Epigenetic Modulating Chemicals Significantly Affect the Virulence and Genetic Characteristics of the Bacterial Plant Pathogen Xanthomonas campestris pv. campestris
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34070403
PubMed Central
PMC8226645
DOI
10.3390/genes12060804
PII: genes12060804
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, Xanthomonas campestris, bacterial epigenetics, dual RNA-seq, virulence,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Brassica rapa mikrobiologie MeSH
- epigeneze genetická účinky léků MeSH
- inhibitory enzymů farmakologie MeSH
- jednonukleotidový polymorfismus MeSH
- metylace DNA MeSH
- puriny farmakologie MeSH
- sirtuiny antagonisté a inhibitory genetika metabolismus MeSH
- virulence genetika MeSH
- Xanthomonas campestris účinky léků genetika patogenita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- inhibitory enzymů MeSH
- lomeguatrib MeSH Prohlížeč
- puriny MeSH
- sirtuiny MeSH
Epigenetics is the study of heritable alterations in phenotypes that are not caused by changes in DNA sequence. In the present study, we characterized the genetic and phenotypic alterations of the bacterial plant pathogen Xanthomonas campestris pv. campestris (Xcc) under different treatments with several epigenetic modulating chemicals. The use of DNA demethylating chemicals unambiguously caused a durable decrease in Xcc bacterial virulence, even after its reisolation from infected plants. The first-time use of chemicals to modify the activity of sirtuins also showed some noticeable results in terms of increasing bacterial virulence, but this effect was not typically stable. Changes in treated strains were also confirmed by using methylation sensitive amplification (MSAP), but with respect to registered SNPs induction, it was necessary to consider their contribution to the observed polymorphism. The molecular basis of the altered virulence was deciphered by using dualRNA-seq analysis of treated Xcc strains infecting Brassica rapa plants. The results of the present study should promote more intensive research in the generally understudied field of bacterial epigenetics, where artificially induced modification by epigenetic modulating chemicals can significantly increase the diversity of bacterial properties and potentially contribute to the further development of the fields, such as bacterial ecology and adaptation.
Department of Phytopathology Research Institute of Horticulture 96 100 Skierniewice Poland
Institute for Biological Physics University of Cologne 50923 Köln Germany
Zobrazit více v PubMed
Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016;17:487–500. doi: 10.1038/nrg.2016.59. PubMed DOI
Jones P.A., Issa J.P.J., Baylin S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 2016;17:630–641. doi: 10.1038/nrg.2016.93. PubMed DOI
Waltes R., Chiocchetti A.G., Freitag C.M. The Neurobiological Basis of Human Aggression: A Review on Genetic and Epigenetic Mechanisms. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2016;171:650–675. doi: 10.1002/ajmg.b.32388. PubMed DOI
Feinberg A.P. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 2018;378:1323–1334. doi: 10.1056/NEJMra1402513. PubMed DOI PMC
