CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34073848
PubMed Central
PMC8225059
DOI
10.3390/genes12060797
PII: genes12060797
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR, DNA-free genome editing, base editing, crop improvement, genome editing, prime editing,
- MeSH
- CRISPR-Cas systémy * MeSH
- editace genu metody MeSH
- genom rostlinný MeSH
- šlechtění rostlin metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Genome-editing (GE) is having a tremendous influence around the globe in the life science community. Among its versatile uses, the desired modifications of genes, and more importantly the transgene (DNA)-free approach to develop genetically modified organism (GMO), are of special interest. The recent and rapid developments in genome-editing technology have given rise to hopes to achieve global food security in a sustainable manner. We here discuss recent developments in CRISPR-based genome-editing tools for crop improvement concerning adaptation, opportunities, and challenges. Some of the notable advances highlighted here include the development of transgene (DNA)-free genome plants, the availability of compatible nucleases, and the development of safe and effective CRISPR delivery vehicles for plant genome editing, multi-gene targeting and complex genome editing, base editing and prime editing to achieve more complex genetic engineering. Additionally, new avenues that facilitate fine-tuning plant gene regulation have also been addressed. In spite of the tremendous potential of CRISPR and other gene editing tools, major challenges remain. Some of the challenges are related to the practical advances required for the efficient delivery of CRISPR reagents and for precision genome editing, while others come from government policies and public acceptance. This review will therefore be helpful to gain insights into technological advances, its applications, and future challenges for crop improvement.
Centre of Research for Development University of Kashmir Srinagar 190006 India
Department of Agronomy Faculty of Agriculture Kafrelsheikh University Kafrelsheikh 33516 Egypt
Department of Bioresources University of Kashmir Srinagar 190006 India
Department of Biotechnology BGSB University Jammu 185234 India
Department of Field Crops Faculty of Agriculture Siirt University Siirt 56100 Turkey
Department of Horticulture Faculty of Agriculture Siirt University Siirt 56100 Turkey
ICAR National Institute for Plant Biotechnology New Delhi 110012 India
School of Biotechnology University of Jammu Jammu 180006 India
Zobrazit více v PubMed
Hickey L.T., Hafeez A.N., Robinson H., Jackson S.A., Leal-Bertioli S.C.M., Tester M., Gao C., Godwin I.D., Hayes B.J., Wulff B.B.H. Breeding crops to feed 10 billion. Nat. Biotechnol. 2019;37:744–754. doi: 10.1038/s41587-019-0152-9. PubMed DOI
Clarke J.L., Zhang P. Plant biotechnology for food security and bioeconomy. Plant Mol. Biol. 2013;83:1–3. doi: 10.1007/s11103-013-0097-1. PubMed DOI
Haque E., Taniguchi H., Hassan M., Bhowmik P., Karim M.R., Śmiech M., Zhao K., Rahman M., Islam T. Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: Recent progress, prospects, and challenges. Front. Plant Sci. 2018;9:617. doi: 10.3389/fpls.2018.00617. PubMed DOI PMC
Chen K., Wang Y., Zhang R., Zhang H., Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019;70:667–697. doi: 10.1146/annurev-arplant-050718-100049. PubMed DOI
Zhang C., Xu W., Wang F., Kang G., Yuan S., Lv X., Li L., Liu Y., Yang J. Expanding the base editing scope to GA and relaxed NG PAM sites by improved xCas9 system. Plant Biotechnol. J. 2020;18:884. doi: 10.1111/pbi.13259. PubMed DOI PMC
Adamu A.K., Aliyu H. Morphogical effects of sodium azide on tomato (Lycopersicon esculentum Mill) Sci. World J. 2007;2:777–780. doi: 10.4314/swj.v2i4.51755. DOI
Mba C., Afza R., Bado S., Jain S.M. Induced mutagenesis in plants using physical and chemical agents. Plant Cell Cult. Essent. Methods. 2010;20:111–130.
Mostafa G.G. Effect of Sodium Azide on the Grovvth and Variability Induction in. Int. J. Plant Breed. Genet. 2011;5:76–85. doi: 10.3923/ijpbg.2011.76.85. DOI
Pacher M., Puchta H. From classical mutagenesis to nuclease-based breeding–directing natural DNA repair for a natural end-product. Plant J. 2017;90:819–833. doi: 10.1111/tpj.13469. PubMed DOI
Chaudhary J., Alisha A., Bhatt V., Chandanshive S., Kumar N., Mir Z., Kumar A., Yadav S.K., Shivaraj S.M., Sonah H. Mutation breeding in tomato: Advances, applicability and challenges. Plants. 2019;8:128. doi: 10.3390/plants8050128. PubMed DOI PMC
Wright I.J., Reich P.B., Cornelissen J.H.C., Falster D.S., Groom P.K., Hikosaka K., Lee W., Lusk C.H., Niinemets Ü., Oleksyn J. Modulation of leaf economic traits and trait relationships by climate. Glob. Ecol. Biogeogr. 2005;14:411–421. doi: 10.1111/j.1466-822x.2005.00172.x. DOI
Maggio I., Goncalves M.A.F.V. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol. 2015;33:280–291. doi: 10.1016/j.tibtech.2015.02.011. PubMed DOI
Mishra R., Zhao K. Genome editing technologies and their applications in crop improvement. Plant Biotechnol. Rep. 2018;12:57–68. doi: 10.1007/s11816-018-0472-0. DOI
