Endopolyploidy Variation in Wild Barley Seeds across Environmental Gradients in Israel

. 2021 May 10 ; 12 (5) : . [epub] 20210510

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34068721

Wild barley is abundant, occupying large diversity of sites, ranging from the northern mesic Mediterranean meadows to the southern xeric deserts in Israel. This is also reflected in its wide phenotypic heterogeneity. We investigated the dynamics of DNA content changes in seed tissues in ten wild barley accessions that originated from an environmental gradient in Israel. The flow cytometric measurements were done from the time shortly after pollination up to the dry seeds. We show variation in mitotic cell cycle and endoreduplication dynamics in both diploid seed tissues (represented by seed maternal tissues and embryo) and in the triploid endosperm. We found that wild barley accessions collected at harsher xeric environmental conditions produce higher proportion of endoreduplicated nuclei in endosperm tissues. Also, a comparison of wild and cultivated barley strains revealed a higher endopolyploidy level in the endosperm of wild barley, that is accompanied by temporal changes in the timing of the major developmental phases. In summary, we present a new direction of research focusing on connecting spatiotemporal patterns of endoreduplication in barley seeds and possibly buffering for stress conditions.

Zobrazit více v PubMed

Badr A., Müller K., Schäfer-Pregl R., El Rabey H., Effgen S., Ibrahim H.H., Pozzi C., Rohde W., Salamini F. On the origin and domestication history of barley (Hordeum vulgare) Mol. Biol. Evol. 2000;17:499–510. doi: 10.1093/oxfordjournals.molbev.a026330. PubMed DOI

Mascher M., Schuenemann V.J., Davidovich U., Marom N., Himmelbach A., Hübner S., Korol A., David M., Reiter E., Riehl S., et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat. Genet. 2016;48:1089–1093. doi: 10.1038/ng.3611. PubMed DOI

Jakob S.S., Rödder D., Engler J.O., Shaaf S., Özkan H., Blattner F.R., Kilian B. Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol. Evol. 2014;6:685–702. doi: 10.1093/gbe/evu047. PubMed DOI PMC

Krugman T., Nevo E., Beharav A., Sela H., Fahima T. The Institute of Evolution Wild Cereal Gene Bank at the University of Haifa. Isr. J. Plant. Sci. 2019;65:129–146. doi: 10.1163/22238980-00001065. DOI

Von Korff M., Wang H., Léon J., Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor. Appl. Genet. 2004;109:1736–1745. doi: 10.1007/s00122-004-1818-2. PubMed DOI

Nevo E. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry P., editor. Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. Centre for Agriculture and Bioscience International; Wallingford, UK: 1992. pp. 19–43.

Fetch T.G., Steffenson B.J., Nevo E. Diversity and sources of multiple disease resistance in Hordeum spontaneum. Plant. Dis. 2003;87:1439–1448. doi: 10.1094/PDIS.2003.87.12.1439. PubMed DOI

Grossi M., Giorni E., Rizza F., Stanca A.M., Cattivelli L. Wild and cultivated barleys show differences in the expression pattern of a cold-regulated gene family under different light and temperature conditions. Plant. Mol. Biol. 1998;38:1061–1069. doi: 10.1023/A:1006079916917. PubMed DOI

Cai K., Chen X., Han Z., Wu X., Zhang S., Li Q., Nazir M.M., Zhang G., Zeng F. Screening of worldwide barley collection for drought tolerance: The assessment of various physiological measures as the selection criteria. Front. Plant. Sci. 2020;11:1159. doi: 10.3389/fpls.2020.01159. PubMed DOI PMC

Nevo E., Krugman T., Beiles A. Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant. Breed. 1993;110:338–341. doi: 10.1111/j.1439-0523.1993.tb00599.x. DOI

Nowicka A., Kovacik M., Tokarz B., Vrána J., Zhang Y., Weigt D., Doležel J., Pecinka A. Dynamics of endoreduplication in developing barley seeds. J. Exp. Bot. 2021;72:268–282. doi: 10.1093/jxb/eraa453. PubMed DOI