Latzel V., Janecek S., Dolezal J., Klimesova J., Bossdorf O. Adaptive transgenerational plasticity in the perennial Plantago lanceolata. Oikos. 2014;123:41–46. doi: 10.1111/j.1600-0706.2013.00537.x. DOI
Baranek M., Cechova J., Raddova J., Holleinova V., Ondrusikova E., Pidra M. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy. PLoS ONE. 2015;10:e0126638. doi: 10.1371/journal.pone.0126638. PubMed DOI PMC
Sanchez-Romero M.A., Cota I., Casadesus J. DNA methylation in bacteria: From the methyl group to the methylome. Curr. Opin. Microbiol. 2015;25:9–16. doi: 10.1016/j.mib.2015.03.004. PubMed DOI
Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 2002;3:275–293. doi: 10.1002/1439-7633(20020402)3:4<274::AID-CBIC274>3.0.CO;2-S. PubMed DOI
Loenen W.A.M., Dryden D.T.F., Raleigh E.A., Wilson G.G., Murray N.E. Highlights of the DNA cutters: A short history of the restriction enzymes. Nucleic Acids Res. 2014;42:3–19. doi: 10.1093/nar/gkt990. PubMed DOI PMC
Sánchez-Romero M.A., Casadesús J. The bacterial epigenome. Nat. Rev. Microbiol. 2020;18:7–20. doi: 10.1038/s41579-019-0286-2. PubMed DOI
Vasu K., Nagaraja V. Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiol. Mol. Biol. Rev. 2013;77:53–72. doi: 10.1128/MMBR.00044-12. PubMed DOI PMC
Blow M.J., Clark T.A., Daum C.G., Deutschbauer A.M., Fomenkov A., Fries R., Roberts R.J. The epigenomic landscape of prokaryotes. PLoS Genet. 2016;12:e1005854. doi: 10.1371/journal.pgen.1005854. PubMed DOI PMC
Gryn J., Zeigler Z.R., Shadduck R.K., Lister J., Raymond J.M., Sbeitan I., Srodes C., Meisner D., Evans C. Treatment of myelodysplastic syndromes with 5-azacytidine. Leuk. Res. 2002;26:893–897. doi: 10.1016/S0145-2126(02)00028-0. PubMed DOI
Sudan N., Rossetti J.M., Shadduck R.K., Latsko J., Lech J.A., Kaplan R.B., Kennedy M., Gryn J.F., Faroun Y., Lister J. Treatment of acute myelogenous leukemia with outpatient azacitidine. Cancer. 2006;107:1839–1843. doi: 10.1002/cncr.22204. PubMed DOI
Munzbergova Z., Latzel V., Surinova M., Hadincova V. DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos. 2019;128:124–134. doi: 10.1111/oik.05591. DOI
Modrich P. Methyl-directed DNA mismatch correction. J. Biol. Chem. 1989;264:6597–6600. doi: 10.1016/S0021-9258(18)83467-6. PubMed DOI
Kiselev K.V., Ogneva Z.V., Dubrovina A.S., Nityagovsky N.N., Suprun A.R. Somatic mutations, DNA methylation, and expression of DNA repair genes in Arabidopsis thaliana treated with 5-azacytidine. Biol. Plant. 2019;63:398–404. doi: 10.32615/bp.2019.051. DOI
Champion C., Guianvarc’h D., Senamaud-Beaufort C., Jurkowska R.Z., Jeltsch A., Ponger L., Arimondo P.B., Guieysse-Peugeot A.L. Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine. PLoS ONE. 2010;5:e12388. doi: 10.1371/journal.pone.0012388. PubMed DOI PMC
Zheng W.P. Review: The plant sirtuins. Plant Sci. 2020;293:8. doi: 10.1016/j.plantsci.2020.110434. PubMed DOI
Watroba M., Dudek I., Skoda M., Stangret A., Rzodkiewicz P., Szukiewicz D. Sirtuins, epigenetics and longevity. Ageing Res. Rev. 2017;40:11–19. doi: 10.1016/j.arr.2017.08.001. PubMed DOI
Kosciuk T., Wang M., Hong J.Y., Lin H.N. Updates on the epigenetic roles of sirtuins. Curr. Opin. Chem. Biol. 2019;51:18–29. doi: 10.1016/j.cbpa.2019.01.023. PubMed DOI PMC
Burckhardt R.M., Van Drisse C.M., Tucker A.C., Escalante-Semerena J.C. New AMP-forming acid:CoA ligases from Streptomyces lividans, some of which are posttranslationally regulated by reversible lysine acetylation. Mol. Microbiol. 2020;113:253–269. doi: 10.1111/mmi.14414. PubMed DOI PMC
