Speed Control for Leader-Follower Robot Formation Using Fuzzy System and Supervised Machine Learning
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34069186
PubMed Central
PMC8156191
DOI
10.3390/s21103433
PII: s21103433
Knihovny.cz E-zdroje
- Klíčová slova
- autonomous robot, fuzzy system, intelligent technique, speed control, supervised machine learning,
- Publikační typ
- časopisecké články MeSH
Mobile robots are endeavoring toward full autonomy. To that end, wheeled mobile robots have to function under non-holonomic constraints and uncertainty derived by feedback sensors and/or internal dynamics. Speed control is one of the main and challenging objectives in the endeavor for efficient autonomous collision-free navigation. This paper proposes an intelligent technique for speed control of a wheeled mobile robot using a combination of fuzzy logic and supervised machine learning (SML). The technique is appropriate for flexible leader-follower formation control on straight paths where a follower robot maintains a safely varying distance from a leader robot. A fuzzy controller specifies the ultimate distance of the follower to the leader using the measurements obtained from two ultrasonic sensors. An SML algorithm estimates a proper speed for the follower based on the ultimate distance. Simulations demonstrated that the proposed technique appropriately adjusts the follower robot's speed to maintain a flexible formation with the leader robot.
Zobrazit více v PubMed
Da Mota F.A.X., Rocha M.X., Rodrigues J.J.P.C., De Albuquerque V.H.C., De Alexandria A.R. Localization and navigation for autonomous mobile robots using petri nets in indoor environments. IEEE Access. 2018;6:31665–31676. doi: 10.1109/ACCESS.2018.2846554. DOI
Gonzalez A.G.C., Alves M.V.S., Viana G.S., Carvalho L.K., Basilio J.C. Supervisory control-based navigation architecture: A new framework for autonomous robots in industry 4.0 environments. IEEE Trans. Ind. Inform. 2017;14:1732–1743. doi: 10.1109/TII.2017.2788079. DOI
Gharajeh M.S., Jond H.B. Hybrid Global Positioning System-Adaptive Neuro-Fuzzy Inference System based autonomous mobile robot navigation. Robot. Auton. Syst. 2020;134:103669. doi: 10.1016/j.robot.2020.103669. DOI
Al Khatib E.I., Jaradat M.A.K., Abdel-Hafez M.F. Low-Cost Reduced Navigation System for Mobile Robot in Indoor/Outdoor Environments. IEEE Access. 2020;8:25014–25026. doi: 10.1109/ACCESS.2020.2971169. DOI
Dirik M., Kocamaz A.F., Castillo O. Global Path Planning and Path-Following for Wheeled Mobile Robot Using a Novel Control Structure Based on a Vision Sensor. Int. J. Fuzzy Syst. 2020;22:1880–1891. doi: 10.1007/s40815-020-00888-9. DOI
Kodagoda K.R.S., Wijesoma W.S., Teoh E.K. Fuzzy Speed and Steering Control of an AGV. IEEE Trans. Control Syst. Technol. 2002;10:112–120. doi: 10.1109/87.974344. DOI
Dursun E.H., Durdu A. Speed control of a DC motor with variable load using sliding mode control. Int. J. Comput. Electr. Eng. 2016;8:219–226. doi: 10.17706/IJCEE.2016.8.3.219-226. DOI
Shijin C.S., Udayakumar K. Speed control of wheeled mobile robots using PID with dynamic and kinematic modelling; Proceedings of the International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS); Coimbatore, India. 17–18 March 2017; pp. 1–7.
Algabri M., Mathkour H., Ramdane H., Alsulaiman M. Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Comput. Hum. Behav. 2015;50:42–56. doi: 10.1016/j.chb.2015.03.062. DOI
Sadrfaridpour B., Saeidi H., Burke J., Madathil K., Wang Y. Robust Intelligence and Trust in Autonomous Systems. Springer; Berlin/Heidelberg, Germany: 2016. Modeling and control of trust in human-robot collaborative manufacturing; pp. 115–141.
Nasrinahar A., Chuah J.H. Intelligent motion planning of a mobile robot with dynamic obstacle avoidance. J. Veh. Routing Algorithms. 2018;1:89–104. doi: 10.1007/s41604-018-0007-4. DOI
Mohanta J.C., Keshari A. A knowledge based fuzzy-probabilistic roadmap method for mobile robot navigation. Appl. Soft Comput. 2019;79:391–409. doi: 10.1016/j.asoc.2019.03.055. DOI
Aouf A., Boussaid L., Sakly A. Same fuzzy logic controller for two-wheeled mobile robot navigation in strange environments. J. Robot. 2019;2019:2465219. doi: 10.1155/2019/2465219. DOI
Qureshi M.S., Swarnkar P., Gupta S. A supervisory on-line tuned fuzzy logic based sliding mode control for robotics: An application to surgical robots. Rob. Auton. Syst. 2018;109:68–85. doi: 10.1016/j.robot.2018.08.008. DOI
Xiang X., Yu C., Lapierre L., Zhang J., Zhang Q. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles. Int. J. Fuzzy Syst. 2018;20:572–586. doi: 10.1007/s40815-017-0401-3. DOI
Khan S.A., Daachi B., Djouani K. Application of fuzzy inference systems to detection of faults in wireless sensor networks. Neurocomputing. 2012;94:111–120. doi: 10.1016/j.neucom.2012.04.002. DOI
Ferdaus M.M., Anavatti S.G., Pratama M., Garratt M.A. Towards the use of fuzzy logic systems in rotary wing unmanned aerial vehicle: A review. Artif. Intell. Rev. 2020;53:257–290. doi: 10.1007/s10462-018-9653-z. DOI
Michalski R.S., Carbonell J.G., Mitchell T.M. Machine Learning: An Artificial Intelligence Approach. Springer Science & Business Media; Berlin, Germany: 2013.
Kotsiantis S.B. Supervised Machine Learning: A Review of Classification Techniques. Informatica. 2007;31:249–268.
Jiang T., Gradus J.L., Rosellini A.J. Supervised machine learning: A brief primer. Behav. Ther. 2020;51:675–687. doi: 10.1016/j.beth.2020.05.002. PubMed DOI PMC
Pioneer 3-DX. [(accessed on 15 April 2021)]; Available online: http://www.generationrobots.com/
Mamdani E.H., Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 1975;7:1–13. doi: 10.1016/S0020-7373(75)80002-2. DOI
Dubois D., Prade H. Fundamentals of Fuzzy Sets. Volume 7 Springer Science & Business Media; Berlin, Germany: 2012.
Patelis D. Bachelor’s Thesis. Murdoch University; Perth, Australia: 2012. Commissioning of the Pioneer Robot.
Sharma V. Master’s Thesis. Murdoch University; Perth, Australia: 2018. Pioneer Robot.