Tottman D.R., Makepeace R.J., Broad H. An explanation of the decimal code for the growth stages of cereals, with illustrations. Ann. Appl. Biol. 1979;93:221–234. doi: 10.1111/j.1744-7348.1979.tb06534.x. DOI

Evers T., Millar S. Cereal grain structure and development: Some implications for quality. J. Cereal Sci. 2002;36:261–284. doi: 10.1006/jcrs.2002.0435. DOI

Radchuk V., Borisjuk L. Physical, metabolic and developmental functions of the seed coat. Front. Plant. Sci. 2014;5:510. doi: 10.3389/fpls.2014.00510. PubMed DOI PMC

Evers A.D., Blakeney A., O’Brien L. Cereal structure and composition. Aust. J. Agric. Res. 1999;50:629–650. doi: 10.1071/AR98158. DOI

Olsen O.-A. Endosperm development: Cellularization and cell fate specification. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 2001;52:233–267. doi: 10.1146/annurev.arplant.52.1.233. PubMed DOI

Rodríguez M.V., Barrero J.M., Corbineau F., Gubler F., Benech-Arnold R.L. Dormancy in cereals (not too much, not so little): About the mechanisms behind this trait. Seed Sci. Res. 2015;25:99–119. doi: 10.1017/S0960258515000021. DOI

D’amato F. Endopolyploidy as a factor in plant tissue development. Caryologia. 1964;17:41–52. doi: 10.1080/00087114.1964.10796115. DOI

Nagl W. DNA endoreduplication and polyteny understood as evolutionary strategies. Nature. 1976;261:614–615. doi: 10.1038/261614a0. PubMed DOI

Sabelli P.A., Larkins B.A. The development of endosperm in grasses. Plant. Physiol. 2009;149:14–26. doi: 10.1104/pp.108.129437. PubMed DOI PMC

De Veylder L., Larkin J.C., Schnittger A. Molecular control and function of endoreplication in development and physiology. Trends Plant. Sci. 2011;16:624–634. doi: 10.1016/j.tplants.2011.07.001. PubMed DOI

Scholes D.R., Paige K.N. Plasticity in ploidy: A generalized response to stress. Trends Plant. Sci. 2015;20:165–175. doi: 10.1016/j.tplants.2014.11.007. PubMed DOI

Gendreau E., Traas J., Desnos T., Grandjean O., Caboche M., Hofte H. Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant. Physiol. 1997;114:295–305. doi: 10.1104/pp.114.1.295. PubMed DOI PMC

Bhosale R., Boudolf V., Cuevas F., Lu R., Eekhout T., Hu Z., Van Isterdael G., Lambert G.M., Xu F., Nowack M.K., et al. A spatiotemporal dna endoploidy map of the Arabidopsis root reveals roles for the endocycle in root development and stress adaptation. Plant. Cell. 2018;30:2330–2351. doi: 10.1105/tpc.17.00983. PubMed DOI PMC

Lingua G., Fusconi A., Berta G. The nucleus of differentiated root plant cells: Modifications induced by arbuscular mycorrhizal fungi. Eur. J. Histochem. 2001;45:9–20. doi: 10.4081/1609. PubMed DOI

Chandran D., Inada N., Hather G., Kleindt C.K., Wildermuth M.C. Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc. Natl. Acad. Sci. USA. 2010;107:460–465. doi: 10.1073/pnas.0912492107. PubMed DOI PMC

Cookson S.J., Radziejwoski A., Granier C. Cell and leaf size plasticity in Arabidopsis: What is the role of endoreduplication? Plant. Cell Environ. 2006;29:1273–1283. doi: 10.1111/j.1365-3040.2006.01506.x. PubMed DOI

Tran V., Weier D., Radchuk R., Thiel J., Radchuk V. Caspase-like activities accompany programmed cell death events in developing barley grains. PLoS ONE. 2014;9:e109426. doi: 10.1371/journal.pone.0109426. PubMed DOI PMC

