Speed Control for Leader-Follower Robot Formation Using Fuzzy System and Supervised Machine Learning
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
34069186
PubMed Central
PMC8156191
DOI
10.3390/s21103433
PII: s21103433
Knihovny.cz E-resources
- Keywords
- autonomous robot, fuzzy system, intelligent technique, speed control, supervised machine learning,
- Publication type
- Journal Article MeSH
Mobile robots are endeavoring toward full autonomy. To that end, wheeled mobile robots have to function under non-holonomic constraints and uncertainty derived by feedback sensors and/or internal dynamics. Speed control is one of the main and challenging objectives in the endeavor for efficient autonomous collision-free navigation. This paper proposes an intelligent technique for speed control of a wheeled mobile robot using a combination of fuzzy logic and supervised machine learning (SML). The technique is appropriate for flexible leader-follower formation control on straight paths where a follower robot maintains a safely varying distance from a leader robot. A fuzzy controller specifies the ultimate distance of the follower to the leader using the measurements obtained from two ultrasonic sensors. An SML algorithm estimates a proper speed for the follower based on the ultimate distance. Simulations demonstrated that the proposed technique appropriately adjusts the follower robot's speed to maintain a flexible formation with the leader robot.
See more in PubMed
Da Mota F.A.X., Rocha M.X., Rodrigues J.J.P.C., De Albuquerque V.H.C., De Alexandria A.R. Localization and navigation for autonomous mobile robots using petri nets in indoor environments. IEEE Access. 2018;6:31665–31676. doi: 10.1109/ACCESS.2018.2846554. DOI
Gonzalez A.G.C., Alves M.V.S., Viana G.S., Carvalho L.K., Basilio J.C. Supervisory control-based navigation architecture: A new framework for autonomous robots in industry 4.0 environments. IEEE Trans. Ind. Inform. 2017;14:1732–1743. doi: 10.1109/TII.2017.2788079. DOI
Gharajeh M.S., Jond H.B. Hybrid Global Positioning System-Adaptive Neuro-Fuzzy Inference System based autonomous mobile robot navigation. Robot. Auton. Syst. 2020;134:103669. doi: 10.1016/j.robot.2020.103669. DOI
Al Khatib E.I., Jaradat M.A.K., Abdel-Hafez M.F. Low-Cost Reduced Navigation System for Mobile Robot in Indoor/Outdoor Environments. IEEE Access. 2020;8:25014–25026. doi: 10.1109/ACCESS.2020.2971169. DOI
Dirik M., Kocamaz A.F., Castillo O. Global Path Planning and Path-Following for Wheeled Mobile Robot Using a Novel Control Structure Based on a Vision Sensor. Int. J. Fuzzy Syst. 2020;22:1880–1891. doi: 10.1007/s40815-020-00888-9. DOI
Kodagoda K.R.S., Wijesoma W.S., Teoh E.K. Fuzzy Speed and Steering Control of an AGV. IEEE Trans. Control Syst. Technol. 2002;10:112–120. doi: 10.1109/87.974344. DOI
Dursun E.H., Durdu A. Speed control of a DC motor with variable load using sliding mode control. Int. J. Comput. Electr. Eng. 2016;8:219–226. doi: 10.17706/IJCEE.2016.8.3.219-226. DOI
Shijin C.S., Udayakumar K. Speed control of wheeled mobile robots using PID with dynamic and kinematic modelling; Proceedings of the International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS); Coimbatore, India. 17–18 March 2017; pp. 1–7.
Algabri M., Mathkour H., Ramdane H., Alsulaiman M. Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Comput. Hum. Behav. 2015;50:42–56. doi: 10.1016/j.chb.2015.03.062. DOI
Sadrfaridpour B., Saeidi H., Burke J., Madathil K., Wang Y. Robust Intelligence and Trust in Autonomous Systems. Springer; Berlin/Heidelberg, Germany: 2016. Modeling and control of trust in human-robot collaborative manufacturing; pp. 115–141.
Nasrinahar A., Chuah J.H. Intelligent motion planning of a mobile robot with dynamic obstacle avoidance. J. Veh. Routing Algorithms. 2018;1:89–104. doi: 10.1007/s41604-018-0007-4. DOI
Mohanta J.C., Keshari A. A knowledge based fuzzy-probabilistic roadmap method for mobile robot navigation. Appl. Soft Comput. 2019;79:391–409. doi: 10.1016/j.asoc.2019.03.055. DOI
Aouf A., Boussaid L., Sakly A. Same fuzzy logic controller for two-wheeled mobile robot navigation in strange environments. J. Robot. 2019;2019:2465219. doi: 10.1155/2019/2465219. DOI
Qureshi M.S., Swarnkar P., Gupta S. A supervisory on-line tuned fuzzy logic based sliding mode control for robotics: An application to surgical robots. Rob. Auton. Syst. 2018;109:68–85. doi: 10.1016/j.robot.2018.08.008. DOI
Xiang X., Yu C., Lapierre L., Zhang J., Zhang Q. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles. Int. J. Fuzzy Syst. 2018;20:572–586. doi: 10.1007/s40815-017-0401-3. DOI
Khan S.A., Daachi B., Djouani K. Application of fuzzy inference systems to detection of faults in wireless sensor networks. Neurocomputing. 2012;94:111–120. doi: 10.1016/j.neucom.2012.04.002. DOI
Ferdaus M.M., Anavatti S.G., Pratama M., Garratt M.A. Towards the use of fuzzy logic systems in rotary wing unmanned aerial vehicle: A review. Artif. Intell. Rev. 2020;53:257–290. doi: 10.1007/s10462-018-9653-z. DOI
Michalski R.S., Carbonell J.G., Mitchell T.M. Machine Learning: An Artificial Intelligence Approach. Springer Science & Business Media; Berlin, Germany: 2013.
Kotsiantis S.B. Supervised Machine Learning: A Review of Classification Techniques. Informatica. 2007;31:249–268.
Jiang T., Gradus J.L., Rosellini A.J. Supervised machine learning: A brief primer. Behav. Ther. 2020;51:675–687. doi: 10.1016/j.beth.2020.05.002. PubMed DOI PMC
Pioneer 3-DX. [(accessed on 15 April 2021)]; Available online: http://www.generationrobots.com/
Mamdani E.H., Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 1975;7:1–13. doi: 10.1016/S0020-7373(75)80002-2. DOI
Dubois D., Prade H. Fundamentals of Fuzzy Sets. Volume 7 Springer Science & Business Media; Berlin, Germany: 2012.
Patelis D. Bachelor’s Thesis. Murdoch University; Perth, Australia: 2012. Commissioning of the Pioneer Robot.
Sharma V. Master’s Thesis. Murdoch University; Perth, Australia: 2018. Pioneer Robot.