How to use CRISPR/Cas9 in plants: from target site selection to DNA repair
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
23-07813S
The Czech Science Foundation
PubMed
38648173
PubMed Central
PMC11389839
DOI
10.1093/jxb/erae147
PII: 7655899
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR/Cas, Cell cycle, DNA repair, cleavage, editing, mutagenesis, plants, post-cleavage trimming, staggered ends,
- MeSH
- CRISPR-Cas systémy * MeSH
- editace genu * MeSH
- oprava DNA * MeSH
- rostliny * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A tool for precise, target-specific, efficient, and affordable genome editing is a dream for many researchers, from those who conduct basic research to those who use it for applied research. Since 2012, we have tool that almost fulfils such requirements; it is based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight key factors affecting its mutagenesis outcomes: (i) factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state, or Cas9 variant, and how long it remains in place after cleavage; and (ii) factors affecting the follow-up DNA repair mechanisms including mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts, and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.
Zobrazit více v PubMed
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C.. 2021. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cellular and Molecular Life Sciences 78, 4589–4613. PubMed PMC
Adli M. 2018. The CRISPR tool kit for genome editing and beyond. Nature Communications 9, 1911. PubMed PