Epigenetic Modulating Chemicals Significantly Affect the Virulence and Genetic Characteristics of the Bacterial Plant Pathogen Xanthomonas campestris pv. campestris

. 2021 May 25 ; 12 (6) : . [epub] 20210525

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34070403

Epigenetics is the study of heritable alterations in phenotypes that are not caused by changes in DNA sequence. In the present study, we characterized the genetic and phenotypic alterations of the bacterial plant pathogen Xanthomonas campestris pv. campestris (Xcc) under different treatments with several epigenetic modulating chemicals. The use of DNA demethylating chemicals unambiguously caused a durable decrease in Xcc bacterial virulence, even after its reisolation from infected plants. The first-time use of chemicals to modify the activity of sirtuins also showed some noticeable results in terms of increasing bacterial virulence, but this effect was not typically stable. Changes in treated strains were also confirmed by using methylation sensitive amplification (MSAP), but with respect to registered SNPs induction, it was necessary to consider their contribution to the observed polymorphism. The molecular basis of the altered virulence was deciphered by using dualRNA-seq analysis of treated Xcc strains infecting Brassica rapa plants. The results of the present study should promote more intensive research in the generally understudied field of bacterial epigenetics, where artificially induced modification by epigenetic modulating chemicals can significantly increase the diversity of bacterial properties and potentially contribute to the further development of the fields, such as bacterial ecology and adaptation.

Zobrazit více v PubMed

Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016;17:487–500. doi: 10.1038/nrg.2016.59. PubMed DOI

Jones P.A., Issa J.P.J., Baylin S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 2016;17:630–641. doi: 10.1038/nrg.2016.93. PubMed DOI

Waltes R., Chiocchetti A.G., Freitag C.M. The Neurobiological Basis of Human Aggression: A Review on Genetic and Epigenetic Mechanisms. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2016;171:650–675. doi: 10.1002/ajmg.b.32388. PubMed DOI

Feinberg A.P. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 2018;378:1323–1334. doi: 10.1056/NEJMra1402513. PubMed DOI PMC

Latzel V., Janecek S., Dolezal J., Klimesova J., Bossdorf O. Adaptive transgenerational plasticity in the perennial Plantago lanceolata. Oikos. 2014;123:41–46. doi: 10.1111/j.1600-0706.2013.00537.x. DOI

Baranek M., Cechova J., Raddova J., Holleinova V., Ondrusikova E., Pidra M. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy. PLoS ONE. 2015;10:e0126638. doi: 10.1371/journal.pone.0126638. PubMed DOI PMC

Sanchez-Romero M.A., Cota I., Casadesus J. DNA methylation in bacteria: From the methyl group to the methylome. Curr. Opin. Microbiol. 2015;25:9–16. doi: 10.1016/j.mib.2015.03.004. PubMed DOI

Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 2002;3:275–293. doi: 10.1002/1439-7633(20020402)3:4<274::AID-CBIC274>3.0.CO;2-S. PubMed DOI

Loenen W.A.M., Dryden D.T.F., Raleigh E.A., Wilson G.G., Murray N.E. Highlights of the DNA cutters: A short history of the restriction enzymes. Nucleic Acids Res. 2014;42:3–19. doi: 10.1093/nar/gkt990. PubMed DOI PMC

Sánchez-Romero M.A., Casadesús J. The bacterial epigenome. Nat. Rev. Microbiol. 2020;18:7–20. doi: 10.1038/s41579-019-0286-2. PubMed DOI

Vasu K., Nagaraja V. Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiol. Mol. Biol. Rev. 2013;77:53–72. doi: 10.1128/MMBR.00044-12. PubMed DOI PMC

Blow M.J., Clark T.A., Daum C.G., Deutschbauer A.M., Fomenkov A., Fries R., Roberts R.J. The epigenomic landscape of prokaryotes. PLoS Genet. 2016;12:e1005854. doi: 10.1371/journal.pgen.1005854. PubMed DOI PMC

