A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants

. 2017 Jun ; 29 (6) : 1196-1217. [epub] 20170518

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28522548

We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A Web-based tool streamlines vector selection and construction. One advantage of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 (Csy4) and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing 12 gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).

Zobrazit více v PubMed

Aeby E., Ullu E., Yepiskoposyan H., Schimanski B., Roditi I., Mühlemann O., Schneider A. (2010). tRNASec is transcribed by RNA polymerase II in Trypanosoma brucei but not in humans. Nucleic Acids Res. 38: 5833–5843. PubMed PMC

Arimbasseri A.G., Rijal K., Maraia R.J. (2013). Transcription termination by the eukaryotic RNA polymerase III. Biochim. Biophys. Acta 1829: 318–330. PubMed PMC

Baltes N.J., Gil-Humanes J., Cermak T., Atkins P.A., Voytas D.F. (2014). DNA replicons for plant genome engineering. Plant Cell 26: 151–163. PubMed PMC

Baltes N.J., Voytas D.F. (2015). Enabling plant synthetic biology through genome engineering. Trends Biotechnol. 33: 120–131. PubMed

Brooks C., Nekrasov V., Lippman Z.B., Van Eck J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166: 1292–1297. PubMed PMC

Canver M.C., Bauer D.E., Dass A., Yien Y.Y., Chung J., Masuda T., Maeda T., Paw B.H., Orkin S.H. (2014). Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 289: 21312–21324. PubMed PMC

Čermák T., Baltes N.J., Čegan R., Zhang Y., Voytas D.F. (2015). High-frequency, precise modification of the tomato genome. Genome Biol. 16: 232. PubMed PMC

Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39: e82. PubMed PMC

Certo M.T., et al. (2012). Coupling endonucleases with DNA end-processing enzymes to drive gene disruption. Nat. Methods 9: 973–975. PubMed PMC

Clasen B.M., et al. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol. J. 14: 169–176. PubMed PMC

Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823. PubMed PMC

Cosson V., Durand P., d’Erfurth I., Kondorosi A., Ratet P. (2006). Medicago truncatula transformation using leaf explants. Methods Mol. Biol. 343: 115–127. PubMed

Curtin S.J., Tiffin P., Guhlin J., Trujillo D.I., Burghart L.T., Atkins P., Baltes N.J., Denny R., Voytas D.F., Stupar R.M., Young N.D. (2017). Validating Genome-Wide Association candidates through quantitative variation in nodulation. Plant Physiol. 173: 921–931. PubMed PMC

Curtis M.D., Grossniklaus U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133: 462–469. PubMed PMC

Doyon Y., Vo T.D., Mendel M.C., Greenberg S.G., Wang J., Xia D.F., Miller J.C., Urnov F.D., Gregory P.D., Holmes M.C. (2011). Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat. Methods 8: 74–79. PubMed

Engler C., Gruetzner R., Kandzia R., Marillonnet S. (2009). Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4: e5553. PubMed PMC

Engler C., Kandzia R., Marillonnet S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS One 3: e3647. PubMed PMC

Expósito-Rodríguez M., Borges A.A., Borges-Pérez A., Pérez J.A. (2008). Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 8: 131. PubMed PMC

Fauser F., Roth N., Pacher M., Ilg G., Sánchez-Fernández R., Biesgen C., Puchta H. (2012). In planta gene targeting. Proc. Natl. Acad. Sci. USA 109: 7535–7540. PubMed PMC

Fauser F., Schiml S., Puchta H. (2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79: 348–359. PubMed

Forner J., Pfeiffer A., Langenecker T., Manavella P.A., Lohmann J.U. (2015). Germline-transmitted genome editing in Arabidopsis thaliana Using TAL-effector-nucleases. PLoS One 10: e0121056 Erratum. PLoS One 10: e0133945. PubMed PMC

Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32: 279–284. PubMed PMC

Gao J., Wang G., Ma S., Xie X., Wu X., Zhang X., Wu Y., Zhao P., Xia Q. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol. Biol. 87: 99–110. PubMed

Gao Y., Zhao Y. (2014). Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 56: 343–349. PubMed

Geisinger J.M., Turan S., Hernandez S., Spector L.P., Calos M.P. (2016). In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining. Nucleic Acids Res. 44: e76. PubMed PMC

Gibson D.G., Young L., Chuang R.Y., Venter J.C., Hutchison C.A. III, Smith H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6: 343–345. PubMed

Gil-Humanes J., Ozuna C.V., Marín S., León E., Barro F., Pistón F. (2011). Genetic transformation of wheat: advances in the transformation method and applications for obtaining lines with improved bread-making quality and low toxicity in relation to celiac disease. In Genetic Transformation, Alvarez M., ed (InTech; ), pp. 135–150.