Radchuk V., Tran V., Radchuk R., Diaz-Mendoza M., Weier D., Fuchs J., Riewe D., Hensel G., Kumlehn J., Munz E., et al. Vacuolar processing enzyme 4 contributes to maternal control of grain size in barley by executing programmed cell death in the pericarp. New Phytol. 2018;218:1127–1142. doi: 10.1111/nph.14729. PubMed DOI

Young T.E., Gallie D.R. Programmed cell death during endosperm development. Plant. Mol. Biol. 2000;44:283–301. doi: 10.1023/A:1026588408152. PubMed DOI

Wu X., Liu J., Li D., Liu C.M. Rice caryopsis development II: Dynamic changes in the endosperm. J. Integr. Plant. Biol. 2016;58:786–798. doi: 10.1111/jipb.12488. PubMed DOI

Nevo E. Evolution of wild barley at “Evolution Canyon”: Adaptation, speciation, pre-agricultural collection, and barley improvement. Isr. J. Plant. Sci. 2015;62:22–32. doi: 10.1080/07929978.2014.940783. DOI

Waddington S.R., Cartwright P.M., Wall P.C. A quantitative scale of spike initial and pistil development in barley and wheat. Ann. Bot. 1983;51:119–130. doi: 10.1093/oxfordjournals.aob.a086434. DOI

Kovacik M., Nowicka A., Pecinka A. Isolation of high purity tissues from developing barley seeds. J. Vis. Exp. 2020:1–2. doi: 10.3791/61681. PubMed DOI

Nevo E., Zohary D., Brown A.H.D., Haber M. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution. 1979;33:815–833. doi: 10.1038/hdy.1988.88. PubMed DOI

Rewers M., Sliwinska E. Endoreduplication intensity as a marker of seed developmental stage in the Fabaceae. Cytom. Part A. 2012;81A:1067–1075. doi: 10.1002/cyto.a.22202. PubMed DOI

Nevo E., Beiles A., Kaplan D., Storch N., Zohary D. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum (Poaceae), in Iran. Plant. Syst. Evol. 1986;153:141–164. doi: 10.1007/BF00983683. DOI

Hosseini M., Ghorbani R., Rashed Mohassel M.H., Yassaie M. Correlation of environmental factors and phenotypic diversity of iranian wild barley (Hordeum Spontaneum Koch) populations. Acta Oecologica. 2019;95:19–25. doi: 10.1016/j.actao.2018.12.004. DOI

Shakhatreh Y., Haddad N., Alrababah M., Grando S., Ceccarelli S. Phenotypic diversity in wild barley (Hordeum vulgare L. ssp. spontaneum (C. Koch) Thell.) accessions collected in Jordan. Genet. Resour. Crop. Evol. 2010;57:131–146. doi: 10.1007/s10722-009-9457-8. DOI

Volis S., Mendlinger S., Ward D. Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia. 2002;133:131–138. doi: 10.1007/s00442-002-0999-0. PubMed DOI

Dante R.A., Larkins B.A., Sabelli P.A. Cell cycle control and seed development. Front. Plant. Sci. 2014;5:493. doi: 10.3389/fpls.2014.00493. PubMed DOI PMC

Sreenivasulu N., Borisjuk L., Junker B.H., Mock H.-P., Rolletschek H., Seiffert U., Weschke W., Wobus U. Barley grain development: Toward an integrative view. In: Jeon K., editor. International Review of Cell and Molecular Biology. Volume 281. Elsevier; Amsterdam, The Netherlands: 2010. pp. 49–89. PubMed

Rewers M., Sadowski J., Sliwinska E. Endoreduplication in cucumber (Cucumis sativus) seeds during development, after processing and storage, and during germination. Ann. Appl. Biol. 2009;155:431–438. doi: 10.1111/j.1744-7348.2009.00362.x. DOI