Gryn J., Zeigler Z.R., Shadduck R.K., Lister J., Raymond J.M., Sbeitan I., Srodes C., Meisner D., Evans C. Treatment of myelodysplastic syndromes with 5-azacytidine. Leuk. Res. 2002;26:893–897. doi: 10.1016/S0145-2126(02)00028-0. PubMed DOI

Sudan N., Rossetti J.M., Shadduck R.K., Latsko J., Lech J.A., Kaplan R.B., Kennedy M., Gryn J.F., Faroun Y., Lister J. Treatment of acute myelogenous leukemia with outpatient azacitidine. Cancer. 2006;107:1839–1843. doi: 10.1002/cncr.22204. PubMed DOI

Munzbergova Z., Latzel V., Surinova M., Hadincova V. DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos. 2019;128:124–134. doi: 10.1111/oik.05591. DOI

Modrich P. Methyl-directed DNA mismatch correction. J. Biol. Chem. 1989;264:6597–6600. doi: 10.1016/S0021-9258(18)83467-6. PubMed DOI

Kiselev K.V., Ogneva Z.V., Dubrovina A.S., Nityagovsky N.N., Suprun A.R. Somatic mutations, DNA methylation, and expression of DNA repair genes in Arabidopsis thaliana treated with 5-azacytidine. Biol. Plant. 2019;63:398–404. doi: 10.32615/bp.2019.051. DOI

Champion C., Guianvarc’h D., Senamaud-Beaufort C., Jurkowska R.Z., Jeltsch A., Ponger L., Arimondo P.B., Guieysse-Peugeot A.L. Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine. PLoS ONE. 2010;5:e12388. doi: 10.1371/journal.pone.0012388. PubMed DOI PMC

Zheng W.P. Review: The plant sirtuins. Plant Sci. 2020;293:8. doi: 10.1016/j.plantsci.2020.110434. PubMed DOI

Watroba M., Dudek I., Skoda M., Stangret A., Rzodkiewicz P., Szukiewicz D. Sirtuins, epigenetics and longevity. Ageing Res. Rev. 2017;40:11–19. doi: 10.1016/j.arr.2017.08.001. PubMed DOI

Kosciuk T., Wang M., Hong J.Y., Lin H.N. Updates on the epigenetic roles of sirtuins. Curr. Opin. Chem. Biol. 2019;51:18–29. doi: 10.1016/j.cbpa.2019.01.023. PubMed DOI PMC

Burckhardt R.M., Van Drisse C.M., Tucker A.C., Escalante-Semerena J.C. New AMP-forming acid:CoA ligases from Streptomyces lividans, some of which are posttranslationally regulated by reversible lysine acetylation. Mol. Microbiol. 2020;113:253–269. doi: 10.1111/mmi.14414. PubMed DOI PMC

Dean R., Van Kan J.A.L., Pretorius Z.A., Hammond-Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012;13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x. PubMed DOI PMC

Seong H.J., Park H.J., Hong E., Lee S.C., Sul W.J., Han S.W. Methylome Analysis of Two Xanthomonas spp. Using Single-Molecule Real-Time Sequencing. Plant Pathol. J. 2016;32:500. doi: 10.5423/PPJ.FT.10.2016.0216. PubMed DOI PMC

Diamantopoulos P.T., Kotsianidis I., Symeonidis A., Pappa V., Galanopoulos A., Gogos D., Karakatsanis S., Papadaki H., Palla A., Hatzimichael E., et al. Chronic myelomonocytic leukemia treated with 5-azacytidine-results from the Hellenic 5-Azacytidine Registry: Proposal of a new risk stratification system. Leuk. Lymphoma. 2019;60:1721–1730. doi: 10.1080/10428194.2018.1540783. PubMed DOI

Ogneva Z.V., Suprun A.R., Dubrovina A.S., Kiselev K.V. Effect of 5-azacytidine induced DNA demethylation on abiotic stress tolerance in Arabidopsis thaliana. Plant Prot. Sci. 2019;55:73–80. doi: 10.17221/94/2018-PPS. DOI

Kozuka C., Shimizu-Okabe C., Takayama C., Nakano K., Morinaga H., Kinjo A., Fukuda K., Kamei A., Yasuoka A., Kondo T., et al. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv. 2017;24:558–568. doi: 10.1080/10717544.2017.1279237. PubMed DOI PMC

Castanho A., Lageiro M., Calhelha R.C., Ferreira I., Sokovic M., Cunha L.M., Brites C. Exploiting the bioactive properties of γ-oryzanol from bran of different exotic rice varieties. Food Funct. 2019;10:2382–2389. doi: 10.1039/C8FO02596G. PubMed DOI

Erasimus H., Gobin M., Niclou S., Van Dyck E. DNA repair mechanisms and their clinical impact in glioblastoma. Mutat. Res. Rev. Mutat. Res. 2016;769:19–35. doi: 10.1016/j.mrrev.2016.05.005. PubMed DOI

Ranson M., Middleton M.R., Bridgewater J., Lee S.M., Dawson M., Jowle D., Halbert G., Waller S., McGrath H., Gumbrell L., et al. Lomeguatrib, a potent inhibitor of O-6-alkylguanine-DNA-alkyltransferase: Phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res. 2006;12:1577–1584. doi: 10.1158/1078-0432.CCR-05-2198. PubMed DOI

Assis R.I.F., Wiench M., Silverio K.G., da Silva R.A., Feltran G.D., Sallum E.A., Casati M.Z., Nociti F.H., Andia D.C. RG108 increases NANOG and OCT4 in bone marrow-derived mesenchymal cells through global changes in DNA modifications and epigenetic activation. PLoS ONE. 2018;13:e0207873. doi: 10.1371/journal.pone.0207873. PubMed DOI PMC

Rondelet G., Fleury L., Faux C., Masson V., Dubois J., Arimondo P.B., Willems L., Wouters J. Inhibition studies of DNA methyltransferases by maleimide derivatives of RG108 as non-nucleoside inhibitors. Future Med. Chem. 2017;9:1465–1481. doi: 10.4155/fmc-2017-0074. PubMed DOI

Finnegan E.J., Ford B., Wallace X., Pettolino F., Griffin P.T., Schmitz R.J., Zhang P., Barrero J.M., Hayden M.J., Boden S.A., et al. Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat. Plant Cell Environ. 2018;41:1346–1360. doi: 10.1111/pce.13164. PubMed DOI

Griffin P.T., Niederhuth C.E., Schmitz R.J. A Comparative Analysis of 5-Azacytidine- and Zebularine-Induced DNA Demethylation. G3-Genes Genomes Genet. 2016;6:2773–2780. doi: 10.1534/g3.116.030262. PubMed DOI PMC

Ceballos M.P., Decandido G., Quiroga A.D., Comanzo C.G., Livore V.I., Lorenzetti F., Lambertucci F., Chazarreta-Cifre L., Banchio C., Alvarez M.D., et al. Inhibition of sirtuins 1 and 2 impairs cell survival and migration and modulates the expression of P-glycoprotein and MRP3 in hepatocellular carcinoma cell lines. Toxicol. Lett. 2018;289:63–74. doi: 10.1016/j.toxlet.2018.03.011. PubMed DOI

Dai H., Sinclair D.A., Ellis J.L., Steegborn C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol. Ther. 2018;188:140–154. doi: 10.1016/j.pharmthera.2018.03.004. PubMed DOI PMC

Cheang W.S., Wong W.T., Wang L., Cheng C.K., Lau C.W., Ma R.C.W., Xu A.M., Wang N.P., Huang Y., Tian X.Y. Resveratrol ameliorates endothelial dysfunction in diabetic and obese mice through sirtuin 1 and peroxisome proliferator-activated receptor delta. Pharmacol. Res. 2019;139:384–394. doi: 10.1016/j.phrs.2018.11.041. PubMed DOI

Singh S., Singh A., Yadav S., Gautam V., Sarkar A.K. Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components. Sci. Rep. 2017;7:13. doi: 10.1038/srep42450. PubMed DOI PMC

