cellularization and cell fate specification. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 2001;52:233–267. doi: 10.1146/annurev.arplant.52.1.233. PubMed DOI
Rodríguez M.V., Barrero J.M., Corbineau F., Gubler F., Benech-Arnold R.L. Dormancy in cereals (not too much, not so little): About the mechanisms behind this trait. Seed Sci. Res. 2015;25:99–119. doi: 10.1017/S0960258515000021. DOI
D’amato F. Endopolyploidy as a factor in plant tissue development. Caryologia. 1964;17:41–52. doi: 10.1080/00087114.1964.10796115. DOI
Nagl W. DNA endoreduplication and polyteny understood as evolutionary strategies. Nature. 1976;261:614–615. doi: 10.1038/261614a0. PubMed DOI
Sabelli P.A., Larkins B.A. The development of endosperm in grasses. Plant. Physiol. 2009;149:14–26. doi: 10.1104/pp.108.129437. PubMed DOI PMC
De Veylder L., Larkin J.C., Schnittger A. Molecular control and function of endoreplication in development and physiology. Trends Plant. Sci. 2011;16:624–634. doi: 10.1016/j.tplants.2011.07.001. PubMed DOI
Scholes D.R., Paige K.N. Plasticity in ploidy: A generalized response to stress. Trends Plant. Sci. 2015;20:165–175. doi: 10.1016/j.tplants.2014.11.007. PubMed DOI
Gendreau E., Traas J., Desnos T., Grandjean O., Caboche M., Hofte H. Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant. Physiol. 1997;114:295–305. doi: 10.1104/pp.114.1.295. PubMed DOI PMC
Bhosale R., Boudolf V., Cuevas F., Lu R., Eekhout T., Hu Z., Van Isterdael G., Lambert G.M., Xu F., Nowack M.K., et al. A spatiotemporal dna endoploidy map of the Arabidopsis root reveals roles for the endocycle in root development and stress adaptation. Plant. Cell. 2018;30:2330–2351. doi: 10.1105/tpc.17.00983. PubMed DOI PMC
Lingua G., Fusconi A., Berta G. The nucleus of differentiated root plant cells: Modifications induced by arbuscular mycorrhizal fungi. Eur. J. Histochem. 2001;45:9–20. doi: 10.4081/1609. PubMed DOI
Chandran D., Inada N., Hather G., Kleindt C.K., Wildermuth M.C. Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc. Natl. Acad. Sci. USA. 2010;107:460–465. doi: 10.1073/pnas.0912492107. PubMed DOI PMC
Cookson S.J., Radziejwoski A., Granier C. Cell and leaf size plasticity in Arabidopsis: What is the role of endoreduplication? Plant. Cell Environ. 2006;29:1273–1283. doi: 10.1111/j.1365-3040.2006.01506.x. PubMed DOI
Tran V., Weier D., Radchuk R., Thiel J., Radchuk V. Caspase-like activities accompany programmed cell death events in developing barley grains. PLoS ONE. 2014;9:e109426. doi: 10.1371/journal.pone.0109426. PubMed DOI PMC
Radchuk V., Tran V., Radchuk R., Diaz-Mendoza M., Weier D., Fuchs J., Riewe D., Hensel G., Kumlehn J., Munz E., et al. Vacuolar processing enzyme 4 contributes to maternal control of grain size in barley by executing programmed cell death in the pericarp. New Phytol. 2018;218:1127–1142. doi: 10.1111/nph.14729. PubMed DOI
Young T.E., Gallie D.R. Programmed cell death during endosperm development. Plant. Mol. Biol. 2000;44:283–301. doi: 10.1023/A:1026588408152. PubMed DOI
Wu X., Liu J., Li D., Liu C.M. Rice caryopsis development II: Dynamic changes in the endosperm. J. Integr. Plant. Biol. 2016;58:786–798. doi: 10.1111/jipb.12488. PubMed DOI
Nevo E. Evolution of wild barley at “Evolution Canyon”: Adaptation, speciation, pre-agricultural collection, and barley improvement. Isr. J. Plant. Sci. 2015;62:22–32. doi: 10.1080/07929978.2014.940783. DOI
Waddington S.R., Cartwright P.M., Wall P.C. A quantitative scale of spike initial and pistil development in barley and wheat. Ann. Bot. 1983;51:119–130. doi: 10.1093/oxfordjournals.aob.a086434. DOI
Kovacik M., Nowicka A., Pecinka A. Isolation of high purity tissues from developing barley seeds. J. Vis. Exp. 2020:1–2. doi: 10.3791/61681. PubMed DOI
Nevo E., Zohary D., Brown A.H.D., Haber M. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution. 1979;33:815–833. doi: 10.1038/hdy.1988.88. PubMed DOI
Rewers M., Sliwinska E. Endoreduplication intensity as a marker of seed developmental stage in the Fabaceae. Cytom. Part A. 2012;81A:1067–1075. doi: 10.1002/cyto.a.22202. PubMed DOI
Nevo E., Beiles A., Kaplan D., Storch N., Zohary D. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum (Poaceae), in Iran. Plant. Syst. Evol. 1986;153:141–164. doi: 10.1007/BF00983683. DOI
Hosseini M., Ghorbani R., Rashed Mohassel M.H., Yassaie M. Correlation of environmental factors and phenotypic diversity of iranian wild barley (Hordeum Spontaneum Koch) populations. Acta Oecologica. 2019;95:19–25. doi: 10.1016/j.actao.2018.12.004. DOI
