Lipoic Acid Combined with Melatonin Mitigates Oxidative Stress and Promotes Root Formation and Growth in Salt-Stressed Canola Seedlings (Brassica napus L.)

. 2021 May 25 ; 26 (11) : . [epub] 20210525

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34070241

Lipoic acid (LA) and melatonin (MT) are pleiotropic molecules participating in plant stress resistance by modulating cellular biochemical changes, ion homeostasis, and antioxidant enzyme activities. However, the combined role of these two molecules in counteracting the detrimental impacts of salinity stress is still unknown. In the present study, we determined the effects of exogenous LA (0.5 µM), MT (1 µM) and their combination (LA + MT) on growth performance and biomass accumulation, photosynthetic pigments, enzymatic and non-enzymatic antioxidant activities, and ions homeostatic in canola (Brassica napus L.) seedlings under salinity stress (0, 100 mM) for 40 days. The results indicate that exogenous application of LA + MT improved the phenotypic growth (by 25 to 45%), root thickness (by 68%), number of later lateral roots (by 52%), root viability (by 44%), and root length (by 50%) under salinity stress. Moreover, total soluble protein, chlorophyll pigments, the concentration of superoxide dismutase (SOD), catalase peroxidase (CAT), and ascorbic peroxidase (ASA) increased with the presence of salt concentration into the growth media and then decreased with the addition of LA + MT to saline solution. Leaf protein contents and the degradation of photosynthetic pigments were lower when LA + MT treatments were added into NaCl media. The proline and phenol contents decreased in the exogenous application of LA + MT treatments more than individual LA or MT treatments under the salinity stress. The incorporation of LA or MT or a combination of LA + MT to saline solution decreased salinity-induced malondialdehyde and electrolyte leakage. In conclusion, the alteration of metabolic pathways, redox modulation, and ions homeostasis in plant tissues by the combined LA and MT application are helpful towards the adaptation of Brassica napus L. seedlings in a saline environment. The results of this study provide, for the first time, conclusive evidence about the protective role of exogenous LA + MT in canola seedlings under salinity stress.

Zobrazit více v PubMed

Ahanger M.A., Agarwal R.M. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant. Physiol. Biochem. 2017;115:449–460. doi: 10.1016/j.plaphy.2017.04.017. PubMed DOI

da Silva C.J., Batista Fontes E.P., Modolo L.V. Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana. Plant. Sci. 2017;256:148–159. doi: 10.1016/j.plantsci.2016.12.011. PubMed DOI

Farhangi-Abriz S., Ghassemi-Golezani K. How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol. Environ. Saf. 2018;147:1010–1016. doi: 10.1016/j.ecoenv.2017.09.070. PubMed DOI

Gadelha C.G., Miranda R.d.S., Alencar N.L.M., Costa J.H., Prisco J.T., Gomes-Filho E. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J. Plant. Physiol. 2017;212:69–79. doi: 10.1016/j.jplph.2017.02.005. PubMed DOI

Hasanuzzaman M., Oku H., Nahar K., Bhuyan M.H.M.B., Mahmud J.A., Baluska F., Fujita M. Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant. Biotechnol. Rep. 2018;12:77–92. doi: 10.1007/s11816-018-0480-0. DOI

Ren Y., Wang W., He J., Zhang L., Wei Y., Yang M. Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicol. Environ. Saf. 2020;187:109785. doi: 10.1016/j.ecoenv.2019.109785. PubMed DOI

Tian X., He M., Wang Z., Zhang J., Song Y., He Z., Dong Y. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regul. 2015;77:343–356. doi: 10.1007/s10725-015-0069-3. DOI

Zhang W., Yu X., Li M., Lang D., Zhang X., Xie Z. Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop. Prot. 2018;107:1–11. doi: 10.1016/j.cropro.2018.01.005. DOI

Zoufan P., Azad Z., Rahnama Ghahfarokhie A., Kolahi M. Modification of oxidative stress through changes in some indicators related to phenolic metabolism in Malva parviflora exposed to cadmium. Ecotoxicol. Environ. Saf. 2020;187:109811. doi: 10.1016/j.ecoenv.2019.109811. PubMed DOI

Paul S., Roychoudhury A., Banerjee A., Chaudhuri N., Ghosh P. Seed pre-treatment with spermidine alleviates oxidative damages to different extent in the salt (NaCl)-stressed seedlings of three indica rice cultivars with contrasting level of salt tolerance. Plant Gene. 2017;11:112–123. doi: 10.1016/j.plgene.2017.04.002. DOI

Xu G., Zhang Y., Sun J., Shao H. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Sci. Total Environ. 2016;568:910–915. doi: 10.1016/j.scitotenv.2016.06.079. PubMed DOI