Khader A., Yang W.L., Hansen L.W., Rajayer S.R., Prince J.M., Nicastro J.M., Coppa G.F., Wang P. SRT1720, a sirtuin 1 activator, attenuates organ injury and inflammation in sepsis. J. Surg. Res. 2017;219:288–295. doi: 10.1016/j.jss.2017.06.031. PubMed DOI PMC

Nautiyal A., Patil K.N., Muniyappa K. Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J. Antimicrob. Chemother. 2014;69:1834–1843. doi: 10.1093/jac/dku080. PubMed DOI

Peňázová E., Kopta T., Jurica M., Pečenka J., Eichmeier A., Pokluda R. Testing of inoculation methods and susceptibility testing of perspective cabbage breeding lines (Brassica oleracea convar. capitata) to the black rot disease caused by Xanthomonas campestris pv. campestris. Acta Univ. Agric. Silv. Mendel. Brun. 2018;66:139–148. doi: 10.11118/actaun201866010139. DOI

Scortichini M., Stefani E., Elphinstone J., Bergsma Vlami M. PM 7/110 (1) Xanthomonas spp. (Xanthomonas euvesicatoria, Xanthomonas gardneri, Xanthomonas perforans, Xanthomonas vesicatoria) causing bacterial spot of tomato and sweet pepper. Bull. OEPP. 2013;43:7–20.

Berg T., Tesoriero L., Hailstones D.L. PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathol. 2005;54:416–427. doi: 10.1111/j.1365-3059.2005.01186.x. DOI

Eichmeier A., Penazova E., Pokluda R., Vicente J.G. Detection of Xanthomonas campestris pv. campestris through a real-time PCR assay targeting the Zur gene and comparison with detection targeting the hrpF gene. Eur. J. Plant Pathol. 2019;155:891–902. doi: 10.1007/s10658-019-01820-0. DOI

Baranek M., Krizan B., Ondrusikova E., Pidra M. DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tissue Organ Cult. 2010;101:11–22. doi: 10.1007/s11240-009-9656-1. DOI

Nei M., Li W.H. Mathematical-model for studying genetic-variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 1979;76:5269–5273. doi: 10.1073/pnas.76.10.5269. PubMed DOI PMC

Eichmeier A., Pieczonka K., Peňázová E., Pečenka J., Gajewski Z. Occurrence of Grapevine pinot gris virus in Poland and description of asymptomatic exhibitions in grapevines. J. Plant Dis. Prot. 2017;124:407–411. doi: 10.1007/s41348-017-0076-x. DOI

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Babraham Institute; Cambridge, UK: 2010. Version 0.11.2.

Kopylova E., Noe L., Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI

Ge S.X., Jung D.M., Yao R.A. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Park H.J., Seong H.J., Lee J., Heo L., Sul W.J., Han S.W. Two DNA Methyltransferases for Site-Specific 6mA and 5mC DNA Modification in Xanthomonas euvesicatoria. Front. Plant Sci. 2021;12:436. doi: 10.3389/fpls.2021.621466. PubMed DOI PMC

Xiao C.L., Xie S.Q., Xie Q.B., Liu Z.Y., Xing J.F., Ji K.K., Tao J., Dai L.Y., Luo F. N6-Methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome. Sci. Rep. 2018;8:1–7. doi: 10.1038/s41598-018-34559-5. PubMed DOI PMC

Kumar J., Sharma V.K., Singh D.K., Mishra A., Gond S.K., Verma S.K., Kumar A., Kharwar R.N. Epigenetic Activation of Antibacterial Property of an Endophytic Streptomyces coelicolor Strain AZRA 37 and Identification of the Induced Protein Using MALDI TOF MS/MS. PLoS ONE. 2016;11:e0147876. doi: 10.1371/journal.pone.0147876. PubMed DOI PMC

Yadav M.K., Chae S.W., Song J.J. Effect of 5-azacytidine on in vitro biofilm formation of Streptococcus pneumoniae. Microb. Pathog. 2012;53:219–226. doi: 10.1016/j.micpath.2012.08.003. PubMed DOI

Xia J., Han L., Zhao Z. Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genom. 2012;13:1–9. doi: 10.1186/1471-2164-13-S8-S7. PubMed DOI PMC

