Melatonin Modulates Plant Tolerance to Heavy Metal Stress: Morphological Responses to Molecular Mechanisms
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
34768875
PubMed Central
PMC8584185
DOI
10.3390/ijms222111445
PII: ijms222111445
Knihovny.cz E-resources
- Keywords
- abiotic stress, heavy metal, oxidative stress, phytomelatonin, plant growth,
- MeSH
- Antioxidants metabolism pharmacology MeSH
- Ecosystem MeSH
- Stress, Physiological physiology MeSH
- Soil Pollutants metabolism MeSH
- Melatonin metabolism pharmacology physiology MeSH
- Oxidation-Reduction MeSH
- Oxidative Stress drug effects physiology MeSH
- Fertilizers MeSH
- Soil chemistry MeSH
- Plant Growth Regulators metabolism MeSH
- Plants drug effects metabolism MeSH
- Metals, Heavy metabolism toxicity MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Antioxidants MeSH
- Soil Pollutants MeSH
- Melatonin MeSH
- Fertilizers MeSH
- Soil MeSH
- Plant Growth Regulators MeSH
- Metals, Heavy MeSH
Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.
Department of Agronomy and Haor Agriculture Sylhet Agricultural University Sylhet 3100 Bangladesh
Department of Agronomy Bangladesh Agricultural University Mymensingh 2202 Bangladesh
Department of Biotechnology Bangladesh Agricultural University Mymensingh 2202 Bangladesh
Faculty of Agriculture Bangladesh Agricultural University Mymensingh 2202 Bangladesh
Northeast Institute of Geography and Agroecology Chinese Academy of Sciences Changchun 130102 China
See more in PubMed
Gull A., Lone A.A., Wani N.U.I. Biotic and Abiotic Stresses in Plants. IntechOpen; London, UK: 2019. pp. 1–6.
Mertens D., Boege K., Kessler A., Koricheva J., Thaler J.S., Whiteman N.K., Poelman E.H. Predictability of Biotic Stress Structures Plant Defence Evolution. Trends Ecol. Evol. 2021;36:444–456. doi: 10.1016/j.tree.2020.12.009. PubMed DOI PMC
You J., Chan Z. ROS Regulation during Abiotic Stress Responses in Crop Plants. Front. Plant Sci. 2015;6:1092. doi: 10.3389/fpls.2015.01092. PubMed DOI PMC
Godoy F., Olivos-Hernández K., Stange C., Handford M. Abiotic Stress in Crop Species: Improving Tolerance by Applying Plant Metabolites. Plants. 2021;10:186. doi: 10.3390/plants10020186. PubMed DOI PMC
Hossain M.A., Piyatida P., da Silva J.A.T., Fujita M. Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation. J. Bot. 2012;2012:1–37. doi: 10.1155/2012/872875. DOI
Chibuike G.U., Obiora S.C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014;2014:1–12. doi: 10.1155/2014/752708. DOI
Chandrakar V., Naithani S.C., Keshavkant S. Arsenic-Induced Metabolic Disturbances and Their Mitigation Mechanisms in Crop Plants: A Review. Biologia Bratisl. 2016;71:367–377. doi: 10.1515/biolog-2016-0052. DOI
Chen T., Su Y. Uptake by Rice Seedlings and In-Plant Degradation of Atrazine as Influenced by the Oxidative Stress Induced by Added Arsenic or Phosphate Deficiency. Hum. Ecol. Risk Assess. Int. J. 2018;24:1550–1564. doi: 10.1080/10807039.2017.1416580. DOI
Farnese F.S., Oliveira J., Farnese M.S., Gusman G.S., Silveira N.M., Siman L.I. Uptake Arsenic by Plants: Effects on Mineral Nutrition, Growth and Antioxidant Capacity. Idesia. 2014;32:99–106. doi: 10.4067/S0718-34292014000100012. DOI
Edelstein M., Ben-Hur M. Heavy Metals and Metalloids: Sources, Risks and Strategies to Reduce Their Accumulation in Horticultural Crops. Sci. Hortic. 2018;234:431–444. doi: 10.1016/j.scienta.2017.12.039. DOI
Dong J., Wu F., Zhang G. Influence of Cadmium on Antioxidant Capacity and Four Microelement Concentrations in Tomato Seedlings (Lycopersicon esculentum) Chemosphere. 2006;64:1659–1666. doi: 10.1016/j.chemosphere.2006.01.030. PubMed DOI
Apel K., Hirt H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI
Demiral T., Türkan I. Comparative Lipid Peroxidation, Antioxidant Defense Systems and Proline Content in Roots of Two Rice Cultivars Differing in Salt Tolerance. Environ. Exp. Bot. 2005;53:247–257. doi: 10.1016/j.envexpbot.2004.03.017. DOI
Foyer C.H., Noctor G. Redox Regulation in Photosynthetic Organisms: Signaling, Acclimation, and Practical Implications. Antioxid. Redox Signal. 2009;11:861–905. doi: 10.1089/ars.2008.2177. PubMed DOI
Arnao M.B., Hernández-Ruiz J. Melatonin and Its Relationship to Plant Hormones. Ann. Bot. 2018;121:195–207. doi: 10.1093/aob/mcx114. PubMed DOI PMC
Siddiqui M.H., Alamri S., Alsubaie Q.D., Ali H.M., Ibrahim A.A., Alsadon A. Potential Roles of Melatonin and Sulfur in Alleviation of Lanthanum Toxicity in Tomato Seedlings. Ecotoxicol. Environ. Saf. 2019;180:656–667. doi: 10.1016/j.ecoenv.2019.05.043. PubMed DOI
Arnao M.B., Hernández-Ruiz J. Melatonin: A New Plant Hormone and/or a Plant Master Regulator? Trends Plant Sci. 2019;24:38–48. doi: 10.1016/j.tplants.2018.10.010. PubMed DOI
Javeed H.M.R., Ali M., Skalicky M., Nawaz F., Qamar R., Faheem M., Mubeen M., Iqbal M.M., Vachova P., Brestic M. Lipoic Acid Combined with Melatonin Mitigates Oxidative Stress and Promotes Root Formation and Growth in Salt-Stressed Canola Seedlings (Brassica napus L.) Molecules. 2021;26:3147. doi: 10.3390/molecules26113147. PubMed DOI PMC
Li X., Ahammed G.J., Zhang X.-N., Zhang L., Yan P., Zhang L.-P., Fu J.-Y., Han W.-Y. Melatonin-Mediated Regulation of Anthocyanin Biosynthesis and Antioxidant Defense Confer Tolerance to Arsenic Stress in Camellia sinensis L. J. Hazard. Mater. 2021;403:123922. doi: 10.1016/j.jhazmat.2020.123922. PubMed DOI
Alam M.N., Zhang L., Yang L., Islam M.R., Liu Y., Luo H., Yang P., Wang Q., Chan Z. Transcriptomic Profiling of Tall Fescue in Response to Heat Stress and Improved Thermotolerance by Melatonin and 24-Epibrassinolide. BMC Genom. 2018;19:1–14. doi: 10.1186/s12864-018-4588-y. PubMed DOI PMC
Ashraf M.Y., Roohi M., Iqbal Z., Ashraf M., Öztürk M., Gücel S. Cadmium (Cd) and Lead (Pb) Induced Changes in Growth, Some Biochemical Attributes, and Mineral Accumulation in Two Cultivars of Mung Bean [Vigna radiata (L.) Wilczek] Commun. Soil Sci. Plant Anal. 2016;47:405–413.
Alaraidh I., Alsahli A., Razik E.A. Alteration of Antioxidant Gene Expression in Response to Heavy Metal Stress in Trigonella Foenum-Graecum L. South Afr. J. Bot. 2018;115:90–93. doi: 10.1016/j.sajb.2018.01.012. DOI
Abbas M., Akmal M., Ullah S., Hassan M., Farooq S. Effectiveness of Zinc and Gypsum Application against Cadmium Toxicity and Accumulation in Wheat (Triticum aestivum L.) Commun. Soil Sci. Plant Anal. 2017;48:1659–1668. doi: 10.1080/00103624.2017.1373798. DOI
Hasan M., Cheng Y., Kanwar M.K., Chu X.-Y., Ahammed G.J., Qi Z.-Y. Responses of Plant Proteins to Heavy Metal Stress—a Review. Front. Plant Sci. 2017;8:1492. doi: 10.3389/fpls.2017.01492. PubMed DOI PMC
Majeed A., Muhammad Z., Siyar S. Assessment of Heavy Metal Induced Stress Responses in Pea (Pisum sativum L.) Acta Ecol. Sin. 2019;39:284–288. doi: 10.1016/j.chnaes.2018.12.002. DOI
Asati A., Pichhode M., Nikhil K. Effect of Heavy Metals on Plants: An Overview. Int. J. Appl. Innov. Eng. Manag. 2016;5:56–66.
Shekari L., Aroiee H., Mirshekari A., Nemati H. Protective Role of Selenium on Cucumber (Cucumis sativus L.) Exposed to Cadmium and Lead Stress during Reproductive Stage Role of Selenium on Heavy Metals Stress. J. Plant Nutr. 2019;42:529–542. doi: 10.1080/01904167.2018.1554075. DOI
Farid M., Ali S., Rizwan M., Ali Q., Abbas F., Bukhari S.A.H., Saeed R., Wu L. Citric Acid Assisted Phytoextraction of Chromium by Sunflower; Morpho-Physiological and Biochemical Alterations in Plants. Ecotoxicol. Environ. Saf. 2017;145:90–102. doi: 10.1016/j.ecoenv.2017.07.016. PubMed DOI
Song B., Hao X., Wang X., Yang S., Dong Y., Ding Y., Wang Q., Wang X., Zhou J. Boron Stress Inhibits Beet (Beta vulgaris L.) Growth through Influencing Endogenous Hormones and Oxidative Stress Response. Soil Sci. Plant Nutr. 2019;65:346–352. doi: 10.1080/00380768.2019.1617641. DOI
Huihui Z., Xin L., Zisong X., Yue W., Zhiyuan T., Meijun A., Yuehui Z., Wenxu Z., Nan X., Guangyu S. Toxic Effects of Heavy Metals Pb and Cd on Mulberry (Morus alba L.) Seedling Leaves: Photosynthetic Function and Reactive Oxygen Species (ROS) Metabolism Responses. Ecotoxicol. Environ. Saf. 2020;195:110469. doi: 10.1016/j.ecoenv.2020.110469. PubMed DOI
Wang S., Chen F., Mu S., Zhang D., Pan X., Lee D.-J. Simultaneous Analysis of Photosystem Responses of Microcystis Aeruginoga under Chromium Stress. Ecotoxicol. Environ. Saf. 2013;88:163–168. doi: 10.1016/j.ecoenv.2012.11.009. PubMed DOI
Walker B.J., Strand D.D., Kramer D.M., Cousins A.B. The Response of Cyclic Electron Flow around Photosystem I to Changes in Photorespiration and Nitrate Assimilation. Plant Physiol. 2014;165:453–462. doi: 10.1104/pp.114.238238. PubMed DOI PMC
Zhang H., Xu Z., Guo K., Huo Y., He G., Sun H., Guan Y., Xu N., Yang W., Sun G. Toxic Effects of Heavy Metal Cd and Zn on Chlorophyll, Carotenoid Metabolism and Photosynthetic Function in Tobacco Leaves Revealed by Physiological and Proteomics Analysis. Ecotoxicol. Environ. Saf. 2020;202:110856. doi: 10.1016/j.ecoenv.2020.110856. PubMed DOI
Gálusová T., Piršelová B., Rybanský Ľ., Krasylenko Y., Mészáros P., Blehová A., Bardáčová M., Moravčíková J., Matušíková I. Plasticity of Soybean Stomatal Responses to Arsenic and Cadmium at the Whole Plant Level. Pol. J. Environ. Stud. 2020;29:3569–3580. doi: 10.15244/pjoes/116444. DOI
Rucińska-Sobkowiak R. Water Relations in Plants Subjected to Heavy Metal Stresses. Acta Physiol. Plant. 2016;38:1–13. doi: 10.1007/s11738-016-2277-5. DOI
Yang H., Zhang X., Wang G. Effects of Heavy Metals on Stomatal Movements in Broad Bean Leaves. Russ. J. Plant Physiol. 2004;51:464–468. doi: 10.1023/B:RUPP.0000035737.29487.dc. DOI
Perfus-Barbeoch L., Leonhardt N., Vavasseur A., Forestier C. Heavy Metal Toxicity: Cadmium Permeates through Calcium Channels and Disturbs the Plant Water Status. Plant J. 2002;32:539–548. doi: 10.1046/j.1365-313X.2002.01442.x. PubMed DOI
Ahmad P., Sarwat M., Bhat N.A., Wani M.R., Kazi A.G., Tran L.-S.P. Alleviation of Cadmium Toxicity in Brassica juncea L. (Czern. & Coss.) by Calcium Application Involves Various Physiological and Biochemical Strategies. PLoS ONE. 2015;10:e0114571. PubMed PMC
Sunil B., Saini D., Bapatla R.B., Aswani V., Raghavendra A.S. Photorespiration Is Complemented by Cyclic Electron Flow and the Alternative Oxidase Pathway to Optimize Photosynthesis and Protect against Abiotic Stress. Photosynth. Res. 2019;139:67–79. doi: 10.1007/s11120-018-0577-x. PubMed DOI
Reiter R.J., Paredes S.D., Manchester L.C., Tan D.-X. Reducing Oxidative/Nitrosative Stress: A Newly-Discovered Genre for Melatonin. Crit. Rev. Biochem. Mol. Biol. 2009;44:175–200. doi: 10.1080/10409230903044914. PubMed DOI
Saddhe A.A., Malvankar M.R., Karle S.B., Kumar K. Reactive Nitrogen Species: Paradigms of Cellular Signaling and Regulation of Salt Stress in Plants. Environ. Exp. Bot. 2019;161:86–97. doi: 10.1016/j.envexpbot.2018.11.010. DOI
Mano J. Reactive Carbonyl Species: Their Production from Lipid Peroxides, Action in Environmental Stress, and the Detoxification Mechanism. Plant Physiol. Biochem. 2012;59:90–97. doi: 10.1016/j.plaphy.2012.03.010. PubMed DOI
Biswas M.S., Mano J. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants. Plant Physiol. 2015;168:885–898. doi: 10.1104/pp.115.256834. PubMed DOI PMC
Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012;5:9–19. doi: 10.1097/WOX.0b013e3182439613. PubMed DOI PMC
Singh S., Parihar P., Singh R., Singh V.P., Prasad S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci. 2016;6:1143. doi: 10.3389/fpls.2015.01143. PubMed DOI PMC
Colangelo E.P., Guerinot M.L. Put the Metal to the Petal: Metal Uptake and Transport throughout Plants. Curr. Opin. Plant Biol. 2006;9:322–330. doi: 10.1016/j.pbi.2006.03.015. PubMed DOI
Ahmad P., Jaleel C.A., Salem M.A., Nabi G., Sharma S. Roles of Enzymatic and Nonenzymatic Antioxidants in Plants during Abiotic Stress. Crit. Rev. Biotechnol. 2010;30:161–175. doi: 10.3109/07388550903524243. PubMed DOI
Bharwana S., Ali S., Farooq M., Iqbal N., Abbas F., Ahmad M. Alleviation of Lead Toxicity by Silicon Is Related to Elevated Photosynthesis, Antioxidant Enzymes Suppressed Lead Uptake and Oxidative Stress in Cotton. J. Bioremed. Biodeg. 2013;4:187. PubMed
Bashri G., Prasad S.M. Indole Acetic Acid Modulates Changes in Growth, Chlorophyll a Fluorescence and Antioxidant Potential of Trigonella Foenum-Graecum L. Grown under Cadmium Stress. Acta Physiol. Plant. 2015;37:49. doi: 10.1007/s11738-014-1745-z. DOI
Nadgórska-Socha A., Ptasiński B., Kita A. Heavy Metal Bioaccumulation and Antioxidative Responses in Cardaminopsis Arenosa and Plantago Lanceolata Leaves from Metalliferous and Non-Metalliferous Sites: A Field Study. Ecotoxicology. 2013;22:1422–1434. doi: 10.1007/s10646-013-1129-y. PubMed DOI PMC
Flora S., Mittal M., Mehta A. Heavy Metal Induced Oxidative Stress & Its Possible Reversal by Chelation Therapy. Indian J. Med. Res. 2008;128:501. PubMed
Guo H., Hong C., Xiao M., Chen X., Chen H., Zheng B., Jiang D. Real-Time Kinetics of Cadmium Transport and Transcriptomic Analysis in Low Cadmium Accumulator Miscanthus Sacchariflorus. Planta. 2016;244:1289–1302. doi: 10.1007/s00425-016-2578-3. PubMed DOI
Farooq M., Ali S., Hameed A., Bharwana S., Rizwan M., Ishaque W., Farid M., Mahmood K., Iqbal Z. Cadmium Stress in Cotton Seedlings: Physiological, Photosynthesis and Oxidative Damages Alleviated by Glycinebetaine. South Afr. J. Bot. 2016;104:61–68. doi: 10.1016/j.sajb.2015.11.006. DOI
Sharma P., Dubey R. Cadmium Toxicity and Tolerance in Plants. Narosa Publishing House; New Delhi, India: 2006. Cadmium Uptake and Its Toxicity in Higher Plants; pp. 63–86.
Asgher M., Khan N.A., Khan M.I.R., Fatma M., Masood A. Ethylene Production Is Associated with Alleviation of Cadmium-Induced Oxidative Stress by Sulfur in Mustard Types Differing in Ethylene Sensitivity. Ecotoxicol. Environ. Saf. 2014;106:54–61. doi: 10.1016/j.ecoenv.2014.04.017. PubMed DOI
Khan M.I.R., Iqbal N., Masood A., Mobin M., Anjum N.A., Khan N.A. Modulation and Significance of Nitrogen and Sulfur Metabolism in Cadmium Challenged Plants. Plant Growth Regul. 2016;78:1–11. doi: 10.1007/s10725-015-0071-9. DOI
Gjorgieva D., Panovska T.K., Ruskovska T., Bačeva K., Stafilov T. Mineral Nutrient Imbalance, Total Antioxidants Level and DNA Damage in Common Bean (Phaseolus vulgaris L.) Exposed to Heavy Metals. Physiol. Mol. Biol. Plants. 2013;19:499–507. doi: 10.1007/s12298-013-0196-0. PubMed DOI PMC
Shahid M., Dumat C., Khalid S., Schreck E., Xiong T., Niazi N.K. Foliar Heavy Metal Uptake, Toxicity and Detoxification in Plants: A Comparison of Foliar and Root Metal Uptake. J. Hazard. Mater. 2017;325:36–58. doi: 10.1016/j.jhazmat.2016.11.063. PubMed DOI
Demecsová L., Tamás L. Reactive Oxygen Species, Auxin and Nitric Oxide in Metal-Stressed Roots: Toxicity or Defence. BioMetals. 2019;32:717–744. doi: 10.1007/s10534-019-00214-3. PubMed DOI
Rizwan M., Ali S., Abbas T., Zia-ur-Rehman M., Hannan F., Keller C., Al-Wabel M.I., Ok Y.S. Cadmium Minimization in Wheat: A Critical Review. Ecotoxicol. Environ. Saf. 2016;130:43–53. doi: 10.1016/j.ecoenv.2016.04.001. PubMed DOI
Naeem A., Zafar M., Khalid H., Zia-ur-Rehman M., Ahmad Z., Ayub M.A., Qayyum M.F. Cadmium Toxicity and Tolerance in Plants. Elsevier; London, UK: 2019. Cadmium-Induced Imbalance in Nutrient and Water Uptake by Plants; pp. 299–326.
Kaur G., Asthir B. Proline: A Key Player in Plant Abiotic Stress Tolerance. Biol. Plant. 2015;59:609–619. doi: 10.1007/s10535-015-0549-3. DOI
Farid M., Ali S., Rizwan M., Saeed R., Tauqeer H.M., Sallah-Ud-Din R., Azam A., Raza N. Microwave Irradiation and Citric Acid Assisted Seed Germination and Phytoextraction of Nickel (Ni) by Brassica napus L.: Morpho-Physiological and Biochemical Alterations under Ni Stress. Environ. Sci. Pollut. Res. 2017;24:21050–21064. doi: 10.1007/s11356-017-9751-5. PubMed DOI
Singh M., Singh V.P., Dubey G., Prasad S.M. Exogenous Proline Application Ameliorates Toxic Effects of Arsenate in Solanum melongena L. Seedlings. Ecotoxicol. Environ. Saf. 2015;117:164–173. doi: 10.1016/j.ecoenv.2015.03.021. PubMed DOI
Arnao M.B., Hernández-Ruiz J. Chemical Stress by Different Agents Affects the Melatonin Content of Barley Roots. J. Pineal Res. 2009;46:295–299. doi: 10.1111/j.1600-079X.2008.00660.x. PubMed DOI
Arnao M.B., Hernández-Ruiz J. Growth Conditions Determine Different Melatonin Levels in L Upinus albus L. J. Pineal Res. 2013;55:149–155. doi: 10.1111/jpi.12055. PubMed DOI
Gu Q., Chen Z., Yu X., Cui W., Pan J., Zhao G., Xu S., Wang R., Shen W. Melatonin Confers Plant Tolerance against Cadmium Stress via the Decrease of Cadmium Accumulation and Reestablishment of MicroRNA-Mediated Redox Homeostasis. Plant Sci. 2017;261:28–37. doi: 10.1016/j.plantsci.2017.05.001. PubMed DOI
Li M., Hasan M.K., Li C., Ahammed G.J., Xia X., Shi K., Zhou Y., Reiter R.J., Yu J., Xu M. Melatonin Mediates Selenium-induced Tolerance to Cadmium Stress in Tomato Plants. J. Pineal Res. 2016;61:291–302. doi: 10.1111/jpi.12346. PubMed DOI
Byeon Y., Lee H., Lee H.Y., Back K. Cloning and Functional Characterization of the Arabidopsis N-acetylserotonin O-methyltransferase Responsible for Melatonin Synthesis. J. Pineal Res. 2016;60:65–73. doi: 10.1111/jpi.12289. PubMed DOI
Cai S., Zhang Y., Xu Y., Qi Z., Li M., Ahammed G.J., Xia X., Shi K., Zhou Y., Reiter R.J. HsfA1a Upregulates Melatonin Biosynthesis to Confer Cadmium Tolerance in Tomato Plants. J. Pineal Res. 2017;62:e12387. doi: 10.1111/jpi.12387. PubMed DOI
Lee H.-Y., Back K. Cadmium Disrupts Subcellular Organelles, Including Chloroplasts, Resulting in Melatonin Induction in Plants. Molecules. 2017;22:1791. doi: 10.3390/molecules22101791. PubMed DOI PMC
Back K., Tan D., Reiter R.J. Melatonin Biosynthesis in Plants: Multiple Pathways Catalyze Tryptophan to Melatonin in the Cytoplasm or Chloroplasts. J. Pineal Res. 2016;61:426–437. doi: 10.1111/jpi.12364. PubMed DOI
Wang L., Feng C., Zheng X., Guo Y., Zhou F., Shan D., Liu X., Kong J. Plant Mitochondria Synthesize Melatonin and Enhance the Tolerance of Plants to Drought Stress. J. Pineal Res. 2017;63:e12429. doi: 10.1111/jpi.12429. PubMed DOI
Zhang J., Zeng B., Mao Y., Kong X., Wang X., Yang Y., Zhang J., Xu J., Rengel Z., Chen Q. Melatonin Alleviates Aluminium Toxicity through Modulating Antioxidative Enzymes and Enhancing Organic Acid Anion Exudation in Soybean. Funct. Plant Biol. 2017;44:961–968. doi: 10.1071/FP17003. PubMed DOI
Tang Y., Sun G., Miao M., Li Y., Li H. Effects of Exogenous Melatonin on Growth and Physiological Characteristics of Chinese Cabbage Seedlings under Aluminum Stress. Adv. Eng. Res. 2017;143:1119–1123.
Nazarian M., Ghanati F. The Role of Melatonin in Reinforcement of Antioxidant System of Rice Plant (Oryza sativa L.) under Arsenite Toxicity? Plant Physiol. Rep. 2020;25:395–404. doi: 10.1007/s40502-020-00523-7. DOI
Farouk S., Al-Amri S.M. Exogenous Melatonin-Mediated Modulation of Arsenic Tolerance with Improved Accretion of Secondary Metabolite Production, Activating Antioxidant Capacity and Improved Chloroplast Ultrastructure in Rosemary Herb. Ecotoxicol. Environ. Saf. 2019;180:333–347. doi: 10.1016/j.ecoenv.2019.05.021. PubMed DOI
Lv X., Fang Y., Zhang L., Zhang W., Xu L., Han J., Jin B., Zhang X., Zhang X., Xue D. Effects of Melatonin on Growth, Physiology and Gene Expression in Rice Seedlings under Cadmium Stress. Phyton. 2019;88:91. doi: 10.32604/phyton.2019.06622. DOI
Wang M., Duan S., Zhou Z., Chen S., Wang D. Foliar spraying of melatonin confers cadmium tolerance in Nicotiana tabacum L. Ecotoxicol. Environ. Saf. 2019;170:68–76. doi: 10.1016/j.ecoenv.2018.11.127. PubMed DOI
He J., Zhuang X., Zhou J., Sun L., Wan H., Li H., Lyu D. Exogenous Melatonin Alleviates Cadmium Uptake and Toxicity in Apple Rootstocks. Tree Physiol. 2020;40:746–761. doi: 10.1093/treephys/tpaa024. PubMed DOI PMC
Wu X., Li H., Luo H., Lin D., Zhou X. Effect of Exogenous Melatonin on Photosynthetic Characteristics in Cucumber Seedlings under Cadmium Stress: A Rapid Detection Method for the Cadmium Resistance. E3S Web Conf. 2019;136:07023. doi: 10.1051/e3sconf/201913607023. DOI
Lin L., Li J., Chen F., Liao M.A., Tang Y., Liang D., Xia H., Lai Y., Wang X., Chen C., et al. Effects of melatonin on the growth and cadmium characteristics of Cyphomandra betacea seedlings. Environ. Monit. Assess. 2018;190:1–8. doi: 10.1007/s10661-018-6481-1. PubMed DOI
Asif M., Pervez A., Irshad U., Mehmood Q., Ahmad R. Melatonin and Plant Growth-Promoting Rhizobacteria Alleviate the Cadmium and Arsenic Stresses and Increase the Growth of Spinacia oleracea L. Plant Soil Environ. 2020;66:234–241. doi: 10.17221/135/2020-PSE. DOI
Hodžić E., Balaban M., Šuškalo N., Galijašević S., Hasanagić D., Kukavica B. Antioxidative Response of Melissa officinalis L. and Valeriana officinalis L. Leaves Exposed to Exogenous Melatonin and Excessive Zinc and Cadmium Levels. J. Serbian Chem. Soc. 2019;84:11–25. doi: 10.2298/JSC180504070H. DOI
Ayyaz A., Farooq M.A., Kanwal A., Aslam M., Iqbal M., Manzoor A., Khalid A., Umer S., Bano H., Rasool B. Differential Responses of Exogenous Melatonin on Growth, Photosynthesis and Antioxidant Defence System in Two Brassica napus L. Cultivars under Chromium Stress. Int. J. Environ. Agric. Biotechnol. 2020;5:397–411.
Hu Z., Fu Q., Zheng J., Zhang A., Wang H. Transcriptomic and Metabolomic Analyses Reveal That Melatonin Promotes Melon Root Development under Copper Stress by Inhibiting Jasmonic Acid Biosynthesis. Hortic. Res. 2020;7:1–15. doi: 10.1038/s41438-020-0293-5. PubMed DOI PMC
Cao Y.-Y., Qi C.-D., Li S., Wang Z., Wang X., Wang J., Ren S., Li X., Zhang N., Guo Y.-D. Melatonin Alleviates Copper Toxicity via Improving Copper Sequestration and ROS Scavenging in Cucumber. Plant Cell Physiol. 2019;60:562–574. doi: 10.1093/pcp/pcy226. PubMed DOI
Kholodova V., Vasil’ev S., Efimova M., Voronin P.Y., Rakhmankulova Z., Danilova E.Y., Kuznetsov V.V. Exogenous Melatonin Protects Canola Plants from Toxicity of Excessive Copper. Russ. J. Plant Physiol. 2018;65:882–889. doi: 10.1134/S1021443718060080. DOI
Kaya C., Higgs D., Ashraf M., Alyemeni M.N., Ahmad P. Integrative Roles of Nitric Oxide and Hydrogen Sulfide in Melatonin-induced Tolerance of Pepper (Capsicum annuum L.) Plants to Iron Deficiency and Salt Stress Alone or in Combination. Physiol. Plant. 2020;168:256–277. doi: 10.1111/ppl.12976. PubMed DOI
Ahammed G.J., Wu M., Wang Y., Yan Y., Mao Q., Ren J., Ma R., Liu A., Chen S. Melatonin Alleviates Iron Stress by Improving Iron Homeostasis, Antioxidant Defense and Secondary Metabolism in Cucumber. Sci. Hortic. 2020;265:109205. doi: 10.1016/j.scienta.2020.109205. DOI
Jahan M.S., Guo S., Baloch A.R., Sun J., Shu S., Wang Y., Ahammed G.J., Kabir K., Roy R. Melatonin Alleviates Nickel Phytotoxicity by Improving Photosynthesis, Secondary Metabolism and Oxidative Stress Tolerance in Tomato Seedlings. Ecotoxicol. Environ. Saf. 2020;197:110593. doi: 10.1016/j.ecoenv.2020.110593. PubMed DOI
Okant M., Kaya C. The Role of Endogenous Nitric Oxide in Melatonin-Improved Tolerance to Lead Toxicity in Maize Plants. Environ. Sci. Pollut. Res. 2019;26:11864–11874. doi: 10.1007/s11356-019-04517-3. PubMed DOI
Namdjoyan S., Soorki A.A., Elyasi N., Kazemi N., Simaei M. Melatonin Alleviates Lead-Induced Oxidative Damage in Safflower (Carthamus tinctorius L.) Seedlings. Ecotoxicology. 2020;29:108–118. doi: 10.1007/s10646-019-02136-9. PubMed DOI
Kobylińska A., Posmyk M.M. Melatonin Restricts Pb-Induced PCD by Enhancing BI-1 Expression in Tobacco Suspension Cells. Biometals. 2016;29:1059–1074. doi: 10.1007/s10534-016-9977-6. PubMed DOI PMC
Xie C., Xiong X., Huang Z., Sun L., Ma J., Cai S., Yu F., Zhong W., Chen S., Li X. Exogenous Melatonin Improves Lead Tolerance of Bermudagrass through Modulation of the Antioxidant Defense System. Int. J. Phytoremediat. 2018;20:1408–1417. doi: 10.1080/15226514.2018.1488813. PubMed DOI
Zhang N., Sun Q., Li H., Li X., Cao Y., Zhang H., Li S., Zhang L., Qi Y., Ren S. Melatonin Improved Anthocyanin Accumulation by Regulating Gene Expressions and Resulted in High Reactive Oxygen Species Scavenging Capacity in Cabbage. Front. Plant Sci. 2016;7:197. doi: 10.3389/fpls.2016.00197. PubMed DOI PMC
Al-Huqail A.A., Khan M.N., Ali H.M., Siddiqui M.H., Al-Huqail A.A., AlZuaibr F.M., Al-Muwayhi M.A., Marraiki N., Al-Humaid L. Exogenous Melatonin Mitigates Boron Toxicity in Wheat. Ecotoxicol. Environ. Saf. 2020;201:110822. doi: 10.1016/j.ecoenv.2020.110822. PubMed DOI
Chan Z., Shi H. Improved Abiotic Stress Tolerance of Bermudagrass by Exogenous Small Molecules. Plant Signal. Behav. 2015;10:e991577. doi: 10.4161/15592324.2014.991577. PubMed DOI PMC
Savvides A., Ali S., Tester M., Fotopoulos V. Chemical Priming of Plants against Multiple Abiotic Stresses: Mission Possible? Trends Plant Sci. 2016;21:329–340. doi: 10.1016/j.tplants.2015.11.003. PubMed DOI
Wang H.-Z., Zhang L.-H., Jun M., Li X.-Y., Yan L., Zhang R.-P., Wang R.-Q. Effects of Water Stress on Reactive Oxygen Species Generation and Protection System in Rice during Grain-Filling Stage. Agric. Sci. China. 2010;9:633–641. doi: 10.1016/S1671-2927(09)60138-3. DOI
Kacienė G., Juknys R., Januškaitienė I. The Role of Oxidative Stress in Spring Barley Cross-Adaptation to Different Heavy Metals. Arch. Agron. Soil Sci. 2017;63:1037–1048. doi: 10.1080/03650340.2016.1256474. DOI
Zhang M., Fang Y., Ji Y., Jiang Z., Wang L. Effects of Salt Stress on Ion Content, Antioxidant Enzymes and Protein Profile in Different Tissues of Broussonetia Papyrifera. South Afr. J. Bot. 2013;85:1–9. doi: 10.1016/j.sajb.2012.11.005. DOI
Bajwa V.S., Shukla M.R., Sherif S.M., Murch S.J., Saxena P.K. Role of Melatonin in Alleviating Cold Stress in A Rabidopsis Thaliana. J. Pineal Res. 2014;56:238–245. doi: 10.1111/jpi.12115. PubMed DOI
Shi H., Jiang C., Ye T., Tan D.-X., Reiter R.J., Zhang H., Liu R., Chan Z. Comparative Physiological, Metabolomic, and Transcriptomic Analyses Reveal Mechanisms of Improved Abiotic Stress Resistance in Bermudagrass [Cynodon dactylon (L). Pers.] by Exogenous Melatonin. J. Exp. Bot. 2015;66:681–694. doi: 10.1093/jxb/eru373. PubMed DOI PMC
Nawaz M.A., Jiao Y., Chen C., Shireen F., Zheng Z., Imtiaz M., Bie Z., Huang Y. Melatonin Pretreatment Improves Vanadium Stress Tolerance of Watermelon Seedlings by Reducing Vanadium Concentration in the Leaves and Regulating Melatonin Biosynthesis and Antioxidant-Related Gene Expression. J. Plant Physiol. 2018;220:115–127. doi: 10.1016/j.jplph.2017.11.003. PubMed DOI
Nabaei M., Amooaghaie R. Nitric Oxide Is Involved in the Regulation of Melatonin-Induced Antioxidant Responses in Catharanthus Roseus Roots under Cadmium Stress. Botany. 2019;97:681–690. doi: 10.1139/cjb-2019-0107. DOI
Manchester L.C., Coto-Montes A., Boga J.A., Andersen L.P.H., Zhou Z., Galano A., Vriend J., Tan D., Reiter R.J. Melatonin: An Ancient Molecule That Makes Oxygen Metabolically Tolerable. J. Pineal Res. 2015;59:403–419. doi: 10.1111/jpi.12267. PubMed DOI
Gong B., Yan Y., Wen D., Shi Q. Hydrogen Peroxide Produced by NADPH Oxidase: A Novel Downstream Signaling Pathway in Melatonin-induced Stress Tolerance in Solanum Lycopersicum. Physiol. Plant. 2017;160:396–409. doi: 10.1111/ppl.12581. PubMed DOI
Kaya C., Okant M., Ugurlar F., Alyemeni M.N., Ashraf M., Ahmad P. Melatonin-Mediated Nitric Oxide Improves Tolerance to Cadmium Toxicity by Reducing Oxidative Stress in Wheat Plants. Chemosphere. 2019;225:627–638. doi: 10.1016/j.chemosphere.2019.03.026. PubMed DOI
Xalxo R., Keshavkant S. Melatonin, Glutathione and Thiourea Attenuates Lead and Acid Rain-Induced Deleterious Responses by Regulating Gene Expression of Antioxidants in Trigonella Foenum Graecum L. Chemosphere. 2019;221:1–10. doi: 10.1016/j.chemosphere.2019.01.029. PubMed DOI
Sami A., Shah F.A., Abdullah M., Zhou X., Yan Y., Zhu Z., Zhou K. Melatonin Mitigates Cadmium and Aluminium Toxicity through Modulation of Antioxidant Potential in Brassica napus L. Plant Biol. 2020;22:679–690. doi: 10.1111/plb.13093. PubMed DOI
Mittler R. ROS Are Good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. PubMed DOI
Li X., Ke M., Zhang M., Peijnenburg W., Fan X., Xu J., Zhang Z., Lu T., Fu Z., Qian H. The Interactive Effects of Diclofop-Methyl and Silver Nanoparticles on Arabidopsis Thaliana: Growth, Photosynthesis and Antioxidant System. Environ. Pollut. 2018;232:212–219. doi: 10.1016/j.envpol.2017.09.034. PubMed DOI
Arnao M.B., Hernández-Ruiz J. Functions of Melatonin in Plants: A Review. J. Pineal Res. 2015;59:133–150. doi: 10.1111/jpi.12253. PubMed DOI
Reiter R.J., Mayo J.C., Tan D., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an Antioxidant: Under Promises but over Delivers. J. Pineal Res. 2016;61:253–278. doi: 10.1111/jpi.12360. PubMed DOI
Ni J., Wang Q., Shah F.A., Liu W., Wang D., Huang S., Fu S., Wu L. Exogenous Melatonin Confers Cadmium Tolerance by Counterbalancing the Hydrogen Peroxide Homeostasis in Wheat Seedlings. Molecules. 2018;23:799. doi: 10.3390/molecules23040799. PubMed DOI PMC
Wu S., Wang Y., Zhang J., Gong X., Zhang Z., Sun J., Chen X., Wang Y. Exogenous Melatonin Improves Physiological Characteristics and Promotes Growth of Strawberry Seedlings under Cadmium Stress. Hortic. Plant J. 2021;7:13–22. doi: 10.1016/j.hpj.2020.06.002. DOI
Zhao D., Wang R., Meng J., Li Z., Wu Y., Tao J. Ameliorative Effects of Melatonin on Dark-Induced Leaf Senescence in Gardenia (Gardenia Jasminoides Ellis): Leaf Morphology, Anatomy, Physiology and Transcriptome. Sci. Rep. 2017;7:1–19. doi: 10.1038/s41598-017-10799-9. PubMed DOI PMC
Shi W.-G., Liu W., Yu W., Zhang Y., Ding S., Li H., Mrak T., Kraigher H., Luo Z.-B. Abscisic Acid Enhances Lead Translocation from the Roots to the Leaves and Alleviates Its Toxicity in Populus× Canescens. J. Hazard. Mater. 2019;362:275–285. doi: 10.1016/j.jhazmat.2018.09.024. PubMed DOI
Banu Doğanlar Z. Metal Accumulation and Physiological Responses Induced by Copper and Cadmium in Lemna gibba L. Minor and Spirodela Polyrhiza. Chem. Speciat. Bioavailab. 2013;25:79–88. doi: 10.3184/095422913X13706128469701. DOI
Zhao H., Su T., Huo L., Wei H., Jiang Y., Xu L., Ma F. Unveiling the Mechanism of Melatonin Impacts on Maize Seedling Growth: Sugar Metabolism as a Case. J. Pineal Res. 2015;59:255–266. doi: 10.1111/jpi.12258. PubMed DOI
Yang J., Zhang C., Wang Z., Sun S., Zhan R., Zhao Y., Ma B., Ma F., Li M. Melatonin-Mediated Sugar Accumulation and Growth Inhibition in Apple Plants Involves down-Regulation of Fructokinase 2 Expression and Activity. Front. Plant Sci. 2019;10:150. doi: 10.3389/fpls.2019.00150. PubMed DOI PMC
Sun Q., Zhang N., Wang J., Zhang H., Li D., Shi J., Li R., Weeda S., Zhao B., Ren S. Melatonin Promotes Ripening and Improves Quality of Tomato Fruit during Postharvest Life. J. Exp. Bot. 2015;66:657–668. doi: 10.1093/jxb/eru332. PubMed DOI PMC
Su T., Wolf S., Han M., Zhao H., Wei H., Greiner S., Rausch T. Reassessment of an Arabidopsis Cell Wall Invertase Inhibitor AtCIF1 Reveals Its Role in Seed Germination and Early Seedling Growth. Plant Mol. Biol. 2016;90:137–155. doi: 10.1007/s11103-015-0402-2. PubMed DOI
Gouia H., Ghorbal M.H., Meyer C. Effects of Cadmium on Activity of Nitrate Reductase and on Other Enzymes of the Nitrate Assimilation Pathway in Bean. Plant Physiol. Biochem. 2000;38:629–638. doi: 10.1016/S0981-9428(00)00775-0. DOI