Dean R., Van Kan J.A.L., Pretorius Z.A., Hammond-Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012;13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x. PubMed DOI PMC
Seong H.J., Park H.J., Hong E., Lee S.C., Sul W.J., Han S.W. Methylome Analysis of Two Xanthomonas spp. Using Single-Molecule Real-Time Sequencing. Plant Pathol. J. 2016;32:500. doi: 10.5423/PPJ.FT.10.2016.0216. PubMed DOI PMC
Diamantopoulos P.T., Kotsianidis I., Symeonidis A., Pappa V., Galanopoulos A., Gogos D., Karakatsanis S., Papadaki H., Palla A., Hatzimichael E., et al. Chronic myelomonocytic leukemia treated with 5-azacytidine-results from the Hellenic 5-Azacytidine Registry: Proposal of a new risk stratification system. Leuk. Lymphoma. 2019;60:1721–1730. doi: 10.1080/10428194.2018.1540783. PubMed DOI
Ogneva Z.V., Suprun A.R., Dubrovina A.S., Kiselev K.V. Effect of 5-azacytidine induced DNA demethylation on abiotic stress tolerance in Arabidopsis thaliana. Plant Prot. Sci. 2019;55:73–80. doi: 10.17221/94/2018-PPS. DOI
Kozuka C., Shimizu-Okabe C., Takayama C., Nakano K., Morinaga H., Kinjo A., Fukuda K., Kamei A., Yasuoka A., Kondo T., et al. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv. 2017;24:558–568. doi: 10.1080/10717544.2017.1279237. PubMed DOI PMC
Castanho A., Lageiro M., Calhelha R.C., Ferreira I., Sokovic M., Cunha L.M., Brites C. Exploiting the bioactive properties of γ-oryzanol from bran of different exotic rice varieties. Food Funct. 2019;10:2382–2389. doi: 10.1039/C8FO02596G. PubMed DOI
Erasimus H., Gobin M., Niclou S., Van Dyck E. DNA repair mechanisms and their clinical impact in glioblastoma. Mutat. Res. Rev. Mutat. Res. 2016;769:19–35. doi: 10.1016/j.mrrev.2016.05.005. PubMed DOI
Ranson M., Middleton M.R., Bridgewater J., Lee S.M., Dawson M., Jowle D., Halbert G., Waller S., McGrath H., Gumbrell L., et al. Lomeguatrib, a potent inhibitor of O-6-alkylguanine-DNA-alkyltransferase: Phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res. 2006;12:1577–1584. doi: 10.1158/1078-0432.CCR-05-2198. PubMed DOI
Assis R.I.F., Wiench M., Silverio K.G., da Silva R.A., Feltran G.D., Sallum E.A., Casati M.Z., Nociti F.H., Andia D.C. RG108 increases NANOG and OCT4 in bone marrow-derived mesenchymal cells through global changes in DNA modifications and epigenetic activation. PLoS ONE. 2018;13:e0207873. doi: 10.1371/journal.pone.0207873. PubMed DOI PMC
Rondelet G., Fleury L., Faux C., Masson V., Dubois J., Arimondo P.B., Willems L., Wouters J. Inhibition studies of DNA methyltransferases by maleimide derivatives of RG108 as non-nucleoside inhibitors. Future Med. Chem. 2017;9:1465–1481. doi: 10.4155/fmc-2017-0074. PubMed DOI
Finnegan E.J., Ford B., Wallace X., Pettolino F., Griffin P.T., Schmitz R.J., Zhang P., Barrero J.M., Hayden M.J., Boden S.A., et al. Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat. Plant Cell Environ. 2018;41:1346–1360. doi: 10.1111/pce.13164. PubMed DOI
Griffin P.T., Niederhuth C.E., Schmitz R.J. A Comparative Analysis of 5-Azacytidine- and Zebularine-Induced DNA Demethylation. G3-Genes Genomes Genet. 2016;6:2773–2780. doi: 10.1534/g3.116.030262. PubMed DOI PMC