Cherry J.L. Methylation-induced hypermutation in natural populations of bacteria. J. Bacteriol. 2018:200. doi: 10.1128/JB.00371-18. PubMed DOI PMC

Sater M.R.A., Lamelas A., Wang G., Clark T.A., Röltgen K., Mane S., Korlach J., Pluschke G., Schmid C.D. DNA methylation assessed by SMRT sequencing is linked to mutations in Neisseria meningitidis isolates. PLoS ONE. 2015;10:e0144612. doi: 10.1371/journal.pone.0144612. PubMed DOI PMC

Marinus M.G., Casadesus J. Roles of DNA adenine methylation in host-pathogen interactions: Mismatch repair, transcriptional regulation, and more. FEMS Microbiol. Rev. 2009;33:488–503. doi: 10.1111/j.1574-6976.2008.00159.x. PubMed DOI PMC

Shell S.S., Prestwich E.G., Baek S.H., Shah R.R., Sassetti C.M., Dedon P.C., Fortune S.M. DNA Methylation Impacts Gene Expression and Ensures Hypoxic Survival of Mycobacterium tuberculosis. PLoS Pathog. 2013;9:e1003419. doi: 10.1371/journal.ppat.1003419. PubMed DOI PMC

Fang C.T., Yi W.C., Shun C.T., Tsai S.F. DNA adenine methylation modulates pathogenicity of Klebsiella pneumoniae genotype K1. J. Microbiol. Immunol. Infect. 2017;50:471–477. doi: 10.1016/j.jmii.2015.08.022. PubMed DOI

Seib K.L., Srikhanta Y.N., Atack J.M., Jennings M.P. Epigenetic regulation of virulence and immunoevasion by phase-variable restriction-modification systems in bacterial pathogens. Annu. Rev. Microbiol. 2020;74:655–671. doi: 10.1146/annurev-micro-090817-062346. PubMed DOI

Banger A.K., Wallace A., Glass E.M., Åslund F., Schneewind O., Missiakas D.M. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc. Natl. Acad. Sci. USA. 2004;101:12312–12317. doi: 10.1073/pnas.0404728101. PubMed DOI PMC

Dean M.A., Olsen R.J., Long S.W., Rosato A.E., Musser J.M. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione. Infect. Immun. 2014;82:1600–1605. doi: 10.1128/IAI.01487-13. PubMed DOI PMC

Starai V.J., Celic I., Cole R.N., Boeke J.D., Escalante-Semerena J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science. 2002;298:2390–2392. doi: 10.1126/science.1077650. PubMed DOI

Zhang Q.F., Gu J., Gong P., Wang X.D., Tu S., Bi L.J., Yu Z.N., Zhang Z.P., Cui Z.Q., Wei H.P., et al. Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase. FEBS J. 2013;280:1966–1979. doi: 10.1111/febs.12216. PubMed DOI

Li R., Gu J., Chen Y.Y., Xiao C.L., Wang L.W., Zhang Z.P., Bi L.J., Wei H.P., Wang X.D., Deng J.Y., et al. CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY. Mol. Microbiol. 2010;76:1162–1174. doi: 10.1111/j.1365-2958.2010.07125.x. PubMed DOI PMC

Lima B.P., Antelmann H., Gronau K., Chi B.K., Becher D., Brinsmade S.R., Wolfe A.J. Involvement of protein acetylation in glucose-induced transcription of a stress-responsive promoter. Mol. Microbiol. 2011;81:1190–1204. doi: 10.1111/j.1365-2958.2011.07742.x. PubMed DOI PMC

Hu L.D.I., Chi B.K., Kuhn M.L., Filippova E.V., Walker-Peddakotla A.J., Basell K., Becher D., Anderson W.F., Antelmann H., Wolfe A.J. Acetylation of the Response Regulator RcsB Controls Transcription from a Small RNA Promoter. J. Bacteriol. 2013;195:4174–4186. doi: 10.1128/JB.00383-13. PubMed DOI PMC

