Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2020-1-CZ01-KA203-078218
ERASMUS+ project strategic partnership
CZ.02.1.01/0.0/0.0/16_019/0000841
EFSA-CDN project co-funded by the ERDF
PubMed
34069881
PubMed Central
PMC8157347
DOI
10.3390/nu13051703
PII: nu13051703
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, gene regulation, hypovitaminosis, retinoic acid, retinoid receptor, retinol, toxicity, vision,
- MeSH
- fyziologie výživy MeSH
- lidé MeSH
- nedostatek vitaminu A * MeSH
- vitamin A * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vitamin A * MeSH
Vitamin A is a group of vital micronutrients widely present in the human diet. Animal-based products are a rich source of the retinyl ester form of the vitamin, while vegetables and fruits contain carotenoids, most of which are provitamin A. Vitamin A plays a key role in the correct functioning of multiple physiological functions. The human organism can metabolize natural forms of vitamin A and provitamin A into biologically active forms (retinol, retinal, retinoic acid), which interact with multiple molecular targets, including nuclear receptors, opsin in the retina and, according to the latest research, also some enzymes. In this review, we aim to provide a complex view on the present knowledge about vitamin A ranging from its sources through its physiological functions to consequences of its deficiency and metabolic fate up to possible pharmacological administration and potential toxicity. Current analytical methods used for its detection in real samples are included as well.
Zobrazit více v PubMed
D’Ambrosio D.N., Clugston R.D., Blaner W.S. Vitamin A metabolism: An update. Nutrients. 2011;3:63–103. doi: 10.3390/nu3010063. PubMed DOI PMC
Kam R.K., Deng Y., Chen Y., Zhao H. Retinoic acid synthesis and functions in early embryonic development. Cell. Biosci. 2012;2:11. doi: 10.1186/2045-3701-2-11. PubMed DOI PMC
Chiricozzi A., Panduri S., Dini V., Tonini A., Gualtieri B., Romanelli M. Optimizing acitretin use in patients with plaque psoriasis. Dermatol. Ther. 2017;30 doi: 10.1111/dth.12453. PubMed DOI
Dragnev K.H., Petty W.J., Shah S.J., Lewis L.D., Black C.C., Memoli V., Nugent W.C., Hermann T., Negro-Vilar A., Rigas J.R., et al. A proof-of-principle clinical trial of bexarotene in patients with non-small cell lung cancer. Clin. Cancer Res. 2007;13:1794–1800. doi: 10.1158/1078-0432.CCR-06-1836. PubMed DOI
Thielitz A., Gollnick H. Topical retinoids in acne vulgaris: Update on efficacy and safety. Am. J. Clin. Dermatol. 2008;9:369–381. doi: 10.2165/0128071-200809060-00003. PubMed DOI
Duvic M., Hymes K., Heald P., Breneman D., Martin A.G., Myskowski P., Crowley C., Yocum R.C., Bexarotene Worldwide Study G. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: Multinational phase II-III trial results. J. Clin. Oncol. 2001;19:2456–2471. doi: 10.1200/JCO.2001.19.9.2456. PubMed DOI
Qu L., Tang X. Bexarotene: A promising anticancer agent. Cancer Chemother. Pharmacol. 2010;65:201–205. doi: 10.1007/s00280-009-1140-4. PubMed DOI
FDA Drug Trials Snapshot: AKLIEF. [(accessed on 27 January 2021)]; Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-aklief.
Kelly M.E., Ramkumar S., Sun W., Colon Ortiz C., Kiser P.D., Golczak M., von Lintig J. The Biochemical Basis of Vitamin A Production from the Asymmetric Carotenoid β-Cryptoxanthin. ACS Chem. Biol. 2018;13:2121–2129. doi: 10.1021/acschembio.8b00290. PubMed DOI PMC
Barbosa-Filho J., Alencar A., Nunes X.P., Tomaz A.A., Sena-Filho J.G., Athayde-Filho P., Silva M.E., Souza M.D.F.V., da-Cunha E.V. Sources of alpha-, beta-, gamma-, delta- and epsilon-carotenes: A twentieth century review. Rev. Bras. Farmacogn. Braz. J. Pharmacogn. 2008;18:135–154. doi: 10.1590/S0102-695X2008000100023. DOI
Beltrán-de-Miguel B., Estévez-Santiago R., Olmedilla-Alonso B. Assessment of dietary vitamin A intake (retinol, α-carotene, β-carotene, β-cryptoxanthin) and its sources in the National Survey of Dietary Intake in Spain (2009–2010) Int. J. Food Sci. Nutr. 2015;66:706–712. doi: 10.3109/09637486.2015.1077787. PubMed DOI
Maiani G., Castón M.J., Catasta G., Toti E., Cambrodón I.G., Bysted A., Granado-Lorencio F., Olmedilla-Alonso B., Knuthsen P., Valoti M., et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009;53(Suppl. 12):S194–S218. doi: 10.1002/mnfr.200800053. PubMed DOI
Ma G., Zhang L., Iida K., Madono Y., Yungyuen W., Yahata M., Yamawaki K., Kato M. Identification and quantitative analysis of β-cryptoxanthin and β-citraurin esters in Satsuma mandarin fruit during the ripening process. Food Chem. 2017;234:356–364. doi: 10.1016/j.foodchem.2017.05.015. PubMed DOI
Jiao Y., Reuss L., Wang Y. β-Cryptoxanthin: Chemistry, Occurrence, and Potential Health Benefits. Curr. Pharmacol. Rep. 2019;5:20–34. doi: 10.1007/s40495-019-00168-7. DOI
Breithaupt D.E., Bamedi A. Carotenoid esters in vegetables and fruits: A screening with emphasis on beta-cryptoxanthin esters. J. Agric. Food Chem. 2001;49:2064–2070. doi: 10.1021/jf001276t. PubMed DOI
Schlatterer J., Breithaupt D.E. Cryptoxanthin Structural Isomers in Oranges, Orange Juice, and Other Fruits. J. Agric. Food Chem. 2005;53:6355–6361. doi: 10.1021/jf050362w. PubMed DOI
Seroczynska A., Korzeniewska A., Sztangret-Wisniewska J., Niemirowicz-Szczytt K., Marek G. Relationship between carotenoids content and flower or fruit flesh colour of winter squash (Cucurbita maxima Duch.) Folia Hortic. 2006;18:51–61.
Teow C.C., Truong V.-D., McFeeters R.F., Thompson R.L., Pecota K.V., Yencho G.C. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007;103:829–838. doi: 10.1016/j.foodchem.2006.09.033. DOI
Dragovic-Uzelac V., Levaj B., Mrkic V., Bursac D., Boras M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem. 2007;102:966–975. doi: 10.1016/j.foodchem.2006.04.001. DOI
Andersson S.C., Olsson M.E., Johansson E., Rumpunen K. Carotenoids in Sea Buckthorn (Hippophae rhamnoides L.) Berries during Ripening and Use of Pheophytin a as a Maturity Marker. J. Agric. Food Chem. 2009;57:250–258. doi: 10.1021/jf802599f. PubMed DOI
Zaccari F., Galietta G. α-Carotene and β-Carotene Content in Raw and Cooked Pulp of Three Mature Stage Winter Squash “Type Butternut”. Foods. 2015;4:477–486. doi: 10.3390/foods4030477. PubMed DOI PMC
Laurie S.M., Faber M., van Jaarsveld P.J., Laurie R.N., du Plooy C.P., Modisane P.C. β-Carotene yield and productivity of orange-fleshed sweet potato (Ipomoea batatas L. Lam.) as influenced by irrigation and fertilizer application treatments. Sci. Hortic. 2012;142:180–184. doi: 10.1016/j.scienta.2012.05.017. DOI
Ndawula J., Kabasa J.D., Byaruhanga Y.B. Alterations in fruit and vegetable beta-carotene and vitamin C content caused by open-sun drying, visqueen-covered and polyethylene-covered solar-dryers. Afr. Health Sci. 2004;4:125–130. PubMed PMC
Karabulut I., Topcu A., Duran A., Turan S., Ozturk B. Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armenica L.) LWT-Food Sci. Technol. 2007;40:753–758. doi: 10.1016/j.lwt.2006.05.001. DOI
Negi P.S., Roy S.K. Effect of Blanching and Drying Methods on β -Carotene, Ascorbic acid and Chlorophyll Retention of Leafy Vegetables. LWT-Food Sci. Technol. 2000;33:295–298. doi: 10.1006/fstl.2000.0659. DOI
Speek A.J., Speek-Saichua S., Schreurs W.H.P. Total carotenoid and β-carotene contents of Thai vegetables and the effect of processing. Food Chem. 1988;27:245–257. doi: 10.1016/0308-8146(88)90010-6. DOI
Igual M., García-Martínez E., Camacho M.M., Martínez-Navarrete N. Jam processing and storage effects on β-carotene and flavonoids content in grapefruit. J. Funct. Foods. 2013;5:736–744. doi: 10.1016/j.jff.2013.01.019. DOI
van het Hof K.H., West C.E., Weststrate J.A., Hautvast J.G.A.J. Dietary Factors That Affect the Bioavailability of Carotenoids. J. Nutr. 2000;130:503–506. doi: 10.1093/jn/130.3.503. PubMed DOI
Raja R., Hemaiswarya S., Rengasamy R. Exploitation of Dunaliella for β-carotene production. Appl. Microbiol. Biotechnol. 2007;74:517–523. doi: 10.1007/s00253-006-0777-8. PubMed DOI
Bogacz-Radomska L., Harasym J. β-Carotene—Properties and production methods. Food Qual. Saf. 2018;2:69–74. doi: 10.1093/fqsafe/fyy004. DOI
Seshadri C.V., Umesh B.V., Manoharan R. Beta-carotene studies in Spirulina. Bioresour. Technol. 1991;38:111–113. doi: 10.1016/0960-8524(91)90140-F. DOI
Christaki E., Bonos E., Giannenas I., Florou-Paneri P. Functional properties of carotenoids originating from algae. J. Sci. Food Agric. 2013;93:5–11. doi: 10.1002/jsfa.5902. PubMed DOI
Ram S., Mitra M., Shah F., Tirkey S.R., Mishra S. Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J. Funct. Foods. 2020;67:103867. doi: 10.1016/j.jff.2020.103867. DOI
Mitra R., Chaudhuri S., Dutta D. Modelling the growth kinetics of Kocuria marina DAGII as a function of single and binary substrate during batch production of β-Cryptoxanthin. Bioprocess. Biosyst. Eng. 2017;40:99–113. doi: 10.1007/s00449-016-1678-6. PubMed DOI
Bhaskarachary K., Rao D.S.S., Deosthale Y.G., Reddy V. Carotene content of some common and less familiar foods of plant origin. Food Chem. 1995;54:189–193. doi: 10.1016/0308-8146(95)00029-I. DOI
Booth S.L., Johns T., Kuhnlein H.V. Natural Food Sources of Vitamin A and Provitamin A. Food Nutr. Bull. 1992;14:1–15. doi: 10.1177/156482659201400115. DOI
Wall M.M., Waddell C.A., Bosland P.W. Variation in β-Carotene and Total Carotenoid Content in Fruits of Capsicum. Hort. Sci. 2001;36:746. doi: 10.21273/HORTSCI.36.4.746. DOI
Kandlakunta B., Rajendran A., Thingnganing L. Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin. Food Chem. 2008;106:85–89. doi: 10.1016/j.foodchem.2007.05.071. DOI
Laur L.M., Tian L. Provitamin A and vitamin C contents in selected California-grown cantaloupe and honeydew melons and imported melons. J. Food Compos. Anal. 2011;24:194–201. doi: 10.1016/j.jfca.2010.07.009. DOI
Kopsell D.A., Kopsell D.E., Lefsrud M.G., Curran-Celentano J., Dukach L.E. Variation in Lutein, β-carotene, and Chlorophyll Concentrations among Brassica oleracea Cultigens and Seasons. Hort. Sci. 2004;39:361. doi: 10.21273/HORTSCI.39.2.361. DOI
Žnidarčič D., Ban D., Šircelj H. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem. 2011;129:1164–1168. doi: 10.1016/j.foodchem.2011.05.097. PubMed DOI
Veda S., Platel K., Srinivasan K. Varietal Differences in the Bioaccessibility of β-Carotene from Mango (Mangifera indica) and Papaya (Carica papaya) Fruits. J. Agric. Food Chem. 2007;55:7931–7935. doi: 10.1021/jf0712604. PubMed DOI
Souza L.M.d., Ferreira K.S., Chaves J.B.c.P., Teixeira S.l.L. L-ascorbic acid, ²-carotene and lycopene content in papaya fruits (Carica papaya) with or without physiological skin freckles. Sci. Agric. 2008;65:246–250. doi: 10.1590/S0103-90162008000300004. DOI
Khush G.S., Lee S., Cho J.-I., Jeon J.-S. Biofortification of crops for reducing malnutrition. Plant. Biotechnol. Rep. 2012;6:195–202. doi: 10.1007/s11816-012-0216-5. DOI
Hornero-Méndez D., Mínguez-Mosquera M.I. Carotenoid pigments in Rosa mosqueta hips, an alternative carotenoid source for foods. J. Agric. Food Chem. 2000;48:825–828. doi: 10.1021/jf991136n. PubMed DOI
Piccaglia R., Marotti M., Chiavari G., Gandini N. Effects of Harvesting Date and Climate on the Flavonoid and Carotenoid Contents of Marigold (Calendula officinalis L.) Flavour Fragr. J. 1997;12:85–90. doi: 10.1002/(SICI)1099-1026(199703)12:2<85::AID-FFJ616>3.0.CO;2-L. DOI
Tudor C., Bohn T., Iddir M., Dulf F.V., Focşan M., Rugină D.O., Pintea A. Sea Buckthorn Oil as a Valuable Source of Bioaccessible Xanthophylls. Nutrients. 2019;12:76. doi: 10.3390/nu12010076. PubMed DOI PMC
Mba O.I., Dumont M.-J., Ngadi M. Palm oil: Processing, characterization and utilization in the food industry—A review. Food Biosci. 2015;10:26–41. doi: 10.1016/j.fbio.2015.01.003. DOI
Caprioli G., Kamgang Nzekoue F., Fiorini D., Scocco P., Trabalza-Marinucci M., Acuti G., Tardella F.M., Sagratini G., Catorci A. The effects of feeding supplementation on the nutritional quality of milk and cheese from sheep grazing on dry pasture. Int. J. Food Sci. Nutr. 2020;71:50–62. doi: 10.1080/09637486.2019.1613347. PubMed DOI
Ahmad S. Composition and physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. J. Anim. Plant. Sci. 2013;23:62–74.
Kondyli E., Svarnas C., Samelis J., Katsiari M.C. Chemical composition and microbiological quality of ewe and goat milk of native Greek breeds. Small Rumin. Res. 2012;103:194–199. doi: 10.1016/j.smallrumres.2011.09.043. DOI
Barłowska J., Szwajkowska M., Litwińczuk Z., Król J. Nutritional Value and Technological Suitability of Milk from Various Animal Species Used for Dairy Production. Compr. Rev. Food Sci. Food Saf. 2011;10:291–302. doi: 10.1111/j.1541-4337.2011.00163.x. DOI
Fedele V., Rubino R., Salvatore C., Manzi P., Marconi S., Pizzoferrato L. Seasonal variation in retinol concentration of goat milk associated with grazing compared to indoor feeding. S. Afr. J. Anim. Sci. 2004;34:148–150.
Ramalho H.M.M., Santos J., Casal S., Alves M.R., Oliveira M. Fat-soluble vitamin (A, D, E, and β-carotene) contents from a Portuguese autochthonous cow breed—Minhota. J. Dairy Sci. 2012;95:5476–5484. doi: 10.3168/jds.2010-3975. PubMed DOI
Ollilainen V., Heinonen M., Linkola E., Varo P., Koivistoinen P. Carotenoids and Retinoids in Finnish Foods: Dairy Products and Eggs. J. Dairy Sci. 1989;72:2257–2265. doi: 10.3168/jds.S0022-0302(89)79356-5. PubMed DOI
Majchrzak D., Fabian E., Elmadfa I. Vitamin A content (retinol and retinyl esters) in livers of different animals. Food Chem. 2006;98:704–710. doi: 10.1016/j.foodchem.2005.06.035. DOI
Álvarez R., Meléndez-Martínez A.J., Vicario I.M., Alcalde M.J. Carotenoid and Vitamin A Contents in Biological Fluids and Tissues of Animals as an Effect of the Diet: A Review. Food Rev. Int. 2015;31:319–340. doi: 10.1080/87559129.2015.1015139. DOI
Ollilainen V., Heinonen M., Linkola E., Varo P., Koivistoinen P. Carotenoids and retinoids in finnish foods: Meat and meat products. J. Food Compos. Anal. 1988;1:178–188. doi: 10.1016/0889-1575(88)90022-1. PubMed DOI
Darwish W.S., Ikenaka Y., Morshdy A.E., Eldesoky K.I., Nakayama S., Mizukawa H., Ishizuka M. β-carotene and retinol contents in the meat of herbivorous ungulates with a special reference to their public health importance. J. Vet. Med. Sci. 2016;78:351–354. doi: 10.1292/jvms.15-0287. PubMed DOI PMC
Schweigert F., Buchholz I., Schuhmacher A. Effect of dietary β-carotene on the accumulation of β-carotene and vitamin A in plasma and tissues of gilts. Reprod. Nutr. Dev. Reprod. Nutr. Dev. 2001;41:47–55. doi: 10.1051/rnd:2001111. PubMed DOI
Domínguez R., Barba F.J., Centeno J.A., Putnik P., Alpas H., Lorenzo J.M. Simple and Rapid Method for the Simultaneous Determination of Cholesterol and Retinol in Meat Using Normal-Phase HPLC Technique. Food Anal. Methods. 2018;11:319–326. doi: 10.1007/s12161-017-1001-4. DOI
La Frano M.R., Burri B.J. Analysis of retinol, 3-hydroxyretinol and 3,4-didehydroretinol in North American farm-raised freshwater fish liver, muscle and feed. Aquac. Nutr. 2014;20:722–730. doi: 10.1111/anu.12126. DOI
Dewailly E., Rouja P., Schultz E., Julien P., Tucker T. Vitamin A intoxication from reef fish liver consumption in Bermuda. J. Food Prot. 2011;74:1581–1583. doi: 10.4315/0362-028X.JFP-10-566. PubMed DOI
Li H., Tyndale S.T., Heath D.D., Letcher R.J. Determination of carotenoids and all-trans-retinol in fish eggs by liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005;816:49–56. doi: 10.1016/j.jchromb.2004.11.005. PubMed DOI
Sunarya, Hole M., Taylor K.D.A. Methods of extraction composition and stability of vitamin A and other components in dogfish (Squalus acanthias) liver oil. Food Chem. 1996;55:215–220. doi: 10.1016/0308-8146(95)00109-3. DOI
Irie T., Sugimoto T., Ueki N., Senoo H., Seki T. Retinoid storage in the egg of reptiles and birds. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010;157:113–118. doi: 10.1016/j.cbpb.2010.05.009. PubMed DOI
Anderson K.E. Comparison of fatty acid, cholesterol, vitamin A and E composition, and trans fats in eggs from brown and white egg strains that were molted or nonmolted. Poult. Sci. 2013;92:3259–3265. doi: 10.3382/ps.2013-03377. PubMed DOI
Jiang Y.H., McGeachin R.B., Bailey C.A. α-Tocopherol, β-Carotene, and Retinol Enrichment of Chicken Eggs. Poult. Sci. 1994;73:1137–1143. doi: 10.3382/ps.0731137. PubMed DOI
Heying E.K., Tanumihardjo J.P., Vasic V., Cook M., Palacios-Rojas N., Tanumihardjo S.A. Biofortified Orange Maize Enhances β-Cryptoxanthin Concentrations in Egg Yolks of Laying Hens Better than Tangerine Peel Fortificant. J. Agric. Food Chem. 2014;62:11892–11900. doi: 10.1021/jf5037195. PubMed DOI
Kang K.R., Cherian G., Sim J.S. Tocopherols, Retinol and Carotenes in Chicken Egg and Tissues as Influenced by Dietary Palm Oil. J. Food Sci. 1998;63:592–596. doi: 10.1111/j.1365-2621.1998.tb15792.x. DOI
Harrison E.H. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim. Biophys. Acta. 2012;1821:70–77. doi: 10.1016/j.bbalip.2011.06.002. PubMed DOI PMC
Quick T.C., Ong D.E. Vitamin A metabolism in the human intestinal Caco-2 cell line. Biochemistry. 1990;29:11116–11123. doi: 10.1021/bi00502a015. PubMed DOI
Christian P., West K.P., Jr. Interactions between zinc and vitamin A: An update. Am. J. Clin. Nutr. 1998;68:435S–441S. doi: 10.1093/ajcn/68.2.435S. PubMed DOI
Ong D.E., Chytil F. Cellular retinol-binding protein from rat liver. Purification and characterization. J. Biol. Chem. 1978;253:828–832. doi: 10.1016/S0021-9258(17)38178-4. PubMed DOI
Chytil F., Ong D.E. Cellular vitamin A binding proteins. Vitam. Horm. 1978;36:1–32. doi: 10.1016/s0083-6729(08)60980-2. PubMed DOI
Kanai M., Raz A., Goodman D.S. Retinol-binding protein: The transport protein for vitamin A in human plasma. J. Clin. Investig. 1968;47:2025–2044. doi: 10.1172/JCI105889. PubMed DOI PMC
Borel P., Lietz G., Goncalves A., Szabo de Edelenyi F., Lecompte S., Curtis P., Goumidi L., Caslake M.J., Miles E.A., Packard C., et al. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans. J. Nutr. 2013;143:448–456. doi: 10.3945/jn.112.172734. PubMed DOI
Blomstrand R., Werner B. Studies on the intestinal absorption of radioactive beta-carotene and vitamin A in man. Conversion of beta-carotene into vitamin A. Scand. J. Clin. Lab. Investig. 1967;19:339–345. doi: 10.3109/00365516709090648. PubMed DOI
Moran N.E., Mohn E.S., Hason N., Erdman J.W., Jr., Johnson E.J. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids. Adv. Nutr. 2018;9:465–492. doi: 10.1093/advances/nmy025. PubMed DOI PMC
Glover J., Redfearn E.R. The mechanism of the transformation of beta-carotene into vitamin A in vivo. Biochem. J. 1954;58:xv–xvi. PubMed
Napoli J.L., Race K.R. Biogenesis of retinoic acid from beta-carotene. Differences between the metabolism of beta-carotene and retinal. J. Biol. Chem. 1988;263:17372–17377. doi: 10.1016/S0021-9258(19)77845-4. PubMed DOI
Lobo G.P., Amengual J., Baus D., Shivdasani R.A., Taylor D., von Lintig J. Genetics and diet regulate vitamin A production via the homeobox transcription factor ISX. J. Biol. Chem. 2013;288:9017–9027. doi: 10.1074/jbc.M112.444240. PubMed DOI PMC
van Bennekum A., Werder M., Thuahnai S.T., Han C.H., Duong P., Williams D.L., Wettstein P., Schulthess G., Phillips M.C., Hauser H. Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol. Biochemistry. 2005;44:4517–4525. doi: 10.1021/bi0484320. PubMed DOI
Lobo G.P., Hessel S., Eichinger A., Noy N., Moise A.R., Wyss A., Palczewski K., von Lintig J. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta, beta-carotene absorption and vitamin A production. FASEB J. 2010;24:1656–1666. doi: 10.1096/fj.09-150995. PubMed DOI PMC
Hebuterne X., Wang X.D., Smith D.E., Tang G., Russell R.M. In vivo biosynthesis of retinoic acid from beta-carotene involves and excentric cleavage pathway in ferret intestine. J. Lipid Res. 1996;37:482–492. doi: 10.1016/S0022-2275(20)37592-1. PubMed DOI
Harrison E.H., Hussain M.M. Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A. J. Nutr. 2001;131:1405–1408. doi: 10.1093/jn/131.5.1405. PubMed DOI
Blomhoff R., Blomhoff H.K. Overview of retinoid metabolism and function. J. Neurobiol. 2006;66:606–630. doi: 10.1002/neu.20242. PubMed DOI
Blomhoff R., Green M.H., Berg T., Norum K.R. Transport and storage of vitamin A. Science. 1990;250:399–404. doi: 10.1126/science.2218545. PubMed DOI
Parker R.S. Absorption, metabolism, and transport of carotenoids. FASEB J. 1996;10:542–551. doi: 10.1096/fasebj.10.5.8621054. PubMed DOI
Jing J., Isoherranen N., Robinson-Cohen C., Petrie I., Kestenbaum B.R., Yeung C.K. Chronic Kidney Disease Alters Vitamin A Homeostasis via Effects on Hepatic RBP4 Protein Expression and Metabolic Enzymes. Clin. Transl. Sci. 2016;9:207–215. doi: 10.1111/cts.12402. PubMed DOI PMC
Sedjo R.L., Ranger-Moore J., Foote J., Craft N.E., Alberts D.S., Xu M.J., Giuliano A.R. Circulating endogenous retinoic acid concentrations among participants enrolled in a randomized placebo-controlled clinical trial of retinyl palmitate. Cancer Epidemiol. Biomark. Prev. 2004;13:1687–1692. PubMed
Harrison E.H. Mechanisms of digestion and absorption of dietary vitamin A. Annu. Rev. Nutr. 2005;25:87–103. doi: 10.1146/annurev.nutr.25.050304.092614. PubMed DOI
Blomhoff R., Helgerud P., Rasmussen M., Berg T., Norum K.R. In vivo uptake of chylomicron [3H]retinyl ester by rat liver: Evidence for retinol transfer from parenchymal to nonparenchymal cells. Proc. Natl. Acad. Sci. USA. 1982;79:7326–7330. doi: 10.1073/pnas.79.23.7326. PubMed DOI PMC
Newcomer M.E., Ong D.E. Plasma retinol binding protein: Structure and function of the prototypic lipocalin. Biochim. Biophys. Acta. 2000;1482:57–64. doi: 10.1016/S0167-4838(00)00150-3. PubMed DOI
Soprano D.R., Soprano K.J., Goodman D.S. Retinol-binding protein messenger RNA levels in the liver and in extrahepatic tissues of the rat. J. Lipid. Res. 1986;27:166–171. doi: 10.1016/S0022-2275(20)38843-X. PubMed DOI
Raz A., Goodman D.S. The interaction of thyroxine with human plasma prealbumin and with the prealbumin-retinol-binding protein complex. J. Biol. Chem. 1969;244:3230–3237. doi: 10.1016/S0021-9258(18)93118-2. PubMed DOI