Mushtaq M., Sakina A., Wani S.H., Shikari A.B., Tripathi P., Zaid A., Galla A., Abdelrahman M., Sharma M., Singh A.K. Harnessing genome editing techniques to engineer disease resistance in plants. Front. Plant Sci. 2019;10:550. doi: 10.3389/fpls.2019.00550. PubMed DOI PMC
Bao W., Wan Y., Baluška F. Nanosheets for delivery of biomolecules into plant cells. Trends Plant Sci. 2017;22:445–447. doi: 10.1016/j.tplants.2017.03.014. PubMed DOI
Li H., Li J., Chen J., Yan L., Xia L. Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol. Plant. 2020;13:671–674. doi: 10.1016/j.molp.2020.03.011. PubMed DOI
El-Mounadi K., Morales-Floriano M.L., Garcia-Ruiz H. Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Front. Plant Sci. 2020;11:56. doi: 10.3389/fpls.2020.00056. PubMed DOI PMC
Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., Venkataraman G. CRISPR for crop improvement: An update review. Front. Plant Sci. 2018;9:985. doi: 10.3389/fpls.2018.00985. PubMed DOI PMC
Puchta H., Dujon B., Hohn B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc. Natl. Acad. Sci. USA. 1996;93:5055–5060. doi: 10.1073/pnas.93.10.5055. PubMed DOI PMC
Symington L.S., Gautier J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011;45:247–271. doi: 10.1146/annurev-genet-110410-132435. PubMed DOI
Sedeek K.E.M., Mahas A., Mahfouz M. Plant genome engineering for targeted improvement of crop traits. Front. Plant Sci. 2019;10:114. doi: 10.3389/fpls.2019.00114. PubMed DOI PMC
Mali P., Esvelt K.M., Church G.M. Cas9 as a versatile tool for engineering biology. Nat. Methods. 2013;10:957–963. doi: 10.1038/nmeth.2649. PubMed DOI PMC
Bortesi L., Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 2015;33:41–52. doi: 10.1016/j.biotechadv.2014.12.006. PubMed DOI
Gaj T., Gersbach C.A., Barbas Iii C.F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405. doi: 10.1016/j.tibtech.2013.04.004. PubMed DOI PMC
Lozano-Juste J., Cutler S.R. Plant genome engineering in full bloom. Trends Plant Sci. 2014;19:284–287. doi: 10.1016/j.tplants.2014.02.014. PubMed DOI
Jiang W.Z., Henry I.M., Lynagh P.G., Comai L., Cahoon E.B., Weeks D.P. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol. J. 2017;15:648–657. doi: 10.1111/pbi.12663. PubMed DOI PMC
Mohanta T.K., Bashir T., Hashem A., Abd_Allah E.F., Bae H. Genome editing tools in plants. Genes. 2017;8:399. doi: 10.3390/genes8120399. PubMed DOI PMC
Vats S., Kumawat S., Kumar V., Patil G.B., Joshi T., Sonah H., Sharma T.R., Deshmukh R. Genome editing in plants: Exploration of technological advancements and challenges. Cells. 2019;8:1386. doi: 10.3390/cells8111386. PubMed DOI PMC
Bannikov A.V., Lavrov A.V. CRISPR/CAS9, the king of genome editing tools. Mol. Biol. 2017;51:514–525. doi: 10.1134/S0026893317040033. PubMed DOI
Karimian A., Azizian K., Parsian H., Rafieian S., Shafiei-Irannejad V., Kheyrollah M., Yousefi M., Majidinia M., Yousefi B. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J. Cell. Physiol. 2019;234:12267–12277. doi: 10.1002/jcp.27972. PubMed DOI
Nussenzweig P.M., Marraffini L.A. Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria. Annu. Rev. Genet. 2020;54:93–120. doi: 10.1146/annurev-genet-022120-112523. PubMed DOI
Murugan K., Babu K., Sundaresan R., Rajan R., Sashital D.G. The revolution continues: Newly discovered systems expand the CRISPR-Cas toolkit. Mol. Cell. 2017;68:15–25. doi: 10.1016/j.molcel.2017.09.007. PubMed DOI PMC
Steinert J., Schiml S., Fauser F., Puchta H. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J. 2015;84:1295–1305. doi: 10.1111/tpj.13078. PubMed DOI
Zetsche B., Gootenberg J.S., Abudayyeh O.O., Slaymaker I.M., Makarova K.S., Essletzbichler P., Volz S.E., Joung J., Van Der Oost J., Regev A. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163:759–771. doi: 10.1016/j.cell.2015.09.038. PubMed DOI PMC
Zetsche B., Heidenreich M., Mohanraju P., Fedorova I., Kneppers J., DeGennaro E.M., Winblad N., Choudhury S.R., Abudayyeh O.O., Gootenberg J.S. Erratum: Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat. Biotechnol. 2017;35:178. doi: 10.1038/nbt0217-178b. PubMed DOI
Mitsunobu H., Teramoto J., Nishida K., Kondo A. Beyond native Cas9: Manipulating genomic information and function. Trends Biotechnol. 2017;35:983–996. doi: 10.1016/j.tibtech.2017.06.004. PubMed DOI
Nishimasu H., Shi X., Ishiguro S., Gao L., Hirano S., Okazaki S., Noda T., Abudayyeh O.O., Gootenberg J.S., Mori H. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 2018;361:1259–1262. doi: 10.1126/science.aas9129. PubMed DOI PMC
Endo M., Mikami M., Endo A., Kaya H., Itoh T., Nishimasu H., Nureki O., Toki S. Genome editing in plants by engineered CRISPR–Cas9 recognizing NG PAM. Nat. Plants. 2019;5:14–17. doi: 10.1038/s41477-018-0321-8. PubMed DOI
Mao Y., Botella J.R., Liu Y., Zhu J.K. Gene editing in plants: Progress and challenges. Natl. Sci. Rev. 2019;6:421–437. doi: 10.1093/nsr/nwz005. PubMed DOI PMC
Baltes N.J., Gil-Humanes J., Cermak T., Atkins P.A., Voytas D.F. DNA replicons for plant genome engineering. Plant Cell. 2014;26:151–163. doi: 10.1105/tpc.113.119792. PubMed DOI PMC
Lin S., Staahl B., Alla R.K., Doudna J.A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766. doi: 10.7554/eLife.04766. PubMed DOI PMC