Gil-Humanes J., Wang Y., Liang Z., Shan Q., Ozuna C.V., Sánchez-León S., Baltes N.J., Starker C., Barro F., Gao C., Voytas D.F. (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 89: 1251–1262. PubMed PMC

Guilinger J.P., Thompson D.B., Liu D.R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32: 577–582. PubMed PMC

Haseloff J., Gerlach W.L. (1988). Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334: 585–591. PubMed

Haun W., et al. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 12: 934–940. PubMed

Chari R., Mali P., Moosburner M., Church G.M. (2015). Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat. Methods 12: 823–826. PubMed PMC

Chavez A., et al. (2015). Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12: 326–328. PubMed PMC

Chen B., Gilbert L.A., Cimini B.A., Schnitzbauer J., Zhang W., Li G.W., Park J., Blackburn E.H., Weissman J.S., Qi L.S., Huang B. (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155: 1479–1491. PubMed PMC

Cho S.W., Kim S., Kim Y., Kweon J., Kim H.S., Bae S., Kim J.S. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24: 132–141. PubMed PMC

Christensen A.H., Quail P.H. (1996). Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5: 213–218. PubMed

Christian M., Qi Y., Zhang Y., Voytas D.F. (2013). Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 (Bethesda) 3: 1697–1705. PubMed PMC

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821. PubMed PMC

Kim H., Kim S.T., Ryu J., Choi M.K., Kweon J., Kang B.C., Ahn H.M., Bae S., Kim J., Kim J.S., Kim S.G. (2016). A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. J. Integr. Plant Biol. 58: 705–712. PubMed

Kungulovski G., Jeltsch A. (2016). Epigenome Editing: State of the Art, Concepts, and Perspectives. Trends Genet. 32: 101–113. PubMed

Kwon Y.I., Abe K., Osakabe K., Endo M., Nishizawa-Yokoi A., Saika H., Shimada H., Toki S. (2012). Overexpression of OsRecQl4 and/or OsExo1 enhances DSB-induced homologous recombination in rice. Plant Cell Physiol. 53: 2142–2152. PubMed

La Russa M.F., Qi L.S. (2015). The new state of the art: Cas9 for gene activation and repression. Mol. Cell. Biol. 35: 3800–3809. PubMed PMC

Li J., et al. (2016). Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Plant Biotechnol. J. 14: 533–542. PubMed PMC

Li T., Liu B., Spalding M.H., Weeks D.P., Yang B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30: 390–392. PubMed

Li Y., et al. (2015). A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol. 16: 111. PubMed PMC

Liang G., Zhang H., Lou D., Yu D. (2016). Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci. Rep. 6: 21451. PubMed PMC

Liang Z., Zhang K., Chen K., Gao C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics 41: 63–68. PubMed

Liu N., Wu S., Van Houten J., Wang Y., Ding B., Fei Z., Clarke T.H., Reed J.W., van der Knaap E. (2014). Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J. Exp. Bot. 65: 2507–2520. PubMed PMC

Liu W., Rudis M.R., Peng Y., Mazarei M., Millwood R.J., Yang J.P., Xu W., Chesnut J.D., Stewart C.N. Jr (2014). Synthetic TAL effectors for targeted enhancement of transgene expression in plants. Plant Biotechnol. J. 12: 436–446. PubMed

Lowder L.G., Zhang D., Baltes N.J., Paul J.W. III, Tang X., Zheng X., Voytas D.F., Hsieh T.-F., Zhang Y., Qi Y. (2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169: 971–985. PubMed PMC

Luo S., Li J., Stoddard T.J., Baltes N.J., Demorest Z.L., Clasen B.M., Coffman A., Retterath A., Mathis L., Voytas D.F., Zhang F. (2015). Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol. Plant 8: 1425–1427. PubMed

Ma X., et al. (2015). A robustCRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicotplants. Mol. Plant 8: 1474–1484. PubMed

Maiti I.B., Gowda S., Kiernan J., Ghosh S.K., Shepherd R.J. (1997). Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res. 6: 143–156. PubMed

Mali P., Aach J., Stranges P.B., Esvelt K.M., Moosburner M., Kosuri S., Yang L., Church G.M. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31: 833–838. PubMed PMC

Mann D.G., et al. (2011). Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. BMC Biotechnol. 11: 74. PubMed PMC

Mann D.G.J., Lafayette P.R., Abercrombie L.L., King Z.R., Mazarei M., Halter M.C., Poovaiah C.R., Baxter H., Shen H., Dixon R.A., Parrott W.A., Neal Stewart C. Jr (2012). Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnol. J. 10: 226–236. PubMed

McElroy D., Zhang W., Cao J., Wu R. (1990). Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2: 163–171. PubMed PMC

Mikami M., Toki S., Endo M. (2016). Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol. 57: 1058–1068. PubMed PMC

Miller J.C., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29: 143–148. PubMed

Nagaya S., Kawamura K., Shinmyo A., Kato K. (2010). The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol. 51: 328–332. PubMed

Nissim L., Perli S.D., Fridkin A., Perez-Pinera P., Lu T.K. (2014). Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54: 698–710. PubMed PMC

Norris S.R., Meyer S.E., Callis J. (1993). The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol. Biol. 21: 895–906. PubMed