Barow M., Meister A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant. Cell Environ. 2003;26:571–584. doi: 10.1046/j.1365-3040.2003.00988.x. DOI

Sliwinska E., Lukaszewska E. Polysomaty in growing in vitro sugar-beet (Beta vulgaris L.) seedlings of different ploidy level. Plant. Sci. 2005;168:1067–1074. doi: 10.1016/j.plantsci.2004.12.003. DOI

Chojecki A., Gale M., Bayliss M. The number and sizes of starch granules in the wheat endosperm, and their association with grain weight. Ann. Bot. 1986;58:819–831. doi: 10.1093/oxfordjournals.aob.a087264. DOI

Kobayashi H. Variations of endoreduplication and its potential contribution to endosperm development in rice (Oryza sativa L.) Plant. Prod. Sci. 2019;22:227–241. doi: 10.1080/1343943X.2019.1570281. DOI

Kladnik A., Chourey P.S., Pring D.R., Dermastia M. Development of the endosperm of Sorghum bicolor during the endoreduplication-associated growth phase. J. Cereal Sci. 2006;43:209–215. doi: 10.1016/j.jcs.2005.09.004. DOI

Sabelli P.A., Larkins B.A. Regulation and function of retinoblastoma-related plant genes. Plant. Sci. 2009;177:540–548. doi: 10.1016/j.plantsci.2009.09.012. DOI

Keown A.C., Taiz L., Jones R.L. The nuclear DNA content of developing barley aleurone cells. Am. J. Bot. 1977;64:1248–1253. doi: 10.1002/j.1537-2197.1977.tb10818.x. DOI

Sreenivasulu N., Usadel B., Winter A., Radchuk V., Scholz U., Stein N., Weschke W., Strickert M., Close T.J., Stitt M., et al. Barley grain maturation and germination: Metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant. Physiol. 2008;146:1738–1758. doi: 10.1104/pp.107.111781. PubMed DOI PMC

Burešová V., Kopecký D., Bartoš J., Martinek P., Watanabe N., Vyhnánek T., Doležel J. Variation in genome composition of blue-aleurone wheat. Theor. Appl. Genet. 2015;128:273–282. doi: 10.1007/s00122-014-2427-3. PubMed DOI

Jeewani D.C., Hua W.Z. Grain color development and segregation of blue wheat. Res. J. Biotechnol. 2017;12:40–45.

Chevalier C., Nafati M., Mathieu-Rivet E., Bourdon M., Frangne N., Cheniclet C., Renaudin J.P., Gvaudant F., Hernould M. Elucidating the functional role of endoreduplication in tomato fruit development. Ann. Bot. 2011;107:1159–1169. doi: 10.1093/aob/mcq257. PubMed DOI PMC

Sterken R., Kiekens R., Boruc J., Zhang F., Vercauteren A., Vercauteren I., De Smet L., Dhondt S., Inzé D., De Veylder L., et al. Combined linkage and association mapping reveals CYCD5;1 as a quantitative trait gene for endoreduplication in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2012;109:4678–4683. doi: 10.1073/pnas.1120811109. PubMed DOI PMC

Hübner S., Höffken M., Oren E., Haseneyer G., Stein N., Graner A., Schmid K., Fridman E. Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol. Ecol. 2009;18:1523–1536. doi: 10.1111/j.1365-294X.2009.04106.x. PubMed DOI

Barow M. Endopolyploidy in seed plants. BioEssays. 2006;28:271–281. doi: 10.1002/bies.20371. PubMed DOI

Siddappaji M.H., Scholes D.R., Bohn M., Paige K.N. Overcompensation in response to herbivory in Arabidopsis thaliana: The role of glucose-6-phosphate dehydrogenase and the oxidative pentose-phosphate pathway. Genetics. 2013;195:589–598. doi: 10.1534/genetics.113.154351. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The transcriptome landscape of developing barley seeds

. 2024 Jul 02 ; 36 (7) : 2512-2530.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...