Balestrasse K.B., Benavides M.P., Gallego S.M., Tomaro M.L. Effect of Cadmium Stress on Nitrogen Metabolism in Nodules and Roots of Soybean Plants. Funct. Plant Biol. 2003;30:57–64. doi: 10.1071/FP02074. PubMed DOI
Lea P.J., Miflin B.J. Glutamate Synthase and the Synthesis of Glutamate in Plants. Plant Physiol. Biochem. 2003;41:555–564. doi: 10.1016/S0981-9428(03)00060-3. DOI
Liang W., Ma X., Wan P., Liu L. Plant Salt-Tolerance Mechanism: A Review. Biochem. Biophys. Res. Commun. 2018;495:286–291. doi: 10.1016/j.bbrc.2017.11.043. PubMed DOI
Qiao Y., Yin L., Wang B., Ke Q., Deng X., Wang S. Melatonin Promotes Plant Growth by Increasing Nitrogen Uptake and Assimilation under Nitrogen Deficient Condition in Winter Wheat. Plant Physiol. Biochem. 2019;139:342–349. doi: 10.1016/j.plaphy.2019.03.037. PubMed DOI
Malar S., Manikandan R., Favas P.J., Sahi S.V., Venkatachalam P. Effect of Lead on Phytotoxicity, Growth, Biochemical Alterations and Its Role on Genomic Template Stability in Sesbania Grandiflora: A Potential Plant for Phytoremediation. Ecotoxicol. Environ. Saf. 2014;108:249–257. doi: 10.1016/j.ecoenv.2014.05.018. PubMed DOI
Ashraf M., Foolad M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007;59:206–216. doi: 10.1016/j.envexpbot.2005.12.006. DOI
Sharma S.S., Dietz K.-J. The Significance of Amino Acids and Amino Acid-Derived Molecules in Plant Responses and Adaptation to Heavy Metal Stress. J. Exp. Bot. 2006;57:711–726. doi: 10.1093/jxb/erj073. PubMed DOI
Seregin I., Ivanov V. Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants. Russ. J. Plant Physiol. 2001;48:523–544. doi: 10.1023/A:1016719901147. DOI
Małecka A., Piechalak A., Morkunas I., Tomaszewska B. Accumulation of Lead in Root Cells of Pisum Sativum. Acta Physiol. Plant. 2008;30:629–637. doi: 10.1007/s11738-008-0159-1. DOI
Siripornadulsil S., Traina S., Verma D.P.S., Sayre R.T. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell. 2002;14:2837–2847. doi: 10.1105/tpc.004853. PubMed DOI PMC
Antoniou C., Chatzimichail G., Xenofontos R., Pavlou J.J., Panagiotou E., Christou A., Fotopoulos V. Melatonin Systemically Ameliorates Drought Stress-induced Damage in M Edicago Sativa Plants by Modulating Nitro-oxidative Homeostasis and Proline Metabolism. J. Pineal Res. 2017;62:e12401. doi: 10.1111/jpi.12401. PubMed DOI
Jahan M.S., Shu S., Wang Y., Chen Z., He M., Tao M., Sun J., Guo S. Melatonin Alleviates Heat-Induced Damage of Tomato Seedlings by Balancing Redox Homeostasis and Modulating Polyamine and Nitric Oxide Biosynthesis. BMC Plant Biol. 2019;19:1–16. doi: 10.1186/s12870-019-1992-7. PubMed DOI PMC
Fukutoku Y., Yamada Y. Accumulation of Carbohydrates and Proline in Water-Stressed Soybean (Glycine max L.) Soil Sci. Plant Nutr. 1982;28:147–151. doi: 10.1080/00380768.1982.10432380. DOI
Zhou C., Liu Z., Zhu L., Ma Z., Wang J., Zhu J. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide. Int. J. Mol. Sci. 2016;17:1777. doi: 10.3390/ijms17111777. PubMed DOI PMC
Ulhassan Z., Huang Q., Gill R.A., Ali S., Mwamba T.M., Ali B., Hina F., Zhou W. Protective Mechanisms of Melatonin against Selenium Toxicity in Brassica Napus: Insights into Physiological Traits, Thiol Biosynthesis and Antioxidant Machinery. BMC Plant Biol. 2019;19:1–16. doi: 10.1186/s12870-019-2110-6. PubMed DOI PMC
Van Hoewyk D. A Tale of Two Toxicities: Malformed Selenoproteins and Oxidative Stress Both Contribute to Selenium Stress in Plants. Ann. Bot. 2013;112:965–972. doi: 10.1093/aob/mct163. PubMed DOI PMC
Fashola M.O., Ngole-Jeme V.M., Babalola O.O. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. Int. J. Environ. Res. Public. Health. 2016;13:1047. doi: 10.3390/ijerph13111047. PubMed DOI PMC
Llamas A., Ullrich C.I., Sanz A. Cd2+ Effects on Transmembrane Electrical Potential Difference, Respiration and Membrane Permeability of Rice (Oryza Sativa L.) Roots. Plant Soil. 2000;219:21–28. doi: 10.1023/A:1004753521646. DOI
Gévaudant F., Duby G., von Stedingk E., Zhao R., Morsomme P., Boutry M. Expression of a Constitutively Activated Plasma Membrane H+−ATPase Alters Plant Development and Increases Salt Tolerance. Plant Physiol. 2007;144:1763–1776. doi: 10.1104/pp.107.103762. PubMed DOI PMC
Hardeland R., Balzer I., Poeggeler B., Fuhrberg B., Una H., Behrmann G., Wolf R., Meyer T.J., Reiter R.J. On the Primary Functions of Melatonin in Evolution: Mediation of Photoperiodic Signals in a Unicell, Photooxidation, and Scavenging of Free Radicals. J. Pineal Res. 1995;18:104–111. doi: 10.1111/j.1600-079X.1995.tb00147.x. PubMed DOI
Hasan M.K., Liu C.-X., Pan Y.-T., Ahammed G.J., Qi Z.-Y., Zhou J. Melatonin Alleviates Low-Sulfur Stress by Promoting Sulfur Homeostasis in Tomato Plants. Sci. Rep. 2018;8:1–12. doi: 10.1038/s41598-018-28561-0. PubMed DOI PMC
Li X., Zhang L., Ahammed G.J., Li Z.-X., Wei J.-P., Shen C., Yan P., Zhang L.-P., Han W.-Y. Stimulation in Primary and Secondary Metabolism by Elevated Carbon Dioxide Alters Green Tea Quality in Camellia sinensis L. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-08465-1. PubMed DOI PMC
Michalak A. Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress. Pol. J. Environ. Stud. 2006;15:523–530.