Thao S., Chen C.S., Zhu H., Escalante-Semerena J.C. N-epsilon-Lysine Acetylation of a Bacterial Transcription Factor Inhibits Its DNA-Binding Activity. PLoS ONE. 2010;5:e15123. doi: 10.1371/journal.pone.0015123. PubMed DOI PMC

Eden S., Hashimshony T., Keshet I., Cedar H., Thorne A.W. DNA methylation models histone acetylation. Nature. 1998;394:842. doi: 10.1038/29680. PubMed DOI

Mutskov V.J., Farrell C.M., Wade P.A., Wolffe A.P., Felsenfeld G. The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. Genes Dev. 2002;16:1540–1554. doi: 10.1101/gad.988502. PubMed DOI PMC

Baranek M., Otmar M., Krecmerova M., Eichmeier A., Moudra J., Mynarzova Z. Effect of Different DNA Demethylating Agents on In vitro Cultures of Peach Rootstock GF 677. Not. Bot. Hortic Agrobot. Cluj-Napoca. 2019;47:896–902. doi: 10.15835/nbha47311373. DOI

Jiang B.L., He Y.Q., Cen W.J., Wei H.Y., Jiang G.F., Jiang W., Hang X.H., Feng J.X., Lu G.T., Tang D.H., et al. The type III secretion effector xopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res. Microbiol. 2008;159:216–220. doi: 10.1016/j.resmic.2007.12.004. PubMed DOI

Rossier O., Van den Ackerveken G., Bonas U. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol. Microbiol. 2000;38:828–838. doi: 10.1046/j.1365-2958.2000.02173.x. PubMed DOI

Alkhateeb R.S., Vorholter F.J., Steffens T., Ruckert C., Ortseifen V., Hublik G., Niehaus K., Puhler A. Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase. Appl. Microbiol. Biotechnol. 2018;102:6613–6625. doi: 10.1007/s00253-018-9106-2. PubMed DOI

Vojnov A.A., Slater H., Daniels M.J., Dow J.M. Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol. Plant-Microbe Interact. 2001;14:768–774. doi: 10.1094/MPMI.2001.14.6.768. PubMed DOI

Wang J.C., So B.H., Kim J.H., Park Y.J., Lee B.M., Kang H.W. Genome-wide identification of pathogenicity genes in Xanthomonas oryzae pv. oryzae by transposon mutagenesis. Plant Pathol. 2008;57:1136–1145. doi: 10.1111/j.1365-3059.2008.01884.x. DOI

Bianco M.I., Toum L., Yaryura P.M., Mielnichuk N., Gudesblat G.E., Roeschlin R., Marano M.R., Lelpi L., Vojnov A.A. Xanthan Pyruvilation Is Essential for the Virulence of Xanthomonas campestris pv. campestris. Mol. Plant-Microbe Interact. 2016;29:688–699. doi: 10.1094/MPMI-06-16-0106-R. PubMed DOI

Fagard M., Launay A., Clement G., Courtial J., Dellagi A., Farjad M., Krapp A., Soulie M.C., Masclaux-Daubresse C. Nitrogen metabolism meets phytopathology. J. Exp. Bot. 2014;65:5643–5656. doi: 10.1093/jxb/eru323. PubMed DOI

Mur L.A.J., Simpson C., Kumari A., Gupta A.K., Gupta K.J. Moving nitrogen to the centre of plant defence against pathogens. Ann. Bot. 2017;119:703–709. doi: 10.1093/aob/mcw179. PubMed DOI PMC

Liu J.Z., Lam H.M. Signal Transduction Pathways in Plants for Resistance against Pathogens. Int. J. Mol. Sci. 2019;20:2335. doi: 10.3390/ijms20092335. PubMed DOI PMC

Kollist H., Zandalinas S.I., Sengupta S., Nuhkat M., Kangasjarvi J., Mittler R. Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. Trends Plant Sci. 2019;24:25–37. doi: 10.1016/j.tplants.2018.10.003. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exploring the crop epigenome: a comparison of DNA methylation profiling techniques

. 2023 ; 14 () : 1181039. [epub] 20230530

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...