Goodman D.S. Vitamin A and retinoids in health and disease. N. Engl. J. Med. 1984;310:1023–1031. doi: 10.1056/NEJM198404193101605. PubMed DOI
Peterson P.A., Berggard I. Isolation and properties of a human retinol-transporting protein. J. Biol. Chem. 1971;246:25–33. doi: 10.1016/S0021-9258(18)62527-X. PubMed DOI
Vieira M., Saraiva M.J. Transthyretin: A multifaceted protein. Biomol. Concepts. 2014;5:45–54. doi: 10.1515/bmc-2013-0038. PubMed DOI
Episkopou V., Maeda S., Nishiguchi S., Shimada K., Gaitanaris G.A., Gottesman M.E., Robertson E.J. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc. Natl. Acad. Sci. USA. 1993;90:2375–2379. doi: 10.1073/pnas.90.6.2375. PubMed DOI PMC
Kawaguchi R., Yu J., Honda J., Hu J., Whitelegge J., Ping P., Wiita P., Bok D., Sun H. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science. 2007;315:820–825. doi: 10.1126/science.1136244. PubMed DOI
Alapatt P., Guo F., Komanetsky S.M., Wang S., Cai J., Sargsyan A., Rodriguez Diaz E., Bacon B.T., Aryal P., Graham T.E. Liver retinol transporter and receptor for serum retinol-binding protein (RBP4) J. Biol. Chem. 2013;288:1250–1265. doi: 10.1074/jbc.M112.369132. PubMed DOI PMC
Berry D.C., O’Byrne S.M., Vreeland A.C., Blaner W.S., Noy N. Cross talk between signaling and vitamin A transport by the retinol-binding protein receptor STRA6. Mol. Cell. Biol. 2012;32:3164–3175. doi: 10.1128/MCB.00505-12. PubMed DOI PMC
Paik J., Vogel S., Quadro L., Piantedosi R., Gottesman M., Lai K., Hamberger L., Vieira Mde M., Blaner W.S. Vitamin A: Overlapping delivery pathways to tissues from the circulation. J. Nutr. 2004;134:276S–280S. doi: 10.1093/jn/134.1.276S. PubMed DOI
Senoo H. Structure and function of hepatic stellate cells. Med. Electron. Microsc. 2004;37:3–15. doi: 10.1007/s00795-003-0230-3. PubMed DOI
Futterman S., Andrews J.S. The Composition of Liver Vitamin a Ester and the Synthesis of Vitamin a Ester by Liver Microsomes. J. Biol. Chem. 1964;239:4077–4080. doi: 10.1016/S0021-9258(18)91136-1. PubMed DOI
Wyss R., Bucheli F. Determination of endogenous levels of 13-cis-retinoic acid (isotretinoin), all-trans-retinoic acid (tretinoin) and their 4-oxo metabolites in human and animal plasma by high-performance liquid chromatography with automated column switching and ultraviolet detection. J. Chromatogr. B Biomed. Sci. Appl. 1997;700:31–47. doi: 10.1016/s0378-4347(97)00303-4. PubMed DOI
Barua A.B., Sidell N. Retinoyl beta-glucuronide: A biologically active interesting retinoid. J. Nutr. 2004;134:286S–289S. doi: 10.1093/jn/134.1.286S. PubMed DOI
Kurlandsky S.B., Gamble M.V., Ramakrishnan R., Blaner W.S. Plasma delivery of retinoic acid to tissues in the rat. J. Biol. Chem. 1995;270:17850–17857. doi: 10.1074/jbc.270.30.17850. PubMed DOI
Barua A.B., Olson J.A. Retinoyl beta-glucuronide: An endogenous compound of human blood. Am. J. Clin. Nutr. 1986;43:481–485. doi: 10.1093/ajcn/43.4.481. PubMed DOI
Jung U.S., Jeong K.J., Kang J.K., Yi K., Shin J.H., Seo H.S., Kim T., Kim S.H., Hur J.Y. Effects of estrogen receptor alpha and beta on the expression of visfatin and retinol-binding protein 4 in 3T3-L1 adipocytes. Int. J. Mol. Med. 2013;32:723–728. doi: 10.3892/ijmm.2013.1440. PubMed DOI
Clugston R.D., Blaner W.S. The adverse effects of alcohol on vitamin A metabolism. Nutrients. 2012;4:356–371. doi: 10.3390/nu4050356. PubMed DOI PMC
Berggren Soderlund M., Fex G.A., Nilsson-Ehle P. Concentrations of retinoids in early pregnancy and in newborns and their mothers. Am. J. Clin. Nutr. 2005;81:633–636. doi: 10.1093/ajcn/81.3.633. PubMed DOI
Dancis J., Levitz M., Katz J., Wilson D., Blaner W.S., Piantedosi R., Goodman D.S. Transfer and metabolism of retinol by the perfused human placenta. Pediatr. Res. 1992;32:195–199. doi: 10.1203/00006450-199208000-00014. PubMed DOI
Spiegler E., Kim Y.K., Wassef L., Shete V., Quadro L. Maternal-fetal transfer and metabolism of vitamin A and its precursor beta-carotene in the developing tissues. Biochim. Biophys. Acta. 2012;1821:88–98. doi: 10.1016/j.bbalip.2011.05.003. PubMed DOI PMC
Quadro L., Hamberger L., Gottesman M.E., Colantuoni V., Ramakrishnan R., Blaner W.S. Transplacental delivery of retinoid: The role of retinol-binding protein and lipoprotein retinyl ester. Am. J. Physiol. Endocrinol. Metab. 2004;286:E844–E851. doi: 10.1152/ajpendo.00556.2003. PubMed DOI
Bastos Maia S., Rolland Souza A., Costa Caminha M., Lins Da Silva S., Callou Cruz R., Carvalho Dos Santos C., Batista Filho M. Vitamin A and Pregnancy: A Narrative Review. Nutrients. 2019;11:681. doi: 10.3390/nu11030681. PubMed DOI PMC
Rothman K.J., Moore L.L., Singer M.R., Nguyen U.S., Mannino S., Milunsky A. Teratogenicity of high vitamin A intake. N. Engl. J. Med. 1995;333:1369–1373. doi: 10.1056/NEJM199511233332101. PubMed DOI
Hunt J.R. Teratogenicity of high vitamin A intake. N. Engl. J. Med. 1996;334:1197. doi: 10.1056/NEJM199605023341814. PubMed DOI
Maden M. Retinoid signalling in the development of the central nervous system. Nat. Rev. Neurosci. 2002;3:843–853. doi: 10.1038/nrn963. PubMed DOI
Maden M. Retinoids in lung development and regeneration. Curr. Top. Dev. Biol. 2004;61:153–189. doi: 10.1016/S0070-2153(04)61007-6. PubMed DOI
Clagett-Dame M., DeLuca H.F. The role of vitamin A in mammalian reproduction and embryonic development. Annu. Rev. Nutr. 2002;22:347–381. doi: 10.1146/annurev.nutr.22.010402.102745E. PubMed DOI
Niederreither K., Dolle P. Retinoic acid in development: Towards an integrated view. Nat. Rev. Genet. 2008;9:541–553. doi: 10.1038/nrg2340. PubMed DOI
Niles R.M. Vitamin A (retinoids) regulation of mouse melanoma growth and differentiation. J. Nutr. 2003;133:282S–286S. doi: 10.1093/jn/133.1.282S. PubMed DOI
Dawson M.I. The importance of vitamin A in nutrition. Curr. Pharm. Des. 2000;6:311–325. doi: 10.2174/1381612003401190. PubMed DOI
Morriss-Kay G.M., Sokolova N. Embryonic development and pattern formation. FASEB J. 1996;10:961–968. doi: 10.1096/fasebj.10.9.8801178. PubMed DOI
Gudas L.J., Wagner J.A. Retinoids regulate stem cell differentiation. J. Cell. Physiol. 2011;226:322–330. doi: 10.1002/jcp.22417. PubMed DOI PMC
Eskild W., Simard J., Hansson V., Guerin S.L. Binding of a member of the NF1 family of transcription factors to two distinct cis-acting elements in the promoter and 5’-flanking region of the human cellular retinol binding protein 1 gene. Mol. Endocrinol. 1994;8:732–745. doi: 10.1210/mend.8.6.7935489. PubMed DOI
Bono M.R., Tejon G., Flores-Santibanez F., Fernandez D., Rosemblatt M., Sauma D. Retinoic Acid as a Modulator of T Cell Immunity. Nutrients. 2016;8:349. doi: 10.3390/nu8060349. PubMed DOI PMC
Shearer K.D., Stoney P.N., Morgan P.J., McCaffery P.J. A vitamin for the brain. Trends Neurosci. 2012;35:733–741. doi: 10.1016/j.tins.2012.08.005. PubMed DOI
Cocco S., Diaz G., Stancampiano R., Diana A., Carta M., Curreli R., Sarais L., Fadda F. Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience. 2002;115:475–482. doi: 10.1016/S0306-4522(02)00423-2. PubMed DOI
Sommer A. Uses and misuses of vitamin A. Curr. Issues Public Health. 1996;2:161–164. PubMed
Bonet M.L., Ribot J., Felipe F., Palou A. Vitamin A and the regulation of fat reserves. Cell Mol. Life Sci. 2003;60:1311–1321. doi: 10.1007/s00018-003-2290-x. PubMed DOI PMC
Villarroya F., Iglesias R., Giralt M. Retinoids and retinoid receptors in the control of energy balance: Novel pharmacological strategies in obesity and diabetes. Curr. Med. Chem. 2004;11:795–805. doi: 10.2174/0929867043455747. PubMed DOI
Niles R.M. Signaling pathways in retinoid chemoprevention and treatment of cancer. Mutat. Res. 2004;555:81–96. doi: 10.1016/j.mrfmmm.2004.05.020. PubMed DOI
Soprano D.R., Qin P., Soprano K.J. Retinoic acid receptors and cancers. Annu. Rev. Nutr. 2004;24:201–221. doi: 10.1146/annurev.nutr.24.012003.132407. PubMed DOI
Yamauchi P.S., Rizk D., Lowe N.J. Retinoid therapy for psoriasis. Dermatol. Clin. 2004;22:467–476. doi: 10.1016/S0733-8635(03)00126-8. PubMed DOI
Genaro Pde S., Martini L.A. Vitamin A supplementation and risk of skeletal fracture. Nutr. Rev. 2004;62:65–67. doi: 10.1111/j.1753-4887.2004.tb00026.x. PubMed DOI
Gudas L.J. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim. Biophys. Acta. 2012;1821:213–221. doi: 10.1016/j.bbalip.2011.08.002. PubMed DOI PMC
von Lintig J. Metabolism of carotenoids and retinoids related to vision. J. Biol. Chem. 2012;287:1627–1634. doi: 10.1074/jbc.R111.303990. PubMed DOI PMC
Zhong M., Kawaguchi R., Kassai M., Sun H. Retina, retinol, retinal and the natural history of vitamin A as a light sensor. Nutrients. 2012;4:2069–2096. doi: 10.3390/nu4122069. PubMed DOI PMC
Perusek L., Maeda T. Vitamin A derivatives as treatment options for retinal degenerative diseases. Nutrients. 2013;5:2646–2666. doi: 10.3390/nu5072646. PubMed DOI PMC
McCaffery P., Mey J., Drager U.C. Light-mediated retinoic acid production. Proc. Natl. Acad. Sci. USA. 1996;93:12570–12574. doi: 10.1073/pnas.93.22.12570. PubMed DOI PMC
Wolf G. The discovery of the visual function of vitamin A. J. Nutr. 2001;131:1647–1650. doi: 10.1093/jn/131.6.1647. PubMed DOI
Balmer J.E., Blomhoff R. Gene expression regulation by retinoic acid. J. Lipid Res. 2002;43:1773–1808. doi: 10.1194/jlr.R100015-JLR200. PubMed DOI
Bohn T. Carotenoids, Chronic Disease Prevention and Dietary Recommendations. Int. J. Vitam. Nutr. Res. 2017;87:121–130. doi: 10.1024/0300-9831/a000525. PubMed DOI
di Masi A., De Marinis E., Ascenzi P., Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol. Aspects Med. 2009;30:297–343. doi: 10.1016/j.mam.2009.04.002. PubMed DOI
Giguere V., Ong E.S., Segui P., Evans R.M. Identification of a receptor for the morphogen retinoic acid. Nature. 1987;330:624–629. doi: 10.1038/330624a0. PubMed DOI