Zheng X., Qi C., Yang L., Quan Q., Liu B., Zhong Z., Tang X., Fan T., Zhou J., Zhang Y. The Improvement of CRISPR-Cas9 system With Ubiquitin-Associated Domain Fusion for Efficient Plant Genome Editing. Front. Plant Sci. 2020;11:621. doi: 10.3389/fpls.2020.00621. PubMed DOI PMC
Wolabu T.W., Park J., Chen M., Cong L., Ge Y., Jiang Q., Debnath S., Li G., Wen J., Wang Z. Improving the genome editing efficiency of CRISPR/Cas9 in Arabidopsis and Medicago truncatula. Planta. 2020;252:15. doi: 10.1007/s00425-020-03415-0. PubMed DOI PMC
Bortesi L., Zhu C., Zischewski J., Perez L., Bassié L., Nadi R., Forni G., Lade S.B., Soto E., Jin X. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol. J. 2016;14:2203–2216. doi: 10.1111/pbi.12634. PubMed DOI PMC
Abdelrahman M., Al-Sadi A.M., Pour-Aboughadareh A., Burritt D.J., Tran L.-S.P. Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol. Biochem. 2018;131:31–36. doi: 10.1016/j.plaphy.2018.03.012. PubMed DOI
Ron M., Kajala K., Pauluzzi G., Wang D., Reynoso M.A., Zumstein K., Garcha J., Winte S., Masson H., Inagaki S. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 2014;166:455–469. doi: 10.1104/pp.114.239392. PubMed DOI PMC
Lloyd A.H., Wang D., Timmis J.N. Single molecule PCR reveals similar patterns of non-homologous DSB repair in tobacco and Arabidopsis. PLoS ONE. 2012;7:e32255. doi: 10.1371/journal.pone.0032255. PubMed DOI PMC
Lawrenson T., Harwood W.A. Barley. Springer; Amsterdam, The Netherlands: 2019. Creating targeted gene knockouts in barley using CRISPR/Cas9; pp. 217–232. PubMed
Manova V., Gruszka D. DNA damage and repair in plants–from models to crops. Front. Plant Sci. 2015;6:885. doi: 10.3389/fpls.2015.00885. PubMed DOI PMC
Nambiar T.S., Billon P., Diedenhofen G., Hayward S.B., Taglialatela A., Cai K., Huang J.-W., Leuzzi G., Cuella-Martin R., Palacios A. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-11105-z. PubMed DOI PMC
Puchta H. The repair of double-strand breaks in plants: Mechanisms and consequences for genome evolution. J. Exp. Bot. 2005;56:1–14. doi: 10.1093/jxb/eri025. PubMed DOI
Miki D., Zhang W., Zeng W., Feng Z., Zhu J.-K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat. Commun. 2018;9:1–9. doi: 10.1038/s41467-018-04416-0. PubMed DOI PMC
Wolter F., Klemm J., Puchta H. Efficient in planta gene targeting in Arabidopsis using egg cell-specific expression of the Cas9 nuclease of Staphylococcus aureus. Plant J. 2018;94:735–746. doi: 10.1111/tpj.13893. PubMed DOI
Begemann M.B., Gray B.N., January E., Gordon G.C., He Y., Liu H., Wu X., Brutnell T.P., Mockler T.C., Oufattole M. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci. Rep. 2017;7:1–6. doi: 10.1038/s41598-017-11760-6. PubMed DOI PMC
Wang M., Mao Y., Lu Y., Tao X., Zhu J.-k. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol. Plant. 2017;10:1011–1013. doi: 10.1016/j.molp.2017.03.001. PubMed DOI
Li J., Zhang X., Sun Y., Zhang J., Du W., Guo X., Li S., Zhao Y., Xia L. Efficient allelic replacement in rice by gene editing: A case study of the NRT1. 1B gene. J. Integr. Plant Biol. 2018;60:536–540. doi: 10.1111/jipb.12650. PubMed DOI
Svitashev S., Schwartz C., Lenderts B., Young J.K., Cigan A.M. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 2016;7:1–7. doi: 10.1038/ncomms13274. PubMed DOI PMC
Li Z., Liu Z.-B., Xing A., Moon B.P., Koellhoffer J.P., Huang L., Ward R.T., Clifton E., Falco S.C., Cigan A.M. Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 2015;169:960–970. doi: 10.1104/pp.15.00783. PubMed DOI PMC
Gil-Humanes J., Wang Y., Liang Z., Shan Q., Ozuna C.V., Sánchez-León S., Baltes N.J., Starker C., Barro F., Gao C. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 2017;89:1251–1262. doi: 10.1111/tpj.13446. PubMed DOI PMC
Butler N.M., Douches D.S. Sequence-specific nucleases for genetic improvement of potato. Am. J. Potato Res. 2016;93:303–320. doi: 10.1007/s12230-016-9513-9. DOI
Gasparis S., Kała M., Przyborowski M., Łyżnik L.A., Orczyk W., Nadolska-Orczyk A. A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.) Plant Methods. 2018;14:1–14. doi: 10.1186/s13007-018-0382-8. PubMed DOI PMC
Li J.-F., Norville J.E., Aach J., McCormack M., Zhang D., Bush J., Church G.M., Sheen J. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 2013;31:688–691. doi: 10.1038/nbt.2654. PubMed DOI PMC
Li C., Unver T., Zhang B. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.) Sci. Rep. 2017;7:1–10. doi: 10.1038/srep43902. PubMed DOI PMC
Sauer N.J., Mozoruk J., Miller R.B., Warburg Z.J., Walker K.A., Beetham P.R., Schöpke C.R., Gocal G.F.W. Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnol. J. 2016;14:496–502. doi: 10.1111/pbi.12496. PubMed DOI PMC
Zhao Y., Zhang C., Liu W., Gao W., Liu C., Song G., Li W.-X., Mao L., Chen B., Xu Y. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep23890. PubMed DOI PMC
Nishizawa-Yokoi A., Endo M., Ohtsuki N., Saika H., Toki S. Precision genome editing in plants via gene targeting and piggy B ac-mediated marker excision. Plant J. 2015;81:160–168. doi: 10.1111/tpj.12693. PubMed DOI PMC
Čermák T., Curtin S.J., Gil-Humanes J., Čegan R., Kono T.J.Y., Konečná E., Belanto J.J., Starker C.G., Mathre J.W., Greenstein R.L. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell. 2017;29:1196–1217. doi: 10.1105/tpc.16.00922. PubMed DOI PMC