Verdan A.M., Wang H.C., García C.R., Henry W.P., Brumaghim J.L. Iron Binding of 3-Hydroxychromone, 5-Hydroxychromone, and Sulfonated Morin: Implications for the Antioxidant Activity of Flavonols with Competing Metal Binding Sites. J. Inorg. Biochem. 2011;105:1314–1322. doi: 10.1016/j.jinorgbio.2011.07.006. PubMed DOI
Gould K.S. Nature’s Swiss Army Knife: The Diverse Protective Roles of Anthocyanins in Leaves. J. Biomed. Biotechnol. 2004;2004:314. doi: 10.1155/S1110724304406147. PubMed DOI PMC
Ibrahim M.H., Chee Kong Y., Mohd Zain N.A. Effect of Cadmium and Copper Exposure on Growth, Secondary Metabolites and Antioxidant Activity in the Medicinal Plant Sambung Nyawa (Gynura Procumbens (Lour.) Merr) Molecules. 2017;22:1623. doi: 10.3390/molecules22101623. PubMed DOI PMC
Wu L., Ueda Y., Lai S., Frei M. Shoot Tolerance Mechanisms to Iron Toxicity in Rice (Oryza sativa L.) Plant Cell Environ. 2017;40:570–584. doi: 10.1111/pce.12733. PubMed DOI
Kong J.-Q. Phenylalanine Ammonia-Lyase, a Key Component Used for Phenylpropanoids Production by Metabolic Engineering. RSC Adv. 2015;5:62587–62603. doi: 10.1039/C5RA08196C. DOI
Sarafi E., Tsouvaltzis P., Chatzissavvidis C., Siomos A., Therios I. Melatonin and Resveratrol Reverse the Toxic Effect of High Boron (B) and Modulate Biochemical Parameters in Pepper Plants (Capsicum annuum L.) Plant Physiol. Biochem. 2017;112:173–182. doi: 10.1016/j.plaphy.2016.12.018. PubMed DOI
Sun Q., Zhang N., Wang J., Cao Y., Li X., Zhang H., Zhang L., Tan D.X., Guo Y.D. A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. J. Pineal Res. 2016;61:138–153. doi: 10.1111/jpi.12315. PubMed DOI
Masood A., Iqbal N., Khan N.A. Role of Ethylene in Alleviation of Cadmium-induced Photosynthetic Capacity Inhibition by Sulphur in Mustard. Plant Cell Environ. 2012;35:524–533. doi: 10.1111/j.1365-3040.2011.02432.x. PubMed DOI
Larsson E.H., Bornman J.F., Asp H. Influence of UV-B Radiation and Cd2+ on Chlorophyll Fluorescence, Growth and Nutrient Content in Brassica Napus. J. Exp. Bot. 1998;49:1031–1039. doi: 10.1093/jxb/49.323.1031. DOI
Sarropoulou V., Dimassi-Theriou K., Therios I., Koukourikou-Petridou M. Melatonin Enhances Root Regeneration, Photosynthetic Pigments, Biomass, Total Carbohydrates and Proline Content in the Cherry Rootstock PHL-C (Prunus Avium× Prunus Cerasus) Plant Physiol. Biochem. 2012;61:162–168. doi: 10.1016/j.plaphy.2012.10.001. PubMed DOI
Lin Y.-H., Pan K.-Y., Hung C.-H., Huang H.-E., Chen C.-L., Feng T.-Y., Huang L.-F. Overexpression of Ferredoxin, PETF, Enhances Tolerance to Heat Stress in Chlamydomonas Reinhardtii. Int. J. Mol. Sci. 2013;14:20913–20929. doi: 10.3390/ijms141020913. PubMed DOI PMC
Badger M.R., Price G.D. The Role of Carbonic Anhydrase in Photosynthesis. Annu. Rev. Plant Biol. 1994;45:369–392. doi: 10.1146/annurev.pp.45.060194.002101. DOI
Martinez V., Nieves-Cordones M., Lopez-Delacalle M., Rodenas R., Mestre T.C., Garcia-Sanchez F., Rubio F., Nortes P.A., Mittler R., Rivero R.M. Tolerance to Stress Combination in Tomato Plants: New Insights in the Protective Role of Melatonin. Molecules. 2018;23:535. doi: 10.3390/molecules23030535. PubMed DOI PMC
Dubey S., Shri M., Misra P., Lakhwani D., Bag S.K., Asif M.H., Trivedi P.K., Tripathi R.D., Chakrabarty D. Heavy Metals Induce Oxidative Stress and Genome-Wide Modulation in Transcriptome of Rice Root. Funct. Integr. Genomics. 2014;14:401–417. doi: 10.1007/s10142-014-0361-8. PubMed DOI
Kumar S., Trivedi P.K. Plant Metal Interaction. Elsevier; London, UK: 2016. Heavy metal stress signaling in plants; pp. 585–603.
Pál M., Janda T., Szalai G. Interactions between Plant Hormones and Thiol-Related Heavy Metal Chelators. Plant Growth Regul. 2018;85:173–185. doi: 10.1007/s10725-018-0391-7. DOI
Goodarzi A., Namdjoyan S., Soorki A.A. Effects of Exogenous Melatonin and Glutathione on Zinc Toxicity in Safflower (Carthamus tinctorius L.) Seedlings. Ecotoxicol. Environ. Saf. 2020;201:110853. doi: 10.1016/j.ecoenv.2020.110853. PubMed DOI
Xu L., Zhang F., Tang M., Wang Y., Dong J., Ying J., Chen Y., Hu B., Li C., Liu L. Melatonin Confers Cadmium Tolerance by Modulating Critical Heavy Metal Chelators and Transporters in Radish Plants. J. Pineal Res. 2020;69:e12659. doi: 10.1111/jpi.12659. PubMed DOI