Petkovich M., Brand N.J., Krust A., Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature. 1987;330:444–450. doi: 10.1038/330444a0. PubMed DOI
Krust A., Kastner P., Petkovich M., Zelent A., Chambon P. A third human retinoic acid receptor, hRAR-gamma. Proc. Natl. Acad. Sci. USA. 1989;86:5310–5314. doi: 10.1073/pnas.86.14.5310. PubMed DOI PMC
Brand N., Petkovich M., Krust A., Chambon P., de The H., Marchio A., Tiollais P., Dejean A. Identification of a second human retinoic acid receptor. Nature. 1988;332:850–853. doi: 10.1038/332850a0. PubMed DOI
Germain P., Chambon P., Eichele G., Evans R.M., Lazar M.A., Leid M., De Lera A.R., Lotan R., Mangelsdorf D.J., Gronemeyer H. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev. 2006;58:760–772. doi: 10.1124/pr.58.4.7. PubMed DOI
Canon E., Cosgaya J.M., Scsucova S., Aranda A. Rapid effects of retinoic acid on CREB and ERK phosphorylation in neuronal cells. Mol. Biol. Cell. 2004;15:5583–5592. doi: 10.1091/mbc.e04-05-0439. PubMed DOI PMC
Poon M.M., Chen L. Retinoic acid-gated sequence-specific translational control by RARalpha. Proc. Natl. Acad. Sci. USA. 2008;105:20303–20308. doi: 10.1073/pnas.0807740105. PubMed DOI PMC
Mangelsdorf D.J., Ong E.S., Dyck J.A., Evans R.M. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature. 1990;345:224–229. doi: 10.1038/345224a0. PubMed DOI
Yu V.C., Delsert C., Andersen B., Holloway J.M., Devary O.V., Naar A.M., Kim S.Y., Boutin J.M., Glass C.K., Rosenfeld M.G. RXR beta: A coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell. 1991;67:1251–1266. doi: 10.1016/0092-8674(91)90301-E. PubMed DOI
Mangelsdorf D.J., Borgmeyer U., Heyman R.A., Zhou J.Y., Ong E.S., Oro A.E., Kakizuka A., Evans R.M. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 1992;6:329–344. doi: 10.1101/gad.6.3.329. PubMed DOI
Heyman R.A., Mangelsdorf D.J., Dyck J.A., Stein R.B., Eichele G., Evans R.M., Thaller C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell. 1992;68:397–406. doi: 10.1016/0092-8674(92)90479-V. PubMed DOI
Chebaro Y., Sirigu S., Amal I., Lutzing R., Stote R.H., Rochette-Egly C., Rochel N., Dejaegere A. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorgamma. PLoS ONE. 2017;12:e0171043. doi: 10.1371/journal.pone.0171043. PubMed DOI PMC
Le Douarin B., Zechel C., Garnier J.M., Lutz Y., Tora L., Pierrat P., Heery D., Gronemeyer H., Chambon P., Losson R. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 1995;14:2020–2033. doi: 10.1002/j.1460-2075.1995.tb07194.x. PubMed DOI PMC
Durand B., Saunders M., Gaudon C., Roy B., Losson R., Chambon P. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: Presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 1994;13:5370–5382. doi: 10.1002/j.1460-2075.1994.tb06872.x. PubMed DOI PMC
Lindh J.D., Bjorkhem-Bergman L., Eliasson E. Vitamin D and drug-metabolising enzymes. Photochem. Photobiol. Sci. 2012;11:1797–1801. doi: 10.1039/c2pp25194a. PubMed DOI
Zhang Y., Luo X.Y., Wu D.H., Xu Y. ROR nuclear receptors: Structures, related diseases, and drug discovery. Acta Pharmacol. Sin. 2015;36:71–87. doi: 10.1038/aps.2014.120. PubMed DOI PMC
Jetten A.M., Kurebayashi S., Ueda E. The ROR nuclear orphan receptor subfamily: Critical regulators of multiple biological processes. Prog. Nucleic. Acid Res. Mol. Biol. 2001;69:205–247. doi: 10.1016/s0079-6603(01)69048-2. PubMed DOI
Solt L.A., Burris T.P. Action of RORs and their ligands in (patho)physiology. Trends Endocrinol. Metab. 2012;23:619–627. doi: 10.1016/j.tem.2012.05.012. PubMed DOI PMC
Stehlin-Gaon C., Willmann D., Zeyer D., Sanglier S., Van Dorsselaer A., Renaud J.P., Moras D., Schule R. All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta. Nat. Struct. Biol. 2003;10:820–825. doi: 10.1038/nsb979. PubMed DOI
Napoli J.L. Retinoic acid biosynthesis and metabolism. FASEB J. 1996;10:993–1001. doi: 10.1096/fasebj.10.9.8801182. PubMed DOI
Schug T.T., Berry D.C., Shaw N.S., Travis S.N., Noy N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell. 2007;129:723–733. doi: 10.1016/j.cell.2007.02.050. PubMed DOI PMC
Hihi A.K., Michalik L., Wahli W. PPARs: Transcriptional effectors of fatty acids and their derivatives. Cell. Mol. Life Sci. 2002;59:790–798. doi: 10.1007/s00018-002-8467-x. PubMed DOI PMC
Chandra V., Huang P., Hamuro Y., Raghuram S., Wang Y., Burris T.P., Rastinejad F. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature. 2008;456:350–356. doi: 10.1038/nature07413. PubMed DOI PMC
Michalik L., Auwerx J., Berger J.P., Chatterjee V.K., Glass C.K., Gonzalez F.J., Grimaldi P.A., Kadowaki T., Lazar M.A., O’Rahilly S., et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol. Rev. 2006;58:726–741. doi: 10.1124/pr.58.4.5. PubMed DOI
Barish G.D., Narkar V.A., Evans R.M. PPAR delta: A dagger in the heart of the metabolic syndrome. J. Clin. Investig. 2006;116:590–597. doi: 10.1172/JCI27955. PubMed DOI PMC
Krey G., Braissant O., L’Horset F., Kalkhoven E., Perroud M., Parker M.G., Wahli W. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 1997;11:779–791. doi: 10.1210/mend.11.6.0007. PubMed DOI
Kliewer S.A., Forman B.M., Blumberg B., Ong E.S., Borgmeyer U., Mangelsdorf D.J., Umesono K., Evans R.M. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA. 1994;91:7355–7359. doi: 10.1073/pnas.91.15.7355. PubMed DOI PMC
Glatz J.F., Lagarde M. Lipid sensing and lipid sensors. Cell. Mol. Life Sci. 2007;64:2449–2451. doi: 10.1007/s00018-007-7276-7. PubMed DOI PMC
Xu H.E., Lambert M.H., Montana V.G., Parks D.J., Blanchard S.G., Brown P.J., Sternbach D.D., Lehmann J.M., Wisely G.B., Willson T.M., et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell. 1999;3:397–403. doi: 10.1016/S1097-2765(00)80467-0. PubMed DOI
Berry D.C., Noy N. Is PPARbeta/delta a Retinoid Receptor? PPAR Res. 2007;2007:73256. doi: 10.1155/2007/73256. PubMed DOI PMC
Berry D.C., Noy N. All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol. Cell. Biol. 2009;29:3286–3296. doi: 10.1128/MCB.01742-08. PubMed DOI PMC
Lampen A., Meyer S., Nau H. Effects of receptor-selective retinoids on CYP26 gene expression and metabolism of all-trans-retinoic acid in intestinal cells. Drug Metab. Dispos. 2001;29:742–747. PubMed
White J.A., Ramshaw H., Taimi M., Stangle W., Zhang A., Everingham S., Creighton S., Tam S.P., Jones G., Petkovich M. Identification of the human cytochrome P450, P450RAI-2, which is predominantly expressed in the adult cerebellum and is responsible for all-trans-retinoic acid metabolism. Proc. Natl. Acad. Sci. USA. 2000;97:6403–6408. doi: 10.1073/pnas.120161397. PubMed DOI PMC
Taimi M., Helvig C., Wisniewski J., Ramshaw H., White J., Amad M., Korczak B., Petkovich M. A novel human cytochrome P450, CYP26C1, involved in metabolism of 9-cis and all-trans isomers of retinoic acid. J. Biol. Chem. 2004;279:77–85. doi: 10.1074/jbc.M308337200. PubMed DOI
Reijntjes S., Gale E., Maden M. Generating gradients of retinoic acid in the chick embryo: Cyp26C1 expression and a comparative analysis of the Cyp26 enzymes. Dev. Dyn. 2004;230:509–517. doi: 10.1002/dvdy.20025. PubMed DOI
Cawley S., Bekiranov S., Ng H.H., Kapranov P., Sekinger E.A., Kampa D., Piccolboni A., Sementchenko V., Cheng J., Williams A.J., et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell. 2004;116:499–509. doi: 10.1016/S0092-8674(04)00127-8. PubMed DOI
Chen J.Y., Penco S., Ostrowski J., Balaguer P., Pons M., Starrett J.E., Reczek P., Chambon P., Gronemeyer H. RAR-specific agonist/antagonists which dissociate transactivation and AP1 transrepression inhibit anchorage-independent cell proliferation. EMBO J. 1995;14:1187–1197. doi: 10.1002/j.1460-2075.1995.tb07102.x. PubMed DOI PMC
Lokman N.A., Ho R., Gunasegaran K., Bonner W.M., Oehler M.K., Ricciardelli C. Anti-tumour effects of all-trans retinoid acid on serous ovarian cancer. J. Exp. Clin. Cancer Res. 2019;38:10. doi: 10.1186/s13046-018-1017-7. PubMed DOI PMC
Huang Z., Liu Y., Qi G., Brand D., Zheng S.G. Role of Vitamin A in the Immune System. J. Clin. Med. 2018;7:258. doi: 10.3390/jcm7090258. PubMed DOI PMC
Altucci L., Gronemeyer H. The promise of retinoids to fight against cancer. Nat. Rev. Cancer. 2001;1:181–193. doi: 10.1038/35106036. PubMed DOI
Nagy L., Thomazy V.A., Heyman R.A., Davies P.J. Retinoid-induced apoptosis in normal and neoplastic tissues. Cell Death Differ. 1998;5:11–19. doi: 10.1038/sj.cdd.4400337. PubMed DOI
Mrass P., Rendl M., Mildner M., Gruber F., Lengauer B., Ballaun C., Eckhart L., Tschachler E. Retinoic acid increases the expression of p53 and proapoptotic caspases and sensitizes keratinocytes to apoptosis: A possible explanation for tumor preventive action of retinoids. Cancer Res. 2004;64:6542–6548. doi: 10.1158/0008-5472.CAN-04-1129. PubMed DOI
Maalmi H., Walter V., Jansen L., Owen R.W., Ulrich A., Schottker B., Chang-Claude J., Hoffmeister M., Brenner H. Dose-Response Relationship between Serum Retinol Levels and Survival in Patients with Colorectal Cancer: Results from the DACHS Study. Nutrients. 2018;10:510. doi: 10.3390/nu10040510. PubMed DOI PMC
Huang X., Gao Y., Zhi X., Ta N., Jiang H., Zheng J. Association between vitamin A, retinol and carotenoid intake and pancreatic cancer risk: Evidence from epidemiologic studies. Sci. Rep. 2016;6:38936. doi: 10.1038/srep38936. PubMed DOI PMC
Costantini L., Molinari R., Farinon B., Merendino N. Retinoic Acids in the Treatment of Most Lethal Solid Cancers. J. Clin. Med. 2020;9:360. doi: 10.3390/jcm9020360. PubMed DOI PMC
Bama E.S., Grace V.M.B., Sundaram V., Jesubatham P.D. Synergistic effect of co-treatment with all-trans retinoic acid and 9-cis retinoic acid on human lung cancer cell line at molecular level. 3 Biotech. 2019;9:159. doi: 10.1007/s13205-019-1692-x. PubMed DOI PMC
Esteva F.J., Glaspy J., Baidas S., Laufman L., Hutchins L., Dickler M., Tripathy D., Cohen R., DeMichele A., Yocum R.C., et al. Multicenter phase II study of oral bexarotene for patients with metastatic breast cancer. J. Clin. Oncol. 2003;21:999–1006. doi: 10.1200/JCO.2003.05.068. PubMed DOI
Rousseau E.J., Davison A.J., Dunn B. Protection by beta-carotene and related compounds against oxygen-mediated cytotoxicity and genotoxicity: Implications for carcinogenesis and anticarcinogenesis. Free Radic. Biol. Med. 1992;13:407–433. doi: 10.1016/0891-5849(92)90183-H. PubMed DOI
Monsen E.R. Dietary reference intakes for the antioxidant nutrients: Vitamin C, vitamin E, selenium, and carotenoids. J. Am. Diet. Assoc. 2000;100:637–640. doi: 10.1016/S0002-8223(00)00189-9. PubMed DOI
Blumberg J., Block G. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study in Finland. Nutr. Rev. 1994;52:242–245. doi: 10.1111/j.1753-4887.1994.tb01430.x. PubMed DOI
Omenn G.S., Goodman G.E., Thornquist M.D., Balmes J., Cullen M.R., Glass A., Keogh J.P., Meyskens F.L., Valanis B., Williams J.H., et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 1996;334:1150–1155. doi: 10.1056/NEJM199605023341802. PubMed DOI
Buring J.E., Hebert P., Hennekens C.H. The alpha-tocopherol, beta-carotene lung cancer prevention trial of vitamin E and beta-carotene: The beginning of the answers. Ann. Epidemiol. 1994;4:75. doi: 10.1016/1047-2797(94)90045-0. PubMed DOI
Middha P., Weinstein S.J., Mannisto S., Albanes D., Mondul A.M. beta-Carotene Supplementation and Lung Cancer Incidence in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study: The Role of Tar and Nicotine. Nicotine Tob. Res. 2019;21:1045–1050. doi: 10.1093/ntr/nty115. PubMed DOI PMC
Nishino H., Murakosh M., Ii T., Takemura M., Kuchide M., Kanazawa M., Mou X.Y., Wada S., Masuda M., Ohsaka Y., et al. Carotenoids in cancer chemoprevention. Cancer Metastasis Rev. 2002;21:257–264. doi: 10.1023/A:1021206826750. PubMed DOI
Koklesova L., Liskova A., Samec M., Buhrmann C., Samuel S.M., Varghese E., Ashrafizadeh M., Najafi M., Shakibaei M., Busselberg D., et al. Carotenoids in Cancer Apoptosis-The Road from Bench to Bedside and Back. Cancers. 2020;12:2425. doi: 10.3390/cancers12092425. PubMed DOI PMC
Park H.A., Hayden M.M., Bannerman S., Jansen J., Crowe-White K.M. Anti-Apoptotic Effects of Carotenoids in Neurodegeneration. Molecules. 2020;25:3453. doi: 10.3390/molecules25153453. PubMed DOI PMC
Iwata M., Hirakiyama A., Eshima Y., Kagechika H., Kato C., Song S.Y. Retinoic acid imprints gut-homing specificity on T cells. Immunity. 2004;21:527–538. doi: 10.1016/j.immuni.2004.08.011. PubMed DOI
Benson M.J., Pino-Lagos K., Rosemblatt M., Noelle R.J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 2007;204:1765–1774. doi: 10.1084/jem.20070719. PubMed DOI PMC
Pino-Lagos K., Benson M.J., Noelle R.J. Retinoic acid in the immune system. Ann. N. Y. Acad. Sci. 2008;1143:170–187. doi: 10.1196/annals.1443.017. PubMed DOI PMC
Moore C., Sauma D., Reyes P.A., Morales J., Rosemblatt M., Bono M.R., Fierro J.A. Dendritic cells and B cells cooperate in the generation of CD4(+)CD25(+)FOXP3(+) allogeneic T cells. Transplant. Proc. 2010;42:371–375. doi: 10.1016/j.transproceed.2009.12.044. PubMed DOI
Ross A.C. Vitamin A and retinoic acid in T cell-related immunity. Am. J. Clin. Nutr. 2012;96:1166S–1172S. doi: 10.3945/ajcn.112.034637. PubMed DOI PMC
Bayon Y., Ortiz M.A., Lopez-Hernandez F.J., Gao F., Karin M., Pfahl M., Piedrafita F.J. Inhibition of IkappaB kinase by a new class of retinoid-related anticancer agents that induce apoptosis. Mol. Cell. Biol. 2003;23:1061–1074. doi: 10.1128/MCB.23.3.1061-1074.2003. PubMed DOI PMC
Adams J., Kiss E., Arroyo A.B., Bonrouhi M., Sun Q., Li Z., Gretz N., Schnitger A., Zouboulis C.C., Wiesel M., et al. 13-cis retinoic acid inhibits development and progression of chronic allograft nephropathy. Am. J. Pathol. 2005;167:285–298. doi: 10.1016/S0002-9440(10)62973-2. PubMed DOI PMC
Shibakura M., Niiya K., Niiya M., Asaumi N., Yoshida C., Nakata Y., Tanimoto M. Induction of CXC and CC chemokines by all-trans retinoic acid in acute promyelocytic leukemia cells. Leuk. Res. 2005;29:755–759. doi: 10.1016/j.leukres.2005.01.005. PubMed DOI
Buck J., Derguini F., Levi E., Nakanishi K., Hammerling U. Intracellular signaling by 14-hydroxy-4,14-retro-retinol. Science. 1991;254:1654–1656. doi: 10.1126/science.1749937. PubMed DOI
Buck J., Grun F., Derguini F., Chen Y., Kimura S., Noy N., Hammerling U. Anhydroretinol: A naturally occurring inhibitor of lymphocyte physiology. J. Exp. Med. 1993;178:675–680. doi: 10.1084/jem.178.2.675. PubMed DOI PMC
Mora J.R., Iwata M., von Andrian U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol. 2008;8:685–698. doi: 10.1038/nri2378. PubMed DOI PMC
De Luca L., Wolf G. Mechanism of action of vitamin A in differentiation of mucus-secreting epithelia. J. Agric. Food Chem. 1972;20:474–476. doi: 10.1021/jf60181a034. PubMed DOI
Aydelotte M.B. Vitamin A deficiency in chickens. Br. J. Nutr. 1963;17:205–210. doi: 10.1079/BJN19630021. PubMed DOI
McCullough F.S., Northrop-Clewes C.A., Thurnham D.I. The effect of vitamin A on epithelial integrity. Proc. Nutr. Soc. 1999;58:289–293. doi: 10.1017/S0029665199000403. PubMed DOI
Wolbach S.B., Howe P.R. Tissue Changes Following Deprivation of Fat-Soluble a Vitamin. J. Exp. Med. 1925;42:753–777. doi: 10.1084/jem.42.6.753. PubMed DOI PMC
Fu P.P., Xia Q., Boudreau M.D., Howard P.C., Tolleson W.H., Wamer W.G. Physiological role of retinyl palmitate in the skin. Vitam. Horm. 2007;75:223–256. doi: 10.1016/S0083-6729(06)75009-9. PubMed DOI
Chung S.S., Wolgemuth D.J. Role of retinoid signaling in the regulation of spermatogenesis. Cytogenet. Genome Res. 2004;105:189–202. doi: 10.1159/000078189. PubMed DOI PMC
Clagett-Dame M., Knutson D. Vitamin A in reproduction and development. Nutrients. 2011;3:385–428. doi: 10.3390/nu3040385. PubMed DOI PMC
Baume L.J., Franquin J.C., Korner W.W. The prenatal effects of maternal vitamin A deficiency on the cranial and dental development of the progeny. Am. J. Orthod. 1972;62:447–460. doi: 10.1016/0002-9416(72)90021-8. PubMed DOI
Stoltzfus R.J., Underwood B.A. Breast-milk vitamin A as an indicator of the vitamin A status of women and infants. Bull. World Health Organ. 1995;73:703–711. PubMed PMC
Dror D.K., Allen L.H. Retinol-to-Fat Ratio and Retinol Concentration in Human Milk Show Similar Time Trends and Associations with Maternal Factors at the Population Level: A Systematic Review and Meta-Analysis. Adv. Nutr. 2018;9:332S–346S. doi: 10.1093/advances/nmy021. PubMed DOI PMC
Varani J., Fisher G.J., Kang S., Voorhees J.J. Molecular mechanisms of intrinsic skin aging and retinoid-induced repair and reversal. J. Investig. Dermatol. Symp. Proc. 1998;3:57–60. PubMed
Wang Y.X., Lee C.H., Tiep S., Yu R.T., Ham J., Kang H., Evans R.M. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell. 2003;113:159–170. doi: 10.1016/S0092-8674(03)00269-1. PubMed DOI
Schwarz E.J., Reginato M.J., Shao D., Krakow S.L., Lazar M.A. Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription. Mol. Cell Biol. 1997;17:1552–1561. doi: 10.1128/MCB.17.3.1552. PubMed DOI PMC
Yang Q., Graham T.E., Mody N., Preitner F., Peroni O.D., Zabolotny J.M., Kotani K., Quadro L., Kahn B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436:356–362. doi: 10.1038/nature03711. PubMed DOI
Ziouzenkova O., Orasanu G., Sharlach M., Akiyama T.E., Berger J.P., Viereck J., Hamilton J.A., Tang G., Dolnikowski G.G., Vogel S., et al. Retinaldehyde represses adipogenesis and diet-induced obesity. Nat. Med. 2007;13:695–702. doi: 10.1038/nm1587. PubMed DOI PMC
Lima I.O.L., Peres W.A.F., Cruz S., Ramalho A. Association of Ischemic Cardiovascular Disease with Inadequacy of Liver Store of Retinol in Elderly Individuals. Oxid. Med. Cell Longev. 2018;2018:9785231. doi: 10.1155/2018/9785231. PubMed DOI PMC
Brazionis L., Walker K.Z., Itsiopoulos C., O’Dea K. Plasma retinol: A novel marker for cardiovascular disease mortality in Australian adults. Nutr. Metab. Cardiovasc. Dis. 2012;22:914–920. doi: 10.1016/j.numecd.2011.08.009. PubMed DOI
Beydoun M.A., Chen X., Jha K., Beydoun H.A., Zonderman A.B., Canas J.A. Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis. Nutr. Rev. 2019;77:32–45. doi: 10.1093/nutrit/nuy044. PubMed DOI PMC
Garcia O.P., Long K.Z., Rosado J.L. Impact of micronutrient deficiencies on obesity. Nutr. Rev. 2009;67:559–572. doi: 10.1111/j.1753-4887.2009.00228.x. PubMed DOI
Mounien L., Tourniaire F., Landrier J.F. Anti-Obesity Effect of Carotenoids: Direct Impact on Adipose Tissue and Adipose Tissue-Driven Indirect Effects. Nutrients. 2019;11:1562. doi: 10.3390/nu11071562. PubMed DOI PMC
Kane M.A., Folias A.E., Pingitore A., Perri M., Obrochta K.M., Krois C.R., Cione E., Ryu J.Y., Napoli J.L. Identification of 9-cis-retinoic acid as a pancreas-specific autacoid that attenuates glucose-stimulated insulin secretion. Proc. Natl. Acad. Sci. USA. 2010;107:21884–21889. doi: 10.1073/pnas.1008859107. PubMed DOI PMC
Brun P.J., Yang K.J., Lee S.A., Yuen J.J., Blaner W.S. Retinoids: Potent regulators of metabolism. Biofactors. 2013;39:151–163. doi: 10.1002/biof.1056. PubMed DOI PMC
Trasino S.E., Gudas L.J. Vitamin A: A missing link in diabetes? Diabetes Manag. 2015;5:359–367. doi: 10.2217/dmt.15.30. PubMed DOI PMC
Bowles J., Knight D., Smith C., Wilhelm D., Richman J., Mamiya S., Yashiro K., Chawengsaksophak K., Wilson M.J., Rossant J., et al. Retinoid signaling determines germ cell fate in mice. Science. 2006;312:596–600. doi: 10.1126/science.1125691. PubMed DOI
Niederreither K., Fraulob V., Garnier J.M., Chambon P., Dolle P. Differential expression of retinoic acid-synthesizing (RALDH) enzymes during fetal development and organ differentiation in the mouse. Mech. Dev. 2002;110:165–171. doi: 10.1016/S0925-4773(01)00561-5. PubMed DOI