Butt H., Eid A., Ali Z., Atia M.A.M., Mokhtar M.M., Hassan N., Lee C.M., Bao G., Mahfouz M.M. Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front. Plant Sci. 2017;8:1441. doi: 10.3389/fpls.2017.01441. PubMed DOI PMC
Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–424. doi: 10.1038/nature17946. PubMed DOI PMC
Mushtaq M., Bhat J.A., Mir Z.A., Sakina A., Ali S., Singh A.K., Tyagi A., Salgotra R.K., Dar A.A., Bhat R. CRISPR/Cas approach: A new way of looking at plant-abiotic interactions. J. Plant Physiol. 2018;224:156–162. doi: 10.1016/j.jplph.2018.04.001. PubMed DOI
Lo A., Qi L. Genetic and epigenetic control of gene expression by CRISPR–Cas systems. F1000Research. 2017;6 doi: 10.12688/f1000research.11113.1. PubMed DOI PMC
Lowder L.G., Zhang D., Baltes N.J., Paul J.W., Tang X., Zheng X., Voytas D.F., Hsieh T.-F., Zhang Y., Qi Y. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 2015;169:971–985. doi: 10.1104/pp.15.00636. PubMed DOI PMC
Chen B., Gilbert L.A., Cimini B.A., Schnitzbauer J., Zhang W., Li G.-W., Park J., Blackburn E.H., Weissman J.S., Qi L.S. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013;155:1479–1491. doi: 10.1016/j.cell.2013.12.001. PubMed DOI PMC
Dreissig S., Schiml S., Schindele P., Weiss O., Rutten T., Schubert V., Gladilin E., Mette M.F., Puchta H., Houben A. Live-cell CRISPR imaging in plants reveals dynamic telomere movements. Plant J. 2017;91:565–573. doi: 10.1111/tpj.13601. PubMed DOI PMC
Duan J., Lu G., Hong Y., Hu Q., Mai X., Guo J., Si X., Wang F., Zhang Y. Live imaging and tracking of genome regions in CRISPR/dCas9 knock-in mice. Genome Biol. 2018;19:1–7. doi: 10.1186/s13059-018-1530-1. PubMed DOI PMC
Dominguez A.A., Lim W.A., Qi L.S. Beyond editing: Repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 2016;17:5. doi: 10.1038/nrm.2015.2. PubMed DOI PMC
Arora L., Narula A. Gene editing and crop improvement using CRISPR-Cas9 system. Front. Plant Sci. 2017;8:1932. doi: 10.3389/fpls.2017.01932. PubMed DOI PMC
Malzahn A., Lowder L., Qi Y. Plant genome editing with TALEN and CRISPR. Cell Biosci. 2017;7:1–18. doi: 10.1186/s13578-017-0148-4. PubMed DOI PMC
Rodríguez-Leal D., Lemmon Z.H., Man J., Bartlett M.E., Lippman Z.B. Engineering quantitative trait variation for crop improvement by genome editing. Cell. 2017;171:470–480. doi: 10.1016/j.cell.2017.08.030. PubMed DOI
McGillivray P., Ault R., Pawashe M., Kitchen R., Balasubramanian S., Gerstein M. A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucleic Acids Res. 2018;46:3326–3338. doi: 10.1093/nar/gky188. PubMed DOI PMC
Mao Y., Zhang Z., Feng Z., Wei P., Zhang H., Botella J.R., Zhu J.K. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol. J. 2016;14:519–532. doi: 10.1111/pbi.12468. PubMed DOI PMC
Sanford J.C. Biolistic plant transformation. Physiol. Plant. 1990;79:206–209. doi: 10.1111/j.1399-3054.1990.tb05888.x. DOI
Husaini A.M., Abdin M.Z., Parray G.A., Sanghera G.S., Murtaza I., Alam T., Srivastava D.K., Farooqi H., Khan H.N. Vehicles and ways for efficient nuclear transformation in plants. Gm Crop. 2010;1:276–287. doi: 10.4161/gmcr.1.5.14660. PubMed DOI
Lacroix B., Citovsky V. Pathways of DNA transfer to plants from Agrobacterium tumefaciens and related bacterial species. Annu. Rev. Phytopathol. 2019;57:231–251. doi: 10.1146/annurev-phyto-082718-100101. PubMed DOI PMC
Kujur S., Senthil-Kumar M., Kumar R. Plant viral vectors: Expanding the Possibilities of Precise Gene Editing in Plant Genomes. Plant Cell Rep. 2021;17:1–4. PubMed
Yang N.-S., Christou P. Particle Bombardment Technology for Gene Transfer. Oxford University Press; Oxford, UK: 1994.
Christou P. Transformation technology. Trends Plant Sci. 1996;1:423–431. doi: 10.1016/S1360-1385(96)10047-9. DOI
Porta C., Lomonossoff G.P. Viruses as vectors for the expression of foreign sequences in plants. Biotechnol. Genet. Eng. Rev. 2002;19:245–292. doi: 10.1080/02648725.2002.10648031. PubMed DOI
Roy I., Mitra S., Maitra A., Mozumdar S. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int. J. Pharm. 2003;250:25–33. doi: 10.1016/S0378-5173(02)00452-0. PubMed DOI
Manghwar H., Lindsey K., Zhang X., Jin S. CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends Plant Sci. 2019;24:1102–1125. doi: 10.1016/j.tplants.2019.09.006. PubMed DOI
Mookkan M., Nelson-Vasilchik K., Hague J., Zhang Z.J., Kausch A.P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep. 2017;36:1477–1491. doi: 10.1007/s00299-017-2169-1. PubMed DOI PMC
Lozano-Durán R. Geminiviruses for biotechnology: The art of parasite taming. New Phytol. 2016;210:58–64. doi: 10.1111/nph.13564. PubMed DOI
Zaidi S.S.-E.-A., Mansoor S. Viral vectors for plant genome engineering. Front. Plant Sci. 2017;8:539. doi: 10.3389/fpls.2017.00539. PubMed DOI PMC
Liu Y., Gao Y., Gao Y., Zhang Q. Targeted deletion of floral development genes in Arabidopsis with CRISPR/Cas9 using the RNA endoribonuclease Csy4 processing system. Hortic. Res. 2019;6:1–10. doi: 10.1038/s41438-019-0179-6. PubMed DOI PMC
Martin-Ortigosa S., Wang K. Proteolistics: A biolistic method for intracellular delivery of proteins. Transgenic Res. 2014;23:743–756. doi: 10.1007/s11248-014-9807-y. PubMed DOI
Bilang R., Klöti A., Schrott M., Potrykus I. Plant Molecular Biology Manual. Springer; Berlin/Heidelberg, Germany: 1994. PEG-mediated direct gene transfer and electroporation; pp. 1–16.