Ordon J., Gantner J., Kemna J., Schwalgun L., Reschke M., Streubel J., Boch J., Stuttmann J. (2017). Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit. Plant J. 89: 155–168. PubMed

Park B.S., Seo J.S., Chua N.H. (2014). NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis. Plant Cell 26: 454–464. PubMed PMC

Piatek A., Ali Z., Baazim H., Li L., Abulfaraj A., Al-Shareef S., Aouida M., Mahfouz M.M. (2015). RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 13: 578–589. PubMed

Ran F.A., Hsu P.D., Lin C.Y., Gootenberg J.S., Konermann S., Trevino A.E., Scott D.A., Inoue A., Matoba S., Zhang Y., Zhang F. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380–1389. PubMed PMC

Sahoo D.K., Dey N., Maiti I.B. (2014). pSiM24 is a novel versatile gene expression vector for transient assays as well as stable expression of foreign genes in plants. PLoS One 9: e98988. PubMed PMC

Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Zhang K., Liu J., Xi J.J., Qiu J.-L., Gao C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31: 686–688. PubMed

Shen B., Zhang W., Zhang J., Zhou J., Wang J., Chen L., Wang L., Hodgkins A., Iyer V., Huang X., Skarnes W.C. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 11: 399–402. PubMed

Shimatani Z., et al. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35: 441–443. PubMed

Schiml S., Fauser F., Puchta H. (2014). The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 80: 1139–1150. PubMed

Schneider C.A., Rasband W.S., Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671–675. PubMed PMC

Stavolone L., Kononova M., Pauli S., Ragozzino A., de Haan P., Milligan S., Lawton K., Hohn T. (2003). Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Mol. Biol. 53: 663–673. PubMed

Sugano S.S., Shirakawa M., Takagi J., Matsuda Y., Shimada T., Hara-Nishimura I., Kohchi T. (2014). CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol. 55: 475–481. PubMed

Sugio T., Satoh J., Matsuura H., Shinmyo A., Kato K. (2008). The 5′-untranslated region of the Oryza sativa alcohol dehydrogenase gene functions as a translational enhancer in monocotyledonous plant cells. J. Biosci. Bioeng. 105: 300–302. PubMed

Tang X., Zheng X., Qi Y., Zhang D., Cheng Y., Tang A., Voytas D.F., Zhang Y. (2016). A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol. Plant 9: 1088–1091. PubMed

Thole V., Worland B., Snape J.W., Vain P. (2007). The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiol. 145: 1211–1219. PubMed PMC

Tsai S.Q., Wyvekens N., Khayter C., Foden J.A., Thapar V., Reyon D., Goodwin M.J., Aryee M.J., Joung J.K. (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32: 569–576. PubMed PMC

Vazquez-Vilar M., Bernabé-Orts J.M., Fernandez-Del-Carmen A., Ziarsolo P., Blanca J., Granell A., Orzaez D. (2016). A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods 12: 10. PubMed PMC

Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32: 947–951. PubMed

Wang Z.P., Xing H.L., Dong L., Zhang H.Y., Han C.Y., Wang X.C., Chen Q.J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16: 144. PubMed PMC

Wright D.A., Townsend J.A., Winfrey R.J. Jr., Irwin P.A., Rajagopal J., Lonosky P.M., Hall B.D., Jondle M.D., Voytas D.F. (2005). High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44: 693–705. PubMed

Xie K., Minkenberg B., Yang Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA 112: 3570–3575. PubMed PMC

Xing H.L., Dong L., Wang Z.P., Zhang H.Y., Han C.Y., Liu B., Wang X.C., Chen Q.J. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14: 327. PubMed PMC

Xu R.F., Li H., Qin R.Y., Li J., Qiu C.H., Yang Y.C., Ma H., Li L., Wei P.C., Yang J.B. (2015). Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 5: 11491. PubMed PMC

Yan L., Wei S., Wu Y., Hu R., Li H., Yang W., Xie Q. (2015). High efficiency genome editing in Arabidopsis using Yao promoter-driven CRISPR/Cas9 system. Mol. Plant 8: 1820–1823. PubMed

Zhang F., Maeder M.L., Unger-Wallace E., Hoshaw J.P., Reyon D., Christian M., Li X., Pierick C.J., Dobbs D., Peterson T., Joung J.K., Voytas D.F. (2010). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc. Natl. Acad. Sci. USA 107: 12028–12033. PubMed PMC

Zhang H., Zhang J., Wei P., Zhang B., Gou F., Feng Z., Mao Y., Yang L., Zhang H., Xu N., Zhu J.K. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12: 797–807. PubMed

Zhang Y., Zhang F., Li X., Baller J.A., Qi Y., Starker C.G., Bogdanove A.J., Voytas D.F. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 161: 20–27. PubMed PMC

Zhang Z., Mao Y., Ha S., Liu W., Botella J.R., Zhu J.K. (2016). A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep. 35: 1519–1533. PubMed PMC

Zong Y., Wang Y., Li C., Zhang R., Chen K., Ran Y., Qiu J.L., Wang D., Gao C. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35: 438–440. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...