Koubova J., Menke D.B., Zhou Q., Capel B., Griswold M.D., Page D.C. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc. Natl. Acad. Sci. USA. 2006;103:2474–2479. doi: 10.1073/pnas.0510813103. PubMed DOI PMC
Childs A.J., Cowan G., Kinnell H.L., Anderson R.A., Saunders P.T. Retinoic Acid signalling and the control of meiotic entry in the human fetal gonad. PLoS ONE. 2011;6:e20249. doi: 10.1371/journal.pone.0020249. PubMed DOI PMC
Jorgensen A., Rajpert-De Meyts E. Regulation of meiotic entry and gonadal sex differentiation in the human: Normal and disrupted signaling. Biomol. Concepts. 2014;5:331–341. doi: 10.1515/bmc-2014-0014. PubMed DOI
Stillwell W., Nahmias S. Effect of retinol and retinoic acid on P/O ratios of coupled mitochondria. Biochem. Int. 1983;6:385–392. PubMed
Kambhampati S., Verma A., Li Y., Parmar S., Sassano A., Platanias L.C. Signalling pathways activated by all-trans-retinoic acid in acute promyelocytic leukemia cells. Leuk. Lymphoma. 2004;45:2175–2185. doi: 10.1080/10428190410001722053. PubMed DOI
Kuenzli S., Saurat J.H. Retinoids for the treatment of psoriasis: Outlook for the future. Curr. Opin. Investig. Drugs. 2001;2:625–630. PubMed
Aggarwal S., Kim S.W., Cheon K., Tabassam F.H., Yoon J.H., Koo J.S. Nonclassical action of retinoic acid on the activation of the cAMP response element-binding protein in normal human bronchial epithelial cells. Mol. Biol. Cell. 2006;17:566–575. doi: 10.1091/mbc.e05-06-0519. PubMed DOI PMC
Lerner A.J., Gustaw-Rothenberg K., Smyth S., Casadesus G. Retinoids for treatment of Alzheimer’s disease. Biofactors. 2012;38:84–89. doi: 10.1002/biof.196. PubMed DOI
Acin-Perez R., Hoyos B., Zhao F., Vinogradov V., Fischman D.A., Harris R.A., Leitges M., Wongsiriroj N., Blaner W.S., Manfredi G., et al. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis. FASEB J. 2010;24:627–636. doi: 10.1096/fj.09-142281. PubMed DOI PMC
Hoyos B., Imam A., Korichneva I., Levi E., Chua R., Hammerling U. Activation of c-Raf kinase by ultraviolet light. Regulation by retinoids. J. Biol. Chem. 2002;277:23949–23957. doi: 10.1074/jbc.M110750200. PubMed DOI
Hurley J.H., Newton A.C., Parker P.J., Blumberg P.M., Nishizuka Y. Taxonomy and function of C1 protein kinase C homology domains. Protein Sci. 1997;6:477–480. doi: 10.1002/pro.5560060228. PubMed DOI PMC
Imam A., Hoyos B., Swenson C., Levi E., Chua R., Viriya E., Hammerling U. Retinoids as ligands and coactivators of protein kinase C alpha. FASEB J. 2001;15:28–30. doi: 10.1096/fj.00-0329fje. PubMed DOI
Ochoa W.F., Torrecillas A., Fita I., Verdaguer N., Corbalan-Garcia S., Gomez-Fernandez J.C. Retinoic acid binds to the C2-domain of protein kinase C(alpha) Biochemistry. 2003;42:8774–8779. doi: 10.1021/bi034713g. PubMed DOI
Tapiero H., Townsend D.M., Tew K.D. The role of carotenoids in the prevention of human pathologies. Biomed. Pharm. 2004;58:100–110. doi: 10.1016/j.biopha.2003.12.006. PubMed DOI PMC
Palace V.P., Khaper N., Qin Q., Singal P.K. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic. Biol. Med. 1999;26:746–761. doi: 10.1016/S0891-5849(98)00266-4. PubMed DOI
Ribeiro D., Freitas M., Silva A.M.S., Carvalho F., Fernandes E. Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem. Toxicol. 2018;120:681–699. doi: 10.1016/j.fct.2018.07.060. PubMed DOI
Dao D.Q., Ngo T.C., Thong N.M., Nam P.C. Is Vitamin A an Antioxidant or a Pro-oxidant? J. Phys. Chem. B. 2017;121:9348–9357. doi: 10.1021/acs.jpcb.7b07065. PubMed DOI
Ma L., Dou H.L., Wu Y.Q., Huang Y.M., Huang Y.B., Xu X.R., Zou Z.Y., Lin X.M. Lutein and zeaxanthin intake and the risk of age-related macular degeneration: A systematic review and meta-analysis. Br. J. Nutr. 2012;107:350–359. doi: 10.1017/S0007114511004260. PubMed DOI
Christoforidis J.B., Tecce N., Dell’Omo R., Mastropasqua R., Verolino M., Costagliola C. Age related macular degeneration and visual disability. Curr. Drug Targets. 2011;12:221–233. doi: 10.2174/138945011794182755. PubMed DOI
Murillo A.G., Fernandez M.L. Potential of Dietary Non-Provitamin A Carotenoids in the Prevention and Treatment of Diabetic Microvascular Complications. Adv. Nutr. 2016;7:14–24. doi: 10.3945/an.115.009803. PubMed DOI PMC
Brazionis L., Rowley K., Jenkins A., Itsiopoulos C., O’Dea K. Plasminogen activator inhibitor-1 activity in type 2 diabetes: A different relationship with coronary heart disease and diabetic retinopathy. Arter. Thromb. Vasc. Biol. 2008;28:786–791. doi: 10.1161/ATVBAHA.107.160168. PubMed DOI
Nongenomic interactions of retinoic acid and thyroid hormone at the plasma membrane. Nutr. Rev. 1989;47:213–215. doi: 10.1111/j.1753-4887.1989.tb02842.x. PubMed DOI
Denisenko-Nehrbass N.I., Mello C.V. Molecular targets of disulfiram action on song maturation in zebra finches. Brain Res. Mol. Brain Res. 2001;87:246–250. doi: 10.1016/S0169-328X(01)00002-X. PubMed DOI
Tournier S., Raynaud F., Gerbaud P., Lohmann S.M., Anderson W.B., Evain-Brion D. Retinoylation of the type II cAMP-binding regulatory subunit of cAMP-dependent protein kinase is increased in psoriatic human fibroblasts. J. Cell Physiol. 1996;167:196–203. doi: 10.1002/(SICI)1097-4652(199605)167:2<196::AID-JCP2>3.0.CO;2-K. PubMed DOI
Genchi G., Olson J.A. Retinoylation of proteins in cell-free fractions of rat tissues in vitro. Biochim. Biophys. Acta. 2001;1530:146–154. doi: 10.1016/S1388-1981(00)00175-X. PubMed DOI
Tanumihardjo S.A. Vitamin A and bone health: The balancing act. J. Clin. Densitom. 2013;16:414–419. doi: 10.1016/j.jocd.2013.08.016. PubMed DOI
de Jonge E.A., Kiefte-de Jong J.C., Campos-Obando N., Booij L., Franco O.H., Hofman A., Uitterlinden A.G., Rivadeneira F., Zillikens M.C. Dietary vitamin A intake and bone health in the elderly: The Rotterdam Study. Eur. J. Clin. Nutr. 2015;69:1375. doi: 10.1038/ejcn.2015.187. PubMed DOI
Johansson S., Lind P.M., Hakansson H., Oxlund H., Orberg J., Melhus H. Subclinical hypervitaminosis A causes fragile bones in rats. Bone. 2002;31:685–689. doi: 10.1016/S8756-3282(02)00910-9. PubMed DOI
Kneissel M., Studer A., Cortesi R., Susa M. Retinoid-induced bone thinning is caused by subperiosteal osteoclast activity in adult rodents. Bone. 2005;36:202–214. doi: 10.1016/j.bone.2004.11.006. PubMed DOI
Wu A.M., Huang C.Q., Lin Z.K., Tian N.F., Ni W.F., Wang X.Y., Xu H.Z., Chi Y.L. The relationship between vitamin A and risk of fracture: Meta-analysis of prospective studies. J. Bone Miner. Res. 2014;29:2032–2039. doi: 10.1002/jbmr.2237. PubMed DOI
Goncalves A., Roi S., Nowicki M., Dhaussy A., Huertas A., Amiot M.J., Reboul E. Fat-soluble vitamin intestinal absorption: Absorption sites in the intestine and interactions for absorption. Food Chem. 2015;172:155–160. doi: 10.1016/j.foodchem.2014.09.021. PubMed DOI
Caire-Juvera G., Ritenbaugh C., Wactawski-Wende J., Snetselaar L.G., Chen Z. Vitamin A and retinol intakes and the risk of fractures among participants of the Women’s Health Initiative Observational Study. Am. J. Clin. Nutr. 2009;89:323–330. doi: 10.3945/ajcn.2008.26451. PubMed DOI PMC
Mata-Granados J.M., Cuenca-Acevedo R., Luque de Castro M.D., Sosa M., Quesada-Gomez J.M. Vitamin D deficiency and high serum levels of vitamin A increase the risk of osteoporosis evaluated by Quantitative Ultrasound Measurements (QUS) in postmenopausal Spanish women. Clin. Biochem. 2010;43:1064–1068. doi: 10.1016/j.clinbiochem.2010.06.001. PubMed DOI
Joo N.S., Yang S.W., Song B.C., Yeum K.J. Vitamin A intake, serum vitamin D and bone mineral density: Analysis of the Korea National Health and Nutrition Examination Survey (KNHANES, 2008–2011) Nutrients. 2015;7:1716–1727. doi: 10.3390/nu7031716. PubMed DOI PMC
Johansson S., Melhus H. Vitamin A antagonizes calcium response to vitamin D in man. J. Bone Miner. Res. 2001;16:1899–1905. doi: 10.1359/jbmr.2001.16.10.1899. PubMed DOI
Rohde C.M., DeLuca H.F. All-trans retinoic acid antagonizes the action of calciferol and its active metabolite, 1,25-dihydroxycholecalciferol, in rats. J. Nutr. 2005;135:1647–1652. doi: 10.1093/jn/135.7.1647. PubMed DOI
Rohde C.M., Manatt M., Clagett-Dame M., DeLuca H.F. Vitamin A antagonizes the action of vitamin D in rats. J. Nutr. 1999;129:2246–2250. doi: 10.1093/jn/129.12.2246. PubMed DOI
Sha J., Pan J., Ping P., Xuan H., Li D., Bo J., Liu D., Huang Y. Synergistic effect and mechanism of vitamin A and vitamin D on inducing apoptosis of prostate cancer cells. Mol. Biol. Rep. 2013;40:2763–2768. doi: 10.1007/s11033-012-1925-0. PubMed DOI
Cheng T.Y., Goodman G.E., Thornquist M.D., Barnett M.J., Beresford S.A., LaCroix A.Z., Zheng Y., Neuhouser M.L. Estimated intake of vitamin D and its interaction with vitamin A on lung cancer risk among smokers. Int. J. Cancer. 2014;135:2135–2145. doi: 10.1002/ijc.28846. PubMed DOI PMC
Ferreiro-Vera C., Mata-Granados J.M., Quesada Gomez J.M., Luque de Castro M.D. On-line coupling of automatic solid-phase extraction and HPLC for determination of carotenoids in serum. Talanta. 2011;85:1842–1847. doi: 10.1016/j.talanta.2011.07.031. PubMed DOI
Boulet L., Alex B., Clavey N., Martinez J., Ducros V. Simultaneous analysis of retinol, six carotenoids, two tocopherols, and coenzyme Q10 from human plasma by HPLC. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020;1151:122158. doi: 10.1016/j.jchromb.2020.122158. PubMed DOI
Lazzarino G., Longo S., Amorini A.M., Di Pietro V., D’Urso S., Lazzarino G., Belli A., Tavazzi B. Single-step preparation of selected biological fluids for the high performance liquid chromatographic analysis of fat-soluble vitamins and antioxidants. J. Chromatogr. A. 2017;1527:43–52. doi: 10.1016/j.chroma.2017.10.053. PubMed DOI
Hartmann S., Froescheis O., Ringenbach F., Wyss R., Bucheli F., Bischof S., Bausch J., Wiegand U.W. Determination of retinol and retinyl esters in human plasma by high-performance liquid chromatography with automated column switching and ultraviolet detection. J. Chromatogr. B Biomed. Sci. Appl. 2001;751:265–275. doi: 10.1016/S0378-4347(00)00481-3. PubMed DOI