Roest S., Gilissen L.J.W. Plant regeneration from protoplasts: A literature review. Acta Bot. Neerl. 1989;38:1–23. doi: 10.1111/j.1438-8677.1989.tb01907.x. DOI
Roest S., Gilissen L.J.W. Regeneration from protoplasts—A supplementary literature review. Acta Bot. Neerl. 1993;42:1–23. doi: 10.1111/j.1438-8677.1993.tb00674.x. DOI
Yin X., Biswal A.K., Dionora J., Perdigon K.M., Balahadia C.P., Mazumdar S., Chater C., Lin H.-C., Coe R.A., Kretzschmar T. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep. 2017;36:745–757. doi: 10.1007/s00299-017-2118-z. PubMed DOI
Nakade S., Yamamoto T., Sakuma T. Cas9, Cpf1 and C2c1/2/3―What’s next? Bioengineered. 2017;8:265–273. doi: 10.1080/21655979.2017.1282018. PubMed DOI PMC
Kaya H., Mikami M., Endo A., Endo M., Toki S. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci. Rep. 2016;6:1–9. doi: 10.1038/srep26871. PubMed DOI PMC
Langner T., Kamoun S., Belhaj K. CRISPR crops: Plant genome editing toward disease resistance. Annu. Rev. Phytopathol. 2018;56:479–512. doi: 10.1146/annurev-phyto-080417-050158. PubMed DOI
Maresca M., Lin V.G., Guo N., Yang Y. Obligate ligation-gated recombination (ObLiGaRe): Custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. 2013;23:539–546. doi: 10.1101/gr.145441.112. PubMed DOI PMC
Tang X., Lowder L.G., Zhang T., Malzahn A.A., Zheng X., Voytas D.F., Zhong Z., Chen Y., Ren Q., Li Q. A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants. 2017;3:1–5. PubMed
Lowder L., Malzahn A., Qi Y. Rapid evolution of manifold CRISPR systems for plant genome editing. Front. Plant Sci. 2016;7:1683. doi: 10.3389/fpls.2016.01683. PubMed DOI PMC
Zhang D., Zhang H., Li T., Chen K., Qiu J.-L., Gao C. Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biol. 2017;18:1–7. doi: 10.1186/s13059-017-1325-9. PubMed DOI PMC
Aman R., Ali Z., Butt H., Mahas A., Aljedaani F., Khan M.Z., Ding S., Mahfouz M. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol. 2018;19:1–9. doi: 10.1186/s13059-017-1381-1. PubMed DOI PMC
Krenek P., Samajova O., Luptovciak I., Doskocilova A., Komis G., Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol. Adv. 2015;33:1024–1042. doi: 10.1016/j.biotechadv.2015.03.012. PubMed DOI
Hwang H.-H., Yu M., Lai E.-M. Agrobacterium-mediated plant transformation: Biology and applications. Arab. Book. 2017;15:e0186. doi: 10.1199/tab.0186. PubMed DOI PMC
Nekrasov V., Staskawicz B., Weigel D., Jones J.D.G., Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31:691–693. doi: 10.1038/nbt.2655. PubMed DOI
Chen L., Li W., Katin-Grazzini L., Ding J., Gu X., Li Y., Gu T., Wang R., Lin X., Deng Z. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Hortic. Res. 2018;5:1–12. doi: 10.1038/s41438-018-0023-4. PubMed DOI PMC
Zhang Y., Liang Z., Zong Y., Wang Y., Liu J., Chen K., Qiu J.-L., Gao C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016;7:1–8. doi: 10.1038/ncomms12617. PubMed DOI PMC
Kim S., Kim D., Cho S.W., Kim J., Kim J.-S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24:1012–1019. doi: 10.1101/gr.171322.113. PubMed DOI PMC
Yubing H.E., Min Z.H.U., Lihao W., Junhua W.U., Qiaoyan W., Rongchen W., Yunde Z. Improvements of TKC technology accelerate isolation of transgene-free CRISPR/Cas9-edited rice plants. Rice Sci. 2019;26:109–117. doi: 10.1016/j.rsci.2018.11.001. DOI
Metje-Sprink J., Menz J., Modrzejewski D., Sprink T. DNA-free genome editing: Past, present and future. Front. Plant Sci. 2019;9:1957. doi: 10.3389/fpls.2018.01957. PubMed DOI PMC
Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., Liu J., Zhang H., Liu C., Ran Y. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 2017;8:1–5. doi: 10.1038/ncomms14261. PubMed DOI PMC
Woo J.W., Kim J., Kwon S.I., Corvalán C., Cho S.W., Kim H., Kim S.-G., Kim S.-T., Choe S., Kim J.-S. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 2015;33:1162–1164. doi: 10.1038/nbt.3389. PubMed DOI
Lowe K., Wu E., Wang N., Hoerster G., Hastings C., Cho M.-J., Scelonge C., Lenderts B., Chamberlin M., Cushatt J. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell. 2016;28:1998–2015. doi: 10.1105/tpc.16.00124. PubMed DOI PMC
Toda E., Koiso N., Takebayashi A., Ichikawa M., Kiba T., Osakabe K., Osakabe Y., Sakakibara H., Kato N., Okamoto T. An efficient DNA-and selectable-marker-free genome-editing system using zygotes in rice. Nat. Plants. 2019;5:363–368. doi: 10.1038/s41477-019-0386-z. PubMed DOI
Stoddard T.J., Clasen B.M., Baltes N.J., Demorest Z.L., Voytas D.F., Zhang F., Luo S. Targeted mutagenesis in plant cells through transformation of sequence-specific nuclease mRNA. PLoS ONE. 2016;11:e0154634. doi: 10.1371/journal.pone.0154634. PubMed DOI PMC
Baek K., Kim D.H., Jeong J., Sim S.J., Melis A., Kim J.-S., Jin E., Bae S. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 2016;6:1–7. doi: 10.1038/srep30620. PubMed DOI PMC
Gan S.Y., Maggs C.A. Random mutagenesis and precise gene editing technologies: Applications in algal crop improvement and functional genomics. Eur. J. Phycol. 2017;52:466–481. doi: 10.1080/09670262.2017.1358827. DOI
Malnoy M., Viola R., Jung M.-H., Koo O.-J., Kim S., Kim J.-S., Velasco R., Nagamangala Kanchiswamy C. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front. Plant Sci. 2016;7:1904. doi: 10.3389/fpls.2016.01904. PubMed DOI PMC
Subburaj S., Chung S.J., Lee C., Ryu S.-M., Kim D.H., Kim J.-S., Bae S., Lee G.-J. Site-directed mutagenesis in Petunia× hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep. 2016;35:1535–1544. doi: 10.1007/s00299-016-1937-7. PubMed DOI