Dugdug A.A., Chang S.X., Ok Y.S., Rajapaksha A.U., Anyia A. Phosphorus sorption capacity of biochars varies with biochar type and salinity level. Environ. Sci. Pollut. Res. Int. 2018;25:25799–25812. doi: 10.1007/s11356-018-1368-9. PubMed DOI

Kataria S., Baghel L., Guruprasad K.N. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal. Agric. Biotechnol. 2017;10:83–90. doi: 10.1016/j.bcab.2017.02.010. DOI

Campos F.V., Oliveira J.A., Pereira M.G., Farnese F.S. Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. Planta. 2019;250:1475–1489. doi: 10.1007/s00425-019-03236-w. PubMed DOI

Terzi R., Saruhan Güler N., Güven F.G., Kadioglu A. Alpha lipoic acid treatment induces the antioxidant system and ameliorates lipid peroxidation in maize seedlings under osmotic stress. Arch. Biol. Sci. 2018;70:503–511. doi: 10.2298/ABS171218011T. DOI

Gorcek Z., Erdal S. Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system. J. Sci. Food Agric. 2015;95:2811–2817. doi: 10.1002/jsfa.7020. PubMed DOI

D’Amico M., Izzo R., Navari-Izzo F., Tognoni F., Pardossi A. Proceedings of the International Symposium on Managing Greenhouse Crops in Saline Environment 609. International Society for Horticultural Science (ISHS); Leuven, Belgium: 2003. Sea Water Irrigation: Antioxidants and Quality of Tomato Berries (Lycopersicon esculentum Mill.) pp. 59–65.

Sgherri C., Navari-Izzo F., Pardossi A., Soressi G.P., Izzo R. The influence of diluted seawater and ripening stage on the content of antioxidants in fruits of different tomato genotypes. J. Agric. Food Chem. 2007;55:2452–2458. doi: 10.1021/jf0634451. PubMed DOI

Navari-Izzo F., Quartacci M.F., Sgherri C. Lipoic acid: A unique antioxidant in the detoxification of activated oxygen species. Plant Physiol. Biochem. 2002;40:463–470. doi: 10.1016/S0981-9428(02)01407-9. DOI

Sgherri C., Kadlecová Z., Pardossi A., Navari-Izzo F., Izzo R. Irrigation with diluted seawater improves the nutritional value of cherry tomatoes. J. Agric. Food Chem. 2008;56:3391–3397. doi: 10.1021/jf0733012. PubMed DOI

Tan D.-X., Manchester L.C., Esteban-Zubero E., Zhou Z., Reiter R.J. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules. 2015;20:18886–18906. doi: 10.3390/molecules201018886. PubMed DOI PMC

Reiter R.J., Tan D.-X., Zhou Z., Cruz M.H.C., Fuentes-Broto L., Galano A. Phytomelatonin: Assisting plants to survive and thrive. Molecules. 2015;20:7396–7437. doi: 10.3390/molecules20047396. PubMed DOI PMC

Byeon Y., Lee H.Y., Lee K., Park S., Back K. Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J. Pineal Res. 2014;56:107–114. doi: 10.1111/jpi.12103. PubMed DOI

Li C., Tan D.-X., Liang D., Chang C., Jia D., Ma F. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J. Exp. Bot. 2015;66:669–680. doi: 10.1093/jxb/eru476. PubMed DOI

Kostopoulou Z., Therios I., Roumeliotis E., Kanellis A.K., Molassiotis A. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol. Biochem. 2015;86:155–165. doi: 10.1016/j.plaphy.2014.11.021. PubMed DOI

Cui G., Zhao X., Liu S., Sun F., Zhang C., Xi Y. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol. Biochem. 2017;118:138–149. doi: 10.1016/j.plaphy.2017.06.014. PubMed DOI

Fleta-Soriano E., Díaz L., Bonet E., Munné-Bosch S. Melatonin may exert a protective role against drought stress in maize. J. Agron. Crop. Sci. 2017;203:286–294. doi: 10.1111/jac.12201. DOI

Huang B., Chen Y.-E., Zhao Y.-Q., Ding C.-B., Liao J.-Q., Hu C., Zhou L.-J., Zhang Z.-W., Yuan S., Yuan M. Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Front. Plant Sci. 2019;10:677. doi: 10.3389/fpls.2019.00677. PubMed DOI PMC

Zheng X., Tan D.X., Allan A.C., Zuo B., Zhao Y., Reiter R.J., Wang L., Wang Z., Guo Y., Zhou J. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci. Rep. 2017;7:41236. doi: 10.1038/srep41236. PubMed DOI PMC

Zhao H., Xu L., Su T., Jiang Y., Hu L., Ma F. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC 3000 infection in Arabidopsis thaliana. J. Pineal Res. 2015;59:109–119. doi: 10.1111/jpi.12245. PubMed DOI

Zhang N., Sun Q., Zhang H., Cao Y., Weeda S., Ren S., Guo Y.-D. Roles of melatonin in abiotic stress resistance in plants. J. Exp. Bot. 2015;66:647–656. doi: 10.1093/jxb/eru336. PubMed DOI

Li C., Liang B., Chang C., Wei Z., Zhou S., Ma F. Exogenous melatonin improved potassium content in Malus under different stress conditions. J. Pineal Res. 2016;61:218–229. doi: 10.1111/jpi.12342. PubMed DOI

Dawood M.G., El-Awadi M.E. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológica Colomb. 2015;20:223–235. doi: 10.15446/abc.v20n2.43291. DOI

Farhangi-Abriz S., Torabian S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol. Environ. Saf. 2017;137:64–70. doi: 10.1016/j.ecoenv.2016.11.029. PubMed DOI

Meena M.D., Yadav R.K., Narjary B., Yadav G., Jat H.S., Sheoran P., Meena M.K., Antil R.S., Meena B.L., Singh H.V., et al. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review. Waste Manag. 2019;84:38–53. doi: 10.1016/j.wasman.2018.11.020. PubMed DOI

Liang D., Ni Z., Xia H., Xie Y., Lv X., Wang J., Lin L., Deng Q., Luo X. Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci. Hortic. 2019;246:34–43. doi: 10.1016/j.scienta.2018.10.058. DOI

Siddiqui M.H., Alamri S.A., Al-Khaishany M.Y., Al-Qutami M.A., Ali H.M., Al-Rabiah H., Kalaji H.M. Exogenous application of nitric oxide and spermidine reduces the negative effects of salt stress on tomato. Hortic. Environ. Biotechnol. 2017;58:537–547. doi: 10.1007/s13580-017-0353-4. DOI

Zhang X., Wu H., Chen L., Liu L., Wan X. Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration. Crop. J. 2018;6:611–620. doi: 10.1016/j.cj.2018.06.001. DOI

Carlson R.P., Oshota O., Shipman M., Caserta J.A., Hu P., Saunders C.W., Xu J., Jay Z.J., Reeder N., Richards A. Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine. Extremophiles. 2016;20:261–274. doi: 10.1007/s00792-015-0806-6. PubMed DOI

Hoagland D.R., Arnon D.I. The Water-Culture Method for Growing Plants without Soil. 2nd ed. College of Agriculture, University of California; Berkeley, CA, USA: 1950. p. 347. Circular 347.

Rasband W.S. Imagej. US National Institutes of Health; Bethesda, MD, USA: 2011. [(accessed on 24 May 2021)]. Available online: http://imagej.nih.gov/ij/ World Heritage Encyclopedia.

Tajima R., Kato Y.J.P.P.S. [Short Report] A Quick Method to Estimate Root Length in Each Diameter Class Using Freeware ImageJ. Plant Prod. Sci. 2013;16:9–11. doi: 10.1626/pps.16.9. DOI

Clemensson-Lindell A. Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: Applications and limitations. Plant Soil. 1994;159:297–300. doi: 10.1007/BF00009293. DOI

Palta J.P. Leaf chlorophyll content. Remote Sens. Rev. 1990;5:207–213. doi: 10.1080/02757259009532129. DOI

Lichtenthaler H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzym. 1987;148:350–382.

Yang G., Rhodes D., Joly R. Effects of High Temperature on Membrane Stability and Chlorophyll Fluorescence in Glycinebetaine-Deficient and Glycinebetaine-Containing Maize Lines. Funct. Plant Biol. 1996;23:437–443. doi: 10.1071/PP9960437. DOI

Bates L.S., Waldren R.P., Teare I.D. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205–207. doi: 10.1007/BF00018060. DOI

Gupta A.S., Webb R.P., Holaday A.S., Allen R.D. Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants) Plant Physiol. 1993;103:1067–1073. doi: 10.1104/pp.103.4.1067. PubMed DOI PMC

Aebi H. Methods in Enzymology. Volume 105. Academic Press; Cambridge, MA, USA: 1984. Catalase in vitro; pp. 121–126. PubMed

Panda S., Singha L., Khan M. Does aluminium phytotoxicity induce oxidative stress in greengram (Vigna radiata) Bulg. J. Plant Physiol. 2003;29:77–86.

Amako K., Chen G.-X., Asada K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol. 1994;35:497–504.

Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968;125:189–198. doi: 10.1016/0003-9861(68)90654-1. PubMed DOI

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Sultana B., Anwar F., Przybylski R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem. 2007;104:1106–1114. doi: 10.1016/j.foodchem.2007.01.019. DOI

Wolf B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 1982;13:1035–1059. doi: 10.1080/00103628209367332. DOI

Steel R.G., Torrie J.H., Dickey D.A. Principles and Procedures of Statistics: A Biological Approach. McGraw-Hill, Inc. Book Co.; New York, NY, USA: 1997. pp. 352–358.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...