Ruhl R., Schweigert F.J. Automated solid-phase extraction and liquid chromatographic method for retinoid determination in biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003;798:309–316. doi: 10.1016/j.jchromb.2003.10.001. PubMed DOI
Mata-Granados J.M., Luque De Castro M.D., Quesada J.M. Fully automated method for the determination of 24,25(OH)2 and 25(OH) D3 hydroxyvitamins, and vitamins A and E in human serum by HPLC. J. Pharm. Biomed. Anal. 2004;35:575–582. doi: 10.1016/j.jpba.2004.01.027. PubMed DOI
Xuan R., Wang T., Hou C., Li X., Li Y., Chen Y., Gao Y., Qiu D., Xiao X., Zhang L., et al. Determination of vitamin A in blood serum based on solid-phase extraction using cetyltrimethyl ammonium bromide-modified attapulgite. J. Sep. Sci. 2019;42:3521–3527. doi: 10.1002/jssc.201900778. PubMed DOI
Pan Q., Shen M., Yu T., Yang X., Li Q., Zhao B., Zou J., Zhang M. Liquid chromatography as candidate reference method for the determination of vitamins A and E in human serum. J. Clin. Lab. Anal. 2020;34:e23528. doi: 10.1002/jcla.23528. PubMed DOI PMC
Erhardt J.G., Craft N.E., Heinrich F., Biesalski H.K. Rapid and simple measurement of retinol in human dried whole blood spots. J. Nutr. 2002;132:318–321. doi: 10.1093/jn/132.2.318. PubMed DOI
Plisek J., Kasparova M., Solichova D., Krcmova L., Kucerova B., Sobotka L., Solich P. Application of core-shell technology for determination of retinol and alpha-tocopherol in breast milk. Talanta. 2013;107:382–388. doi: 10.1016/j.talanta.2013.01.031. PubMed DOI
Nakagawa K., Kiko T., Hatade K., Asai A., Kimura F., Sookwong P., Tsuduki T., Arai H., Miyazawa T. Development of a high-performance liquid chromatography-based assay for carotenoids in human red blood cells: Application to clinical studies. Anal. Biochem. 2008;381:129–134. doi: 10.1016/j.ab.2008.06.038. PubMed DOI
Thibeault D., Su H., MacNamara E., Schipper H.M. Isocratic rapid liquid chromatographic method for simultaneous determination of carotenoids, retinol, and tocopherols in human serum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009;877:1077–1083. doi: 10.1016/j.jchromb.2009.02.051. PubMed DOI
Hsu B.Y., Pu Y.S., Inbaraj B.S., Chen B.H. An improved high performance liquid chromatography-diode array detection-mass spectrometry method for determination of carotenoids and their precursors phytoene and phytofluene in human serum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012;899:36–45. doi: 10.1016/j.jchromb.2012.04.034. PubMed DOI
Bell E.C., John M., Hughes R.J., Pham T. Ultra-performance liquid chromatographic determination of tocopherols and retinol in human plasma. J. Chromatogr. Sci. 2014;52:1065–1070. doi: 10.1093/chromsci/bmt161. PubMed DOI PMC
Yuan C., Burgyan M., Bunch D.R., Reineks E., Jackson R., Steinle R., Wang S. Fast, simple, and sensitive high-performance liquid chromatography method for measuring vitamins A and E in human blood plasma. J. Sep. Sci. 2014;37:2293–2299. doi: 10.1002/jssc.201301373. PubMed DOI
Kandar R., Drabkova P., Myslikova K., Hampl R. Determination of retinol and alpha-tocopherol in human seminal plasma using an HPLC with UV detection. Andrologia. 2014;46:472–478. doi: 10.1111/and.12103. PubMed DOI
Gleize B., Steib M., Andre M., Reboul E. Simple and fast HPLC method for simultaneous determination of retinol, tocopherols, coenzyme Q(10) and carotenoids in complex samples. Food Chem. 2012;134:2560–2564. doi: 10.1016/j.foodchem.2012.04.043. PubMed DOI
Liu Z.E.A. Solid phase extraction with electrospun nanofibers for determination of retinol and α-tocopherol in plasma. Micro. Chim. Acta. 2009;2010:59–64. doi: 10.1016/j.aca.2009.03.027. PubMed DOI
Kucerova B., Krcmova L., Solichova D., Plisek J., Solich P. Comparison of a new high-resolution monolithic column with core-shell and fully porous columns for the analysis of retinol and alpha-tocopherol in human serum and breast milk by ultra-high-performance liquid chromatography. J. Sep. Sci. 2013;36:2223–2230. doi: 10.1002/jssc.201300242. PubMed DOI
Zhang H.E.A. Simultaneous determination of Vitamin A, 25-hydroxyl vitamin D 3 α-tocopherol in small biological fluids by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018;15:1–8. doi: 10.1016/j.jchromb.2017.12.017. PubMed DOI
Le J., Yuan T.F., Zhang Y., Wang S.T., Li Y. New LC-MS/MS method with single-step pretreatment analyzes fat-soluble vitamins in plasma and amniotic fluid. J. Lipid Res. 2018;59:1783–1790. doi: 10.1194/jlr.D087569. PubMed DOI PMC
Peersman N., Elslande J.V., Lepage Y., De Amicis S., Desmet K., Vermeersch P. UPLC-MS/MS method for determination of retinol and alpha-tocopherol in serum using a simple sample pretreatment and UniSpray as ionization technique to reduce matrix effects. Clin. Chem. Lab. Med. 2020;58:769–779. doi: 10.1515/cclm-2019-1237. PubMed DOI
Arnold S.L., Amory J.K., Walsh T.J., Isoherranen N. A sensitive and specific method for measurement of multiple retinoids in human serum with UHPLC-MS/MS. J. Lipid Res. 2012;53:587–598. doi: 10.1194/jlr.D019745. PubMed DOI PMC
Khaksari M., Mazzoleni L.R., Ruan C., Kennedy R.T., Minerick A.R. Determination of water-soluble and fat-soluble vitamins in tears and blood serum of infants and parents by liquid chromatography/mass spectrometry. Exp. Eye Res. 2017;155:54–63. doi: 10.1016/j.exer.2016.12.007. PubMed DOI
Kucerova K.e.a. Determination of urinary retinol and creatinine as an early sensitive marker of renal dysfunction. J. Chromatogr. A. 2019;1607 doi: 10.1016/j.chroma.2019.460390. PubMed DOI
Zoccali M., Giuffrida D., Granese R., Salafia F., Dugo P., Mondello L. Determination of free apocarotenoids and apocarotenoid esters in human colostrum. Anal. Bioanal. Chem. 2020;412:1335–1342. doi: 10.1007/s00216-019-02359-z. PubMed DOI
Zoccali M., Giuffrida D., Salafia F., Giofre S.V., Mondello L. Carotenoids and apocarotenoids determination in intact human blood samples by online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry. Anal. Chim. Acta. 2018;1032:40–47. doi: 10.1016/j.aca.2018.06.022. PubMed DOI
Petruzziello F., Grand-Guillaume Perrenoud A., Thorimbert A., Fogwill M., Rezzi S. Quantitative Profiling of Endogenous Fat-Soluble Vitamins and Carotenoids in Human Plasma Using an Improved UHPSFC-ESI-MS Interface. Anal. Chem. 2017;89:7615–7622. doi: 10.1021/acs.analchem.7b01476. PubMed DOI
Matsubara A., Uchikata T., Shinohara M., Nishiumi S., Yoshida M., Fukusaki E., Bamba T. Highly sensitive and rapid profiling method for carotenoids and their epoxidized products using supercritical fluid chromatography coupled with electrospray ionization-triple quadrupole mass spectrometry. J. Biosci. Bioeng. 2012;113:782–787. doi: 10.1016/j.jbiosc.2012.01.017. PubMed DOI
Wang L.H.e.a. Determination of retinoids in human serum, tocopherol and retinyl acetate in pharmaceuticals by RP-LC with electrochemical detection. J. Pharm. Biomed. Anal. 2001;25:785–793. doi: 10.1016/S0731-7085(01)00381-8. PubMed DOI
Hermans N., Cos P., Berghe D.V., Vlietinck A.J., de Bruyne T. Method development and validation for monitoring in vivo oxidative stress: Evaluation of lipid peroxidation and fat-soluble vitamin status by HPLC in rat plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005;822:33–39. doi: 10.1016/j.jchromb.2005.05.040. PubMed DOI
Ferruzzi M.G., Sander L.C., Rock C.L., Schwartz S.J. Carotenoid determination in biological microsamples using liquid chromatography with a coulometric electrochemical array detector. Anal. Biochem. 1998;256:74–81. doi: 10.1006/abio.1997.2484. PubMed DOI
My BioSource Human Vitamin A Elisa Kit. [(accessed on 27 January 2021)]; Available online: https://cdn.mybiosource.com/tds/protocol_manuals/000000-799999/MBS729269.pdf.
Abbexa Vitamin A Elisa Kit. [(accessed on 27 January 2021)]; Available online: https://www.abbexa.com/vitamin-a-elisa-kit.
Aviva Systems Biology Vitamin A Elisa Kit. [(accessed on 27 January 2021)]; Available online: https://www.avivasysbio.com/pub/media/pdf/products/OKEH02573.pdf.
Kamiya Biomedical Company Human Vitamin A Elisa K-Assay. [(accessed on 27 January 2021)]; Available online: https://www.kamiyabiomedical.com/pdf/KT-31968.pdf.
LifeSpan BioSciences Human Vitamin A Elisa Kit. [(accessed on 27 January 2021)]; Available online: https://www.lsbio.com/elisakits/manualpdf/ls-f10051.pdf.
Novus Biologicals Human Vitamin A Elisa Kit. [(accessed on 27 January 2021)]; Available online: https://resources.novusbio.com/manual/Manual-NBP2-60191-53627008.pdf.
Cusabio Human Vitamin A Elisa Kit. [(accessed on 27 January 2021)]; Available online: https://cdn.mybiosource.com/tds/protocol_manuals/000000-799999/MBS729269.pdf.
Laboratory B.T. Human Beta-Caroten Elisa Kit. [(accessed on 27 January 2021)]; Available online: http://www.bt-laboratory.com/product/human-beta-carotene-elisa-kit-2/
BioAnalyt iCheck Karotene. [(accessed on 27 January 2021)]; Available online: https://www.bioanalyt.com/wp-content/uploads/2019/05/iCheck-Carotene_product-information_EN_2019.pdf.
Recipe UHPLC Complete Kit Vitamin A and E In Serum/Plasma. [(accessed on 27 January 2021)]; Available online: https://recipe.de/products/vitamin-a-e-serum-uhplc/
Recipe HPLC Complete Kit Vitamin AE In Plasma/Serum. [(accessed on 27 January 2021)]; Available online: https://recipe.de/products/vitamin-a-e-serum/
Recipe HPLC Complete Kit Beta-Carotene in Plasma/Serum. [(accessed on 27 January 2021)]; Available online: https://recipe.de/products/%ce%b2-carotene-serum/
Immundiagnostic AG Vitamin A/E HPLC Kit. [(accessed on 27 January 2021)]; Available online: http://www.immundiagnostik.com/en/home/products/kits-assays/hplc-applications.html?tx_mokom01immunprodukte_pi1%5Ban%5D=KC1600&tx_mokom01immunprodukte_pi1%5Bag%5D=409&cHash=639cc97481.