Ferenczi A., Pyott D.E., Xipnitou A., Molnar A. Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proc. Natl. Acad. Sci. USA. 2017;114:13567–13572. doi: 10.1073/pnas.1710597114. PubMed DOI PMC
Montecillo J.A.V., Chu L.L., Bae H. CRISPR-Cas9 system for plant genome editing: Current approaches and emerging developments. Agronomy. 2020;10:1033. doi: 10.3390/agronomy10071033. DOI
Kim H., Kim S.-T., Ryu J., Kang B.-C., Kim J.-S., Kim S.-G. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 2017;8:1–7. doi: 10.1038/ncomms14406. PubMed DOI PMC
Liang Z., Chen K., Zhang Y., Liu J., Yin K., Qiu J.-L., Gao C. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat. Protoc. 2018;13:413. doi: 10.1038/nprot.2017.145. PubMed DOI
Afzal S., Sirohi P., Singh N.K. A review of CRISPR associated genome engineering: Application, advances and future prospects of genome targeting tool for crop improvement. Biotechnol. Lett. 2020;42:1611–1632. doi: 10.1007/s10529-020-02950-w. PubMed DOI
Liang Z., Zhang K., Chen K., Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genom. 2014;41:63–68. doi: 10.1016/j.jgg.2013.12.001. PubMed DOI
Lu Y., Ye X., Guo R., Huang J., Wang W., Tang J., Tan L., Zhu J.-k., Chu C., Qian Y. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Mol. Plant. 2017;10:1242–1245. doi: 10.1016/j.molp.2017.06.007. PubMed DOI
Wang P., Lombi E., Zhao F.-J., Kopittke P.M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 2016;21:699–712. doi: 10.1016/j.tplants.2016.04.005. PubMed DOI
Doyle C., Higginbottom K., Swift T.A., Winfield M., Bellas C., Benito-Alifonso D., Fletcher T., Galan M.C., Edwards K., Whitney H.M. A simple method for spray-on gene editing in planta. [(accessed on 20 March 2021)];bioRxiv. 2019 :805036. Available online: https://www.biorxiv.org/content/10.1101/805036v2.abstract. DOI
Scherer F., Anton M., Schillinger U., Henke J., Bergemann C., Krüger A., Gänsbacher B., Plank C. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9:102–109. doi: 10.1038/sj.gt.3301624. PubMed DOI
Dobson J. Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Ther. 2006;13:283–287. doi: 10.1038/sj.gt.3302720. PubMed DOI
Jat S.K., Bhattacharya J., Sharma M.K. Nanomaterial based gene delivery: A promising method for plant genome engineering. J. Mater. Chem. B. 2020;8:4165–4175. doi: 10.1039/D0TB00217H. PubMed DOI
Zhao X., Meng Z., Wang Y., Chen W., Sun C., Cui B., Cui J., Yu M., Zeng Z., Guo S. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat. Plants. 2017;3:956–964. doi: 10.1038/s41477-017-0063-z. PubMed DOI
Vejlupkova Z., Warman C., Sharma R., Scheller H.V., Mortimer J.C., Fowler J.E. No evidence for transient transformation via pollen magnetofaction in several monocot species. Nat. Plants. 2020;6:1323–1324. doi: 10.1038/s41477-020-00798-6. PubMed DOI
Chandrasekaran R., Rajiv P., Abd-Elsalam K.A. Carbon Nanomaterials for Agri-Food and Environmental Applications. Elsevier; Amsterdam, The Netherlands: 2020. Carbon nanotubes: Plant gene delivery and genome editing; pp. 279–296.
Demirer G.S., Zhang H., Matos J.L., Goh N.S., Cunningham F.J., Sung Y., Chang R., Aditham A.J., Chio L., Cho M.-J. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 2019;14:456–464. doi: 10.1038/s41565-019-0382-5. PubMed DOI PMC
Kwak S.-Y., Lew T.T.S., Sweeney C.J., Koman V.B., Wong M.H., Bohmert-Tatarev K., Snell K.D., Seo J.S., Chua N.-H., Strano M.S. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 2019;14:447–455. doi: 10.1038/s41565-019-0375-4. PubMed DOI
Ghaghelestany A.B., Jahanbakhshi A., Taghinezhad E. Gene transfer to German chamomile (L chamomilla M) using cationic carbon nanotubes. Sci. Hortic. 2020;263:109106. doi: 10.1016/j.scienta.2019.109106. DOI
Demirer G.S., Zhang H., Goh N.S., González-Grandío E., Landry M.P. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants. Nat. Protoc. 2019;14:2954–2971. doi: 10.1038/s41596-019-0208-9. PubMed DOI PMC
Sanzari I., Leone A., Ambrosone A. Nanotechnology in plant science: To make a long story short. Front. Bioeng. Biotechnol. 2019;7:120. doi: 10.3389/fbioe.2019.00120. PubMed DOI PMC
Gao X., Chen J., Dai X., Zhang D., Zhao Y. An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol. 2016;171:1794–1800. doi: 10.1104/pp.16.00663. PubMed DOI PMC
Tang X., Liu G., Zhou J., Ren Q., You Q., Tian L., Xin X., Zhong Z., Liu B., Zheng X. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 2018;19:1–13. doi: 10.1186/s13059-018-1458-5. PubMed DOI PMC
Guo J., Li K., Jin L., Xu R., Miao K., Yang F., Qi C., Zhang L., Botella J.R., Wang R. A simple and cost-effective method for screening of CRISPR/Cas9-induced homozygous/biallelic mutants. Plant Methods. 2018;14:1–10. doi: 10.1186/s13007-018-0305-8. PubMed DOI PMC
Zheng X., Yang S., Zhang D., Zhong Z., Tang X., Deng K., Zhou J., Qi Y., Zhang Y. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Rep. 2016;35:1545–1554. doi: 10.1007/s00299-016-1967-1. PubMed DOI
Grohmann L., Keilwagen J., Duensing N., Dagand E., Hartung F., Wilhelm R., Bendiek J., Sprink T. Detection and identification of genome editing in plants: Challenges and opportunities. Front. Plant Sci. 2019;10:236. doi: 10.3389/fpls.2019.00236. PubMed DOI PMC
Zischewski J., Fischer R., Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol. Adv. 2017;35:95–104. doi: 10.1016/j.biotechadv.2016.12.003. PubMed DOI