Ceballos M.P., Decandido G., Quiroga A.D., Comanzo C.G., Livore V.I., Lorenzetti F., Lambertucci F., Chazarreta-Cifre L., Banchio C., Alvarez M.D., et al. Inhibition of sirtuins 1 and 2 impairs cell survival and migration and modulates the expression of P-glycoprotein and MRP3 in hepatocellular carcinoma cell lines. Toxicol. Lett. 2018;289:63–74. doi: 10.1016/j.toxlet.2018.03.011. PubMed DOI
Dai H., Sinclair D.A., Ellis J.L., Steegborn C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol. Ther. 2018;188:140–154. doi: 10.1016/j.pharmthera.2018.03.004. PubMed DOI PMC
Cheang W.S., Wong W.T., Wang L., Cheng C.K., Lau C.W., Ma R.C.W., Xu A.M., Wang N.P., Huang Y., Tian X.Y. Resveratrol ameliorates endothelial dysfunction in diabetic and obese mice through sirtuin 1 and peroxisome proliferator-activated receptor delta. Pharmacol. Res. 2019;139:384–394. doi: 10.1016/j.phrs.2018.11.041. PubMed DOI
Singh S., Singh A., Yadav S., Gautam V., Sarkar A.K. Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components. Sci. Rep. 2017;7:13. doi: 10.1038/srep42450. PubMed DOI PMC
Khader A., Yang W.L., Hansen L.W., Rajayer S.R., Prince J.M., Nicastro J.M., Coppa G.F., Wang P. SRT1720, a sirtuin 1 activator, attenuates organ injury and inflammation in sepsis. J. Surg. Res. 2017;219:288–295. doi: 10.1016/j.jss.2017.06.031. PubMed DOI PMC
Nautiyal A., Patil K.N., Muniyappa K. Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J. Antimicrob. Chemother. 2014;69:1834–1843. doi: 10.1093/jac/dku080. PubMed DOI
Peňázová E., Kopta T., Jurica M., Pečenka J., Eichmeier A., Pokluda R. Testing of inoculation methods and susceptibility testing of perspective cabbage breeding lines (Brassica oleracea convar. capitata) to the black rot disease caused by Xanthomonas campestris pv. campestris. Acta Univ. Agric. Silv. Mendel. Brun. 2018;66:139–148. doi: 10.11118/actaun201866010139. DOI
Scortichini M., Stefani E., Elphinstone J., Bergsma Vlami M. PM 7/110 (1) Xanthomonas spp. (Xanthomonas euvesicatoria, Xanthomonas gardneri, Xanthomonas perforans, Xanthomonas vesicatoria) causing bacterial spot of tomato and sweet pepper. Bull. OEPP. 2013;43:7–20.
Berg T., Tesoriero L., Hailstones D.L. PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathol. 2005;54:416–427. doi: 10.1111/j.1365-3059.2005.01186.x. DOI
Eichmeier A., Penazova E., Pokluda R., Vicente J.G. Detection of Xanthomonas campestris pv. campestris through a real-time PCR assay targeting the Zur gene and comparison with detection targeting the hrpF gene. Eur. J. Plant Pathol. 2019;155:891–902. doi: 10.1007/s10658-019-01820-0. DOI
Baranek M., Krizan B., Ondrusikova E., Pidra M. DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tissue Organ Cult. 2010;101:11–22. doi: 10.1007/s11240-009-9656-1. DOI
Nei M., Li W.H. Mathematical-model for studying genetic-variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 1979;76:5269–5273. doi: 10.1073/pnas.76.10.5269. PubMed DOI PMC
Eichmeier A., Pieczonka K., Peňázová E., Pečenka J., Gajewski Z. Occurrence of Grapevine pinot gris virus in Poland and description of asymptomatic exhibitions in grapevines. J. Plant Dis. Prot. 2017;124:407–411. doi: 10.1007/s41348-017-0076-x. DOI
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Babraham Institute; Cambridge, UK: 2010. Version 0.11.2.