Chromsystems Vitamin A and E in Serum/Plasma. [(accessed on 27 January 2021)]; Available online: https://chromsystems.com/en/vitamins-a-and-e-in-serum-plasma-hplc-34000.html.
Trumbo P., Yates A.A., Schlicker S., Poos M. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 2001;101:294–301. doi: 10.1016/S0002-8223(01)00078-5. PubMed DOI
Gannon B.M., Jones C., Mehta S. Vitamin A Requirements in Pregnancy and Lactation. Curr. Dev. Nutr. 2020;4:nzaa142. doi: 10.1093/cdn/nzaa142. PubMed DOI PMC
Bernard R.A., Halpern B.P. Taste changes in vitamin A deficiency. J. Gen. Physiol. 1968;52:444–464. doi: 10.1085/jgp.52.3.444. PubMed DOI PMC
Biesalski H.K., Wellner U., Stofft E., Bassler K.H. Vitamin A deficiency and sensory function. Acta Vitam. Enzym. 1985;7:45–54. PubMed
Bromley S.M. Smell and taste disorders: A primary care approach. Am. Fam. Physician. 2000;61:427–438. PubMed
Reifen R., Zaiger G., Uni Z. Effect of vitamin A on small intestinal brush border enzymes in a rat. Int. J. Vitam. Nutr. Res. 1998;68:281–286. PubMed
Wiedermann U., Chen X.J., Enerback L., Hanson L.A., Kahu H., Dahlgren U.I. Vitamin A deficiency increases inflammatory responses. Scand J. Immunol. 1996;44:578–584. doi: 10.1046/j.1365-3083.1996.d01-351.x. PubMed DOI
Sirisinha S. The pleiotropic role of vitamin A in regulating mucosal immunity. Asian Pac. J. Allergy. Immunol. 2015;33:71–89. PubMed
Goetghebuer T., Brasseur D., Dramaix M., DeMol P., Donnen P., Bahwere P., Duchateau J., Hennart P. Significance of very low retinol levels during severe protein-energy malnutrition. J. Trop. Pediatr. 1996;42:158–161. doi: 10.1093/tropej/42.3.158. PubMed DOI
West K.P., Jr. Vitamin A deficiency disorders in children and women. Food Nutr. Bull. 2003;24:S78–S90. doi: 10.1177/15648265030244S104. PubMed DOI
Huiming Y., Chaomin W., Meng M. Vitamin A for treating measles in children. Cochrane Database Syst. Rev. 2005 doi: 10.1002/14651858.CD001479.pub3. PubMed DOI PMC
Stevens G.A., Bennett J.E., Hennocq Q., Lu Y., De-Regil L.M., Rogers L., Danaei G., Li G., White R.A., Flaxman S.R., et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: A pooled analysis of population-based surveys. Lancet Glob. Health. 2015;3:e528–e536. doi: 10.1016/S2214-109X(15)00039-X. PubMed DOI
Bailey R.L., West K.P., Jr., Black R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015;66(Suppl. 2):22–33. doi: 10.1159/000371618. PubMed DOI
De Sole G., Belay Y., Zegeye B. Vitamin A deficiency in southern Ethiopia. Am. J. Clin. Nutr. 1987;45:780–784. doi: 10.1093/ajcn/45.4.780. PubMed DOI
Young J.K., Giesbrecht H.E., Eskin M.N., Aliani M., Suh M. Nutrition implications for fetal alcohol spectrum disorder. Adv. Nutr. 2014;5:675–692. doi: 10.3945/an.113.004846. PubMed DOI PMC
Garg M., Sharma N., Sharma S., Kapoor P., Kumar A., Chunduri V., Arora P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018;5 doi: 10.3389/fnut.2018.00012. PubMed DOI PMC
Tallman M.S., Andersen J.W., Schiffer C.A., Appelbaum F.R., Feusner J.H., Ogden A., Shepherd L., Willman C., Bloomfield C.D., Rowe J.M., et al. All-trans-retinoic acid in acute promyelocytic leukemia. N. Engl. J. Med. 1997;337:1021–1028. doi: 10.1056/NEJM199710093371501. PubMed DOI
Chen M.C., Hsu S.L., Lin H., Yang T.Y. Retinoic acid and cancer treatment. Biomedicine. 2014;4:22. doi: 10.7603/s40681-014-0022-1. PubMed DOI PMC
Barclay A.J., Foster A., Sommer A. Vitamin A supplements and mortality related to measles: A randomised clinical trial. Br. Med. J. 1987;294:294–296. doi: 10.1136/bmj.294.6567.294. PubMed DOI PMC
Hussey G.D., Klein M. A randomized, controlled trial of vitamin A in children with severe measles. N. Engl. J. Med. 1990;323:160–164. doi: 10.1056/NEJM199007193230304. PubMed DOI
Bello S., Meremikwu M.M., Ejemot-Nwadiaro R.I., Oduwole O. Routine vitamin A supplementation for the prevention of blindness due to measles infection in children. Cochrane Database Syst. Rev. 2011 doi: 10.1002/14651858.CD007719.pub2. PubMed DOI
Barbul A., Thysen B., Rettura G., Levenson S.M., Seifter E. White cell involvement in the inflammatory, wound healing, and immune actions of vitamin A. JPEN J. Parenter. Enter. Nutr. 1978;2:129–138. doi: 10.1177/014860717800200208. PubMed DOI
Damery E., Solimando D.A., Jr., Waddell J.A. Arsenic Trioxide and Tretinoin (AsO/ATRA) for Acute Promyelocytic Leukemia (APL) Hosp. Pharm. 2016;51:628–632. doi: 10.1310/hpj5108-628. PubMed DOI PMC
Breitman T.R., Selonick S.E., Collins S.J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc. Natl. Acad. Sci. USA. 1980;77:2936–2940. doi: 10.1073/pnas.77.5.2936. PubMed DOI PMC
Freemantle S.J., Spinella M.J., Dmitrovsky E. Retinoids in cancer therapy and chemoprevention: Promise meets resistance. Oncogene. 2003;22:7305–7315. doi: 10.1038/sj.onc.1206936. PubMed DOI
Duvic M., Friedman-Kien A.E., Looney D.J., Miles S.A., Myskowski P.L., Scadden D.T., Von Roenn J., Galpin J.E., Groopman J., Loewen G., et al. Topical treatment of cutaneous lesions of acquired immunodeficiency syndrome-related Kaposi sarcoma using alitretinoin gel: Results of phase 1 and 2 trials. Arch. Dermatol. 2000;136:1461–1469. doi: 10.1001/archderm.136.12.1461. PubMed DOI
Rathi S.K. Acne vulgaris treatment: The current scenario. Indian J. Dermatol. 2011;56:7–13. doi: 10.4103/0019-5154.77543. PubMed DOI PMC
Mukherjee S., Date A., Patravale V., Korting H.C., Roeder A., Weindl G. Retinoids in the treatment of skin aging: An overview of clinical efficacy and safety. Clin. Interv. Aging. 2006;1:327–348. doi: 10.2147/ciia.2006.1.4.327. PubMed DOI PMC
Karkeni E., Bonnet L., Astier J., Couturier C., Dalifard J., Tourniaire F., Landrier J.F. All-trans-retinoic acid represses chemokine expression in adipocytes and adipose tissue by inhibiting NF-kappaB signaling. J. Nutr. Biochem. 2017;42:101–107. doi: 10.1016/j.jnutbio.2017.01.004. PubMed DOI
Weiss J.S., Ellis C.N., Headington J.T., Tincoff T., Hamilton T.A., Voorhees J.J. Topical tretinoin improves photoaged skin. A double-blind vehicle-controlled study. JAMA. 1988;259:527–532. doi: 10.1001/jama.1988.03720040019020. PubMed DOI
Peck G.L., Olsen T.G., Yoder F.W., Strauss J.S., Downing D.T., Pandya M., Butkus D., Arnaud-Battandier J. Prolonged remissions of cystic and conglobate acne with 13-cis-retinoic acid. N. Engl. J. Med. 1979;300:329–333. doi: 10.1056/NEJM197902153000701. PubMed DOI
Orfanos C.E., Zouboulis C.C. Oral retinoids in the treatment of seborrhoea and acne. Dermatology. 1998;196:140–147. doi: 10.1159/000017848. PubMed DOI
Layton A. The use of isotretinoin in acne. Dermatoendocrinology. 2009;1:162–169. doi: 10.4161/derm.1.3.9364. PubMed DOI PMC
Booij M.T., Van De Kerkhof P.C. Acitretin revisited in the era of biologics. J. Dermatolog. Treat. 2011;22:86–89. doi: 10.3109/09546630903578582. PubMed DOI
Zasada M., Budzisz E. Retinoids: Active molecules influencing skin structure formation in cosmetic and dermatological treatments. Postepy Dermatol. Alergol. 2019;36:392–397. doi: 10.5114/ada.2019.87443. PubMed DOI PMC
Murray J.S., White J. Vitamin A supplementation in infants and children. J. Spec. Pediatr. Nurs. 2016;21:212–217. doi: 10.1111/jspn.12156. PubMed DOI
Melendez-Martinez A.J., Stinco C.M., Mapelli-Brahm P. Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene. Nutrients. 2019;11:1093. doi: 10.3390/nu11051093. PubMed DOI PMC
Kopcke W., Krutmann J. Protection from sunburn with beta-Carotene--a meta-analysis. Photochem. Photobiol. 2008;84:284–288. doi: 10.1111/j.1751-1097.2007.00253.x. PubMed DOI
Sies H., Stahl W. Nutritional protection against skin damage from sunlight. Annu. Rev. Nutr. 2004;24:173–200. doi: 10.1146/annurev.nutr.24.012003.132320. PubMed DOI
Biesalski H.K., Hemmes C., Hopfenmuller W., Schmid C., Gollnick H.P. Effects of controlled exposure of sunlight on plasma and skin levels of beta-carotene. Free Radic. Res. 1996;24:215–224. doi: 10.3109/10715769609088019. PubMed DOI
Lee J., Jiang S., Levine N., Watson R.R. Carotenoid supplementation reduces erythema in human skin after simulated solar radiation exposure. Proc. Soc. Exp. Biol. Med. 2000;223:170–174. doi: 10.1046/j.1525-1373.2000.22323.x. PubMed DOI
Ono K., Yamada M. Vitamin A and Alzheimer’s disease. Geriatr. Gerontol. Int. 2012;12:180–188. doi: 10.1111/j.1447-0594.2011.00786.x. PubMed DOI
Moise A.R., Noy N., Palczewski K., Blaner W.S. Delivery of retinoid-based therapies to target tissues. Biochemistry. 2007;46:4449–4458. doi: 10.1021/bi7003069. PubMed DOI PMC
Heinonen M. Food groups as the source of retinoids, carotenoids, and vitamin A in Finland. Int. J. Vitam. Nutr. Res. 1991;61:3–9. PubMed
Snodgrass S.R. Vitamin neurotoxicity. Mol. Neurobiol. 1992;6:41–73. doi: 10.1007/BF02935566. PubMed DOI
Penniston K.L., Tanumihardjo S.A. The acute and chronic toxic effects of vitamin A. Am. J. Clin. Nutr. 2006;83:191–201. doi: 10.1093/ajcn/83.2.191. PubMed DOI
Lowe N.J., David M. New retinoids for dermatologic diseases. Uses and toxicity. Dermatol. Clin. 1988;6:539–552. doi: 10.1016/S0733-8635(18)30632-6. PubMed DOI
Biesalski H.K. Comparative assessment of the toxicology of vitamin A and retinoids in man. Toxicology. 1989;57:117–161. doi: 10.1016/0300-483X(89)90161-3. PubMed DOI
Patatanian E., Thompson D.F. Retinoic acid syndrome: A review. J. Clin. Pharm. Ther. 2008;33:331–338. doi: 10.1111/j.1365-2710.2008.00935.x. PubMed DOI
Setty O.H., Misra U.K. Effect of heparin on vitamin A induced hyperlipidemia in rats. Int. J. Vitam. Nutr. Res. 1981;51:325–330. PubMed
Lammer E.J., Chen D.T., Hoar R.M., Agnish N.D., Benke P.J., Braun J.T., Curry C.J., Fernhoff P.M., Grix A.W., Jr., Lott I.T., et al. Retinoic acid embryopathy. N. Engl. J. Med. 1985;313:837–841. doi: 10.1056/NEJM198510033131401. PubMed DOI
Lascari A.D. Carotenemia. A review. Clin. Pediatr. 1981;20:25–29. doi: 10.1177/000992288102000103. PubMed DOI