Yu H., Zhao Y. Plant Genome Editing with CRISPR Systems. Springer; Berlin/Heidelberg, Germany: 2019. Fluorescence marker-assisted isolation of Cas9-free and CRISPR-edited Arabidopsis plants; pp. 147–154. PubMed
Chang Z., Chen Z., Wang N., Xie G., Lu J., Yan W., Zhou J., Tang X., Deng X.W. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc. Natl. Acad. Sci. USA. 2016;113:14145–14150. doi: 10.1073/pnas.1613792113. PubMed DOI PMC
He Y., Zhao Y. Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. aBIOTECH. 2020;1:88–96. doi: 10.1007/s42994-019-00013-x. PubMed DOI PMC
Tang T., Yu X., Yang H., Gao Q., Ji H., Wang Y., Yan G., Peng Y., Luo H., Liu K. Development and validation of an effective CRISPR/Cas9 vector for efficiently isolating positive transformants and transgene-free mutants in a wide range of plant species. Front. Plant Sci. 2018;9:1533. doi: 10.3389/fpls.2018.01533. PubMed DOI PMC
He Y., Zhu M., Wang L., Wu J., Wang Q., Wang R., Zhao Y. Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol. Plant. 2018;11:1210–1213. doi: 10.1016/j.molp.2018.05.005. PubMed DOI
Yu C., Wang L., Xu S., Zeng Y., He C., Chen C., Huang W., Zhu Y., Hu J. Mitochondrial ORFH79 is essential for drought and salt tolerance in rice. Plant Cell Physiol. 2015;56:2248–2258. doi: 10.1093/pcp/pcv137. PubMed DOI
McElroy D., Zhang W., Cao J., Wu R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell. 1990;2:163–171. PubMed PMC
Gao Y., Zhao Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 2014;56:343–349. doi: 10.1111/jipb.12152. PubMed DOI
Yoshioka S., Fujii W., Ogawa T., Sugiura K., Naito K. Development of a mono-promoter-driven CRISPR/Cas9 system in mammalian cells. Sci. Rep. 2015;5:1–8. doi: 10.1038/srep18341. PubMed DOI PMC
Tang X., Zheng X., Qi Y., Zhang D., Cheng Y., Tang A., Voytas D.F., Zhang Y. A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol. Plant. 2016;9:1088–1091. doi: 10.1016/j.molp.2016.05.001. PubMed DOI
Xie K., Minkenberg B., Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA. 2015;112:3570–3575. doi: 10.1073/pnas.1420294112. PubMed DOI PMC
Shi J., Gao H., Wang H., Lafitte H.R., Archibald R.L., Yang M., Hakimi S.M., Mo H., Habben J.E. ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 2017;15:207–216. doi: 10.1111/pbi.12603. PubMed DOI PMC
Ali Z., Abul-Faraj A., Piatek M., Mahfouz M.M. Activity and specificity of TRV-mediated gene editing in plants. Plant Signal. Behav. 2015;10:e1044191. doi: 10.1080/15592324.2015.1044191. PubMed DOI PMC
Molla K.A., Yang Y. CRISPR/Cas-mediated base editing: Technical considerations and practical applications. Trends Biotechnol. 2019;37:1121–1142. doi: 10.1016/j.tibtech.2019.03.008. PubMed DOI
Chen Y., Wang Z., Ni H., Xu Y., Chen Q., Jiang L. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci. China Life Sci. 2017;60:520–523. doi: 10.1007/s11427-017-9021-5. PubMed DOI
Lu H.P., Liu S.M., Xu S.L., Chen W.Y., Zhou X., Tan Y.Y., Huang J.Z., Shu Q.Y. CRISPR-S: An active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants. Plant Biotechnol. J. 2017;15:1371. doi: 10.1111/pbi.12788. PubMed DOI PMC
Zong Y., Wang Y., Li C., Zhang R., Chen K., Ran Y., Qiu J.-L., Wang D., Gao C. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 2017;35:438–440. doi: 10.1038/nbt.3811. PubMed DOI
Shimatani Z., Fujikura U., Ishii H., Matsui Y., Suzuki M., Ueke Y., Taoka K.-i., Terada R., Nishida K., Kondo A. Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiol. Biochem. 2018;131:78–83. doi: 10.1016/j.plaphy.2018.04.028. PubMed DOI
Ren B., Yan F., Kuang Y., Li N., Zhang D., Zhou X., Lin H., Zhou H. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol. Plant. 2018;11:623–626. doi: 10.1016/j.molp.2018.01.005. PubMed DOI
Li J., Zhang H., Si X., Tian Y., Chen K., Liu J., Chen H., Gao C. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J. Genet. Genom. Yi Chuan Xue Bao. 2017;44:465–468. doi: 10.1016/j.jgg.2017.02.002. PubMed DOI
Yan W., Chen D., Kaufmann K. Efficient multiplex mutagenesis by RNA-guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene. Plant Methods. 2016;12:1–9. doi: 10.1186/s13007-016-0125-7. PubMed DOI PMC
Kang B.-C., Yun J.-Y., Kim S.-T., Shin Y., Ryu J., Choi M., Woo J.W., Kim J.-S. Precision genome engineering through adenine base editing in plants. Nat. Plants. 2018;4:427–431. doi: 10.1038/s41477-018-0178-x. PubMed DOI
Hua K., Tao X., Yuan F., Wang D., Zhu J.-K. Precise A· T to G·C base editing in the rice genome. Mol. Plant. 2018;11:627–630. doi: 10.1016/j.molp.2018.02.007. PubMed DOI
Zhang D., Zhang Z., Unver T., Zhang B. CRISPR/Cas: A powerful tool for gene function study and crop improvement. J. Adv. Res. 2020;29:207–221. doi: 10.1016/j.jare.2020.10.003. PubMed DOI PMC
Zong Y., Song Q., Li C., Jin S., Zhang D., Wang Y., Qiu J.-L., Gao C. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 2018;36:950–953. doi: 10.1038/nbt.4261. PubMed DOI
Li J., Sun Y., Du J., Zhao Y., Xia L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant. 2017;10:526–529. doi: 10.1016/j.molp.2016.12.001. PubMed DOI
Li C., Zong Y., Wang Y., Jin S., Zhang D., Song Q., Zhang R., Gao C. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 2018;19:1–9. doi: 10.1186/s13059-018-1443-z. PubMed DOI PMC
Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A T to G C in genomic DNA without DNA cleavage. Nature. 2017;551:464–471. doi: 10.1038/nature24644. PubMed DOI PMC
Liu Z., Chen M., Chen S., Deng J., Song Y., Lai L., Li Z. Highly efficient RNA-guided base editing in rabbit. Nat. Commun. 2018;9:1–10. doi: 10.1038/s41467-018-05232-2. PubMed DOI PMC