Kopylova E., Noe L., Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Ge S.X., Jung D.M., Yao R.A. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Park H.J., Seong H.J., Lee J., Heo L., Sul W.J., Han S.W. Two DNA Methyltransferases for Site-Specific 6mA and 5mC DNA Modification in Xanthomonas euvesicatoria. Front. Plant Sci. 2021;12:436. doi: 10.3389/fpls.2021.621466. PubMed DOI PMC
Xiao C.L., Xie S.Q., Xie Q.B., Liu Z.Y., Xing J.F., Ji K.K., Tao J., Dai L.Y., Luo F. N6-Methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome. Sci. Rep. 2018;8:1–7. doi: 10.1038/s41598-018-34559-5. PubMed DOI PMC
Kumar J., Sharma V.K., Singh D.K., Mishra A., Gond S.K., Verma S.K., Kumar A., Kharwar R.N. Epigenetic Activation of Antibacterial Property of an Endophytic Streptomyces coelicolor Strain AZRA 37 and Identification of the Induced Protein Using MALDI TOF MS/MS. PLoS ONE. 2016;11:e0147876. doi: 10.1371/journal.pone.0147876. PubMed DOI PMC
Yadav M.K., Chae S.W., Song J.J. Effect of 5-azacytidine on in vitro biofilm formation of Streptococcus pneumoniae. Microb. Pathog. 2012;53:219–226. doi: 10.1016/j.micpath.2012.08.003. PubMed DOI
Xia J., Han L., Zhao Z. Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genom. 2012;13:1–9. doi: 10.1186/1471-2164-13-S8-S7. PubMed DOI PMC
Cherry J.L. Methylation-induced hypermutation in natural populations of bacteria. J. Bacteriol. 2018:200. doi: 10.1128/JB.00371-18. PubMed DOI PMC
Sater M.R.A., Lamelas A., Wang G., Clark T.A., Röltgen K., Mane S., Korlach J., Pluschke G., Schmid C.D. DNA methylation assessed by SMRT sequencing is linked to mutations in Neisseria meningitidis isolates. PLoS ONE. 2015;10:e0144612. doi: 10.1371/journal.pone.0144612. PubMed DOI PMC
Marinus M.G., Casadesus J. Roles of DNA adenine methylation in host-pathogen interactions: Mismatch repair, transcriptional regulation, and more. FEMS Microbiol. Rev. 2009;33:488–503. doi: 10.1111/j.1574-6976.2008.00159.x. PubMed DOI PMC
Shell S.S., Prestwich E.G., Baek S.H., Shah R.R., Sassetti C.M., Dedon P.C., Fortune S.M. DNA Methylation Impacts Gene Expression and Ensures Hypoxic Survival of Mycobacterium tuberculosis. PLoS Pathog. 2013;9:e1003419. doi: 10.1371/journal.ppat.1003419. PubMed DOI PMC
Fang C.T., Yi W.C., Shun C.T., Tsai S.F. DNA adenine methylation modulates pathogenicity of Klebsiella pneumoniae genotype K1. J. Microbiol. Immunol. Infect. 2017;50:471–477. doi: 10.1016/j.jmii.2015.08.022. PubMed DOI
Seib K.L., Srikhanta Y.N., Atack J.M., Jennings M.P. Epigenetic regulation of virulence and immunoevasion by phase-variable restriction-modification systems in bacterial pathogens. Annu. Rev. Microbiol. 2020;74:655–671. doi: 10.1146/annurev-micro-090817-062346. PubMed DOI
Banger A.K., Wallace A., Glass E.M., Åslund F., Schneewind O., Missiakas D.M. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc. Natl. Acad. Sci. USA. 2004;101:12312–12317. doi: 10.1073/pnas.0404728101. PubMed DOI PMC
Dean M.A., Olsen R.J., Long S.W., Rosato A.E., Musser J.M. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione. Infect. Immun. 2014;82:1600–1605. doi: 10.1128/IAI.01487-13. PubMed DOI PMC
Starai V.J., Celic I., Cole R.N., Boeke J.D., Escalante-Semerena J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science. 2002;298:2390–2392. doi: 10.1126/science.1077650. PubMed DOI
Zhang Q.F., Gu J., Gong P., Wang X.D., Tu S., Bi L.J., Yu Z.N., Zhang Z.P., Cui Z.Q., Wei H.P., et al. Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase. FEBS J. 2013;280:1966–1979. doi: 10.1111/febs.12216. PubMed DOI
Li R., Gu J., Chen Y.Y., Xiao C.L., Wang L.W., Zhang Z.P., Bi L.J., Wei H.P., Wang X.D., Deng J.Y., et al. CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY. Mol. Microbiol. 2010;76:1162–1174. doi: 10.1111/j.1365-2958.2010.07125.x. PubMed DOI PMC