Shakhatreh Y., Haddad N., Alrababah M., Grando S., Ceccarelli S. Phenotypic diversity in wild barley (Hordeum vulgare L. ssp. spontaneum (C. Koch) Thell.) accessions collected in Jordan. Genet. Resour. Crop. Evol. 2010;57:131–146. doi: 10.1007/s10722-009-9457-8. DOI
Volis S., Mendlinger S., Ward D. Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia. 2002;133:131–138. doi: 10.1007/s00442-002-0999-0. PubMed DOI
Dante R.A., Larkins B.A., Sabelli P.A. Cell cycle control and seed development. Front. Plant. Sci. 2014;5:493. doi: 10.3389/fpls.2014.00493. PubMed DOI PMC
Sreenivasulu N., Borisjuk L., Junker B.H., Mock H.-P., Rolletschek H., Seiffert U., Weschke W., Wobus U. Barley grain development: Toward an integrative view. In: Jeon K., editor. International Review of Cell and Molecular Biology. Volume 281. Elsevier; Amsterdam, The Netherlands: 2010. pp. 49–89. PubMed
Rewers M., Sadowski J., Sliwinska E. Endoreduplication in cucumber (Cucumis sativus) seeds during development, after processing and storage, and during germination. Ann. Appl. Biol. 2009;155:431–438. doi: 10.1111/j.1744-7348.2009.00362.x. DOI
Barow M., Meister A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant. Cell Environ. 2003;26:571–584. doi: 10.1046/j.1365-3040.2003.00988.x. DOI
Sliwinska E., Lukaszewska E. Polysomaty in growing in vitro sugar-beet (Beta vulgaris L.) seedlings of different ploidy level. Plant. Sci. 2005;168:1067–1074. doi: 10.1016/j.plantsci.2004.12.003. DOI
Chojecki A., Gale M., Bayliss M. The number and sizes of starch granules in the wheat endosperm, and their association with grain weight. Ann. Bot. 1986;58:819–831. doi: 10.1093/oxfordjournals.aob.a087264. DOI
Kobayashi H. Variations of endoreduplication and its potential contribution to endosperm development in rice (Oryza sativa L.) Plant. Prod. Sci. 2019;22:227–241. doi: 10.1080/1343943X.2019.1570281. DOI
Kladnik A., Chourey P.S., Pring D.R., Dermastia M. Development of the endosperm of Sorghum bicolor during the endoreduplication-associated growth phase. J. Cereal Sci. 2006;43:209–215. doi: 10.1016/j.jcs.2005.09.004. DOI
Sabelli P.A., Larkins B.A. Regulation and function of retinoblastoma-related plant genes. Plant. Sci. 2009;177:540–548. doi: 10.1016/j.plantsci.2009.09.012. DOI
Keown A.C., Taiz L., Jones R.L. The nuclear DNA content of developing barley aleurone cells. Am. J. Bot. 1977;64:1248–1253. doi: 10.1002/j.1537-2197.1977.tb10818.x. DOI
Sreenivasulu N., Usadel B., Winter A., Radchuk V., Scholz U., Stein N., Weschke W., Strickert M., Close T.J., Stitt M., et al. Barley grain maturation and germination: Metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant. Physiol. 2008;146:1738–1758. doi: 10.1104/pp.107.111781. PubMed DOI PMC
Burešová V., Kopecký D., Bartoš J., Martinek P., Watanabe N., Vyhnánek T., Doležel J. Variation in genome composition of blue-aleurone wheat. Theor. Appl. Genet. 2015;128:273–282. doi: 10.1007/s00122-014-2427-3. PubMed DOI
Jeewani D.C., Hua W.Z. Grain color development and segregation of blue wheat. Res. J. Biotechnol. 2017;12:40–45.
Chevalier C., Nafati M., Mathieu-Rivet E., Bourdon M., Frangne N., Cheniclet C., Renaudin J.P., Gvaudant F., Hernould M. Elucidating the functional role of endoreduplication in tomato fruit development. Ann. Bot. 2011;107:1159–1169. doi: 10.1093/aob/mcq257. PubMed DOI PMC
Sterken R., Kiekens R., Boruc J., Zhang F., Vercauteren A., Vercauteren I., De Smet L., Dhondt S., Inzé D., De Veylder L., et al. Combined linkage and association mapping reveals CYCD5;1 as a quantitative trait gene for endoreduplication in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2012;109:4678–4683. doi: 10.1073/pnas.1120811109. PubMed DOI PMC
Hübner S., Höffken M., Oren E., Haseneyer G., Stein N., Graner A., Schmid K., Fridman E. Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol. Ecol. 2009;18:1523–1536. doi: 10.1111/j.1365-294X.2009.04106.x. PubMed DOI
Barow M. Endopolyploidy in seed plants. BioEssays. 2006;28:271–281. doi: 10.1002/bies.20371. PubMed DOI
Siddappaji M.H., Scholes D.R., Bohn M., Paige K.N. Overcompensation in response to herbivory in Arabidopsis thaliana: The role of glucose-6-phosphate dehydrogenase and the oxidative pentose-phosphate pathway. Genetics. 2013;195:589–598. doi: 10.1534/genetics.113.154351. PubMed DOI PMC
The transcriptome landscape of developing barley seeds