Ryu S.-M., Koo T., Kim K., Lim K., Baek G., Kim S.-T., Kim H.S., Kim D.-e., Lee H., Chung E. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 2018;36:536–539. doi: 10.1038/nbt.4148. PubMed DOI
Cheng H., Hao M., Ding B., Mei D., Wang W., Wang H., Zhou R., Liu J., Li C., Hu Q. Base editing with high efficiency in allotetraploid oilseed rape by A3A-PBE system. Plant Biotechnol. J. 2021;19:87. doi: 10.1111/pbi.13444. PubMed DOI PMC
Cox D.B.T., Gootenberg J.S., Abudayyeh O.O., Franklin B., Kellner M.J., Joung J., Zhang F. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–1027. doi: 10.1126/science.aaq0180. PubMed DOI PMC
Rees H.A., Wilson C., Doman J.L., Liu D.R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 2019;5:eaax5717. doi: 10.1126/sciadv.aax5717. PubMed DOI PMC
Abudayyeh O.O., Gootenberg J.S., Konermann S., Joung J., Slaymaker I.M., Cox D.B.T., Shmakov S., Makarova K.S., Semenova E., Minakhin L. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353:aaf5573. doi: 10.1126/science.aaf5573. PubMed DOI PMC
Xue C., Zhang H., Lin Q., Fan R., Gao C. Manipulating mRNA splicing by base editing in plants. Sci. China Life Sci. 2018;61:1293–1300. doi: 10.1007/s11427-018-9392-7. PubMed DOI
Li Z., Xiong X., Wang F., Liang J., Li J.F. Gene disruption through base editing-induced messenger RNA missplicing in plants. New Phytol. 2019;222:1139–1148. doi: 10.1111/nph.15647. PubMed DOI
Jacob P., Avni A., Bendahmane A. Translational research: Exploring and creating genetic diversity. Trends Plant Sci. 2018;23:42–52. doi: 10.1016/j.tplants.2017.10.002. PubMed DOI
Harris C.J., Slootweg E.J., Goverse A., Baulcombe D.C. Stepwise artificial evolution of a plant disease resistance gene. Proc. Natl. Acad. Sci. USA. 2013;110:21189–21194. doi: 10.1073/pnas.1311134110. PubMed DOI PMC
Liu C., Zhang L., Liu H., Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control. Release. 2017;266:17–26. doi: 10.1016/j.jconrel.2017.09.012. PubMed DOI PMC
Glass Z., Lee M., Li Y., Xu Q. Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol. 2018;36:173–185. doi: 10.1016/j.tibtech.2017.11.006. PubMed DOI PMC
Liu J.-J., Orlova N., Oakes B.L., Ma E., Spinner H.B., Baney K.L.M., Chuck J., Tan D., Knott G.J., Harrington L.B. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. 2019;566:218–223. doi: 10.1038/s41586-019-0908-x. PubMed DOI PMC
Wang J., Meng X., Hu X., Sun T., Li J., Wang K., Yu H. xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnol. J. 2019;17:709. doi: 10.1111/pbi.13053. PubMed DOI PMC
Qin R., Li J., Li H., Zhang Y., Liu X., Miao Y., Zhang X., Wei P. Developing a highly efficient and wildly adaptive CRISPR-SaCas9 toolset for plant genome editing. Plant Biotechnol. J. 2019;17:706. doi: 10.1111/pbi.13047. PubMed DOI PMC
Walton R.T., Christie K.A., Whittaker M.N., Kleinstiver B.P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science. 2020;368:290–296. doi: 10.1126/science.aba8853. PubMed DOI PMC
Ren Q., Sretenovic S., Liu S., Tang X., Huang L., He Y., Liu L., Guo Y., Zhong Z., Liu G. PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nat. Plants. 2021;7:25–33. doi: 10.1038/s41477-020-00827-4. PubMed DOI
Richter M.F., Zhao K.T., Eton E., Lapinaite A., Newby G.A., Thuronyi B.W., Wilson C., Koblan L.W., Zeng J., Bauer D.E. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 2020;38:883–891. doi: 10.1038/s41587-020-0453-z. PubMed DOI PMC
Anzalone A.V., Randolph P.B., Davis J.R., Sousa A.A., Koblan L.W., Levy J.M., Chen P.J., Wilson C., Newby G.A., Raguram A. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–157. doi: 10.1038/s41586-019-1711-4. PubMed DOI PMC
Xu R., Li J., Liu X., Shan T., Qin R., Wei P. Development of plant prime-editing systems for precise genome editing. Plant Commun. 2020;1:100043. doi: 10.1016/j.xplc.2020.100043. PubMed DOI PMC
Lin Q., Zong Y., Xue C., Wang S., Jin S., Zhu Z., Wang Y., Anzalone A.V., Raguram A., Doman J.L. Prime genome editing in rice and wheat. Nat. Biotechnol. 2020;38:582–585. doi: 10.1038/s41587-020-0455-x. PubMed DOI
Chhetri H.B., Macaya-Sanz D., Kainer D., Biswal A.K., Evans L.M., Chen J.G., Collins C., Hunt K., Mohanty S.S., Rosenstiel T., et al. Multitrait genome-wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits. New Phytol. 2019;223:293–309. doi: 10.1111/nph.15777. PubMed DOI
Zhang J., Yang Y., Zheng K., Meng X., Kai F., Sara S.J., Gunter L.E., Ranjan P., Singan V.R., Engle N., et al. Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in Populus. New Phytol. 2018;220:502–516. doi: 10.1111/nph.15297. PubMed DOI
Muchero W., Sondreli K.L., Chen J.G., Urbanowicz B.R., Zhang J., Singan V., Yang Y., Brueggeman R.S., Franco-Coronado J., Abraham N., et al. Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant-pathogen interactions in a tree. Proc. Natl. Acad. Sci. USA. 2018;115:11573–11578. doi: 10.1073/pnas.1804428115. PubMed DOI PMC
Induri B.R., Ellis D.R., Slavov G.T., Yin T., Zhang X., Muchero W., Tuskan G.A., DiFazio S.P. Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. Tree Physiol. 2012;32:626–638. doi: 10.1093/treephys/tps032. PubMed DOI
McNally K.l., Childs K.L., Bohnert R., Davidson R.M., Zhao K., Ulat V.J., Zeller G., Clark R.M., Hoen D.R., Bureau T.E., et al. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc. Natl. Acad. Sci. USA. 2009;106:12273–12278. doi: 10.1073/pnas.0900992106. PubMed DOI PMC