Lima B.P., Antelmann H., Gronau K., Chi B.K., Becher D., Brinsmade S.R., Wolfe A.J. Involvement of protein acetylation in glucose-induced transcription of a stress-responsive promoter. Mol. Microbiol. 2011;81:1190–1204. doi: 10.1111/j.1365-2958.2011.07742.x. PubMed DOI PMC
Hu L.D.I., Chi B.K., Kuhn M.L., Filippova E.V., Walker-Peddakotla A.J., Basell K., Becher D., Anderson W.F., Antelmann H., Wolfe A.J. Acetylation of the Response Regulator RcsB Controls Transcription from a Small RNA Promoter. J. Bacteriol. 2013;195:4174–4186. doi: 10.1128/JB.00383-13. PubMed DOI PMC
Thao S., Chen C.S., Zhu H., Escalante-Semerena J.C. N-epsilon-Lysine Acetylation of a Bacterial Transcription Factor Inhibits Its DNA-Binding Activity. PLoS ONE. 2010;5:e15123. doi: 10.1371/journal.pone.0015123. PubMed DOI PMC
Eden S., Hashimshony T., Keshet I., Cedar H., Thorne A.W. DNA methylation models histone acetylation. Nature. 1998;394:842. doi: 10.1038/29680. PubMed DOI
Mutskov V.J., Farrell C.M., Wade P.A., Wolffe A.P., Felsenfeld G. The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. Genes Dev. 2002;16:1540–1554. doi: 10.1101/gad.988502. PubMed DOI PMC
Baranek M., Otmar M., Krecmerova M., Eichmeier A., Moudra J., Mynarzova Z. Effect of Different DNA Demethylating Agents on In vitro Cultures of Peach Rootstock GF 677. Not. Bot. Hortic Agrobot. Cluj-Napoca. 2019;47:896–902. doi: 10.15835/nbha47311373. DOI
Jiang B.L., He Y.Q., Cen W.J., Wei H.Y., Jiang G.F., Jiang W., Hang X.H., Feng J.X., Lu G.T., Tang D.H., et al. The type III secretion effector xopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res. Microbiol. 2008;159:216–220. doi: 10.1016/j.resmic.2007.12.004. PubMed DOI
Rossier O., Van den Ackerveken G., Bonas U. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol. Microbiol. 2000;38:828–838. doi: 10.1046/j.1365-2958.2000.02173.x. PubMed DOI
Alkhateeb R.S., Vorholter F.J., Steffens T., Ruckert C., Ortseifen V., Hublik G., Niehaus K., Puhler A. Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase. Appl. Microbiol. Biotechnol. 2018;102:6613–6625. doi: 10.1007/s00253-018-9106-2. PubMed DOI
Vojnov A.A., Slater H., Daniels M.J., Dow J.M. Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol. Plant-Microbe Interact. 2001;14:768–774. doi: 10.1094/MPMI.2001.14.6.768. PubMed DOI
Wang J.C., So B.H., Kim J.H., Park Y.J., Lee B.M., Kang H.W. Genome-wide identification of pathogenicity genes in Xanthomonas oryzae pv. oryzae by transposon mutagenesis. Plant Pathol. 2008;57:1136–1145. doi: 10.1111/j.1365-3059.2008.01884.x. DOI
Bianco M.I., Toum L., Yaryura P.M., Mielnichuk N., Gudesblat G.E., Roeschlin R., Marano M.R., Lelpi L., Vojnov A.A. Xanthan Pyruvilation Is Essential for the Virulence of Xanthomonas campestris pv. campestris. Mol. Plant-Microbe Interact. 2016;29:688–699. doi: 10.1094/MPMI-06-16-0106-R. PubMed DOI
Fagard M., Launay A., Clement G., Courtial J., Dellagi A., Farjad M., Krapp A., Soulie M.C., Masclaux-Daubresse C. Nitrogen metabolism meets phytopathology. J. Exp. Bot. 2014;65:5643–5656. doi: 10.1093/jxb/eru323. PubMed DOI
Mur L.A.J., Simpson C., Kumari A., Gupta A.K., Gupta K.J. Moving nitrogen to the centre of plant defence against pathogens. Ann. Bot. 2017;119:703–709. doi: 10.1093/aob/mcw179. PubMed DOI PMC
Liu J.Z., Lam H.M. Signal Transduction Pathways in Plants for Resistance against Pathogens. Int. J. Mol. Sci. 2019;20:2335. doi: 10.3390/ijms20092335. PubMed DOI PMC
Kollist H., Zandalinas S.I., Sengupta S., Nuhkat M., Kangasjarvi J., Mittler R. Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. Trends Plant Sci. 2019;24:25–37. doi: 10.1016/j.tplants.2018.10.003. PubMed DOI
Exploring the crop epigenome: a comparison of DNA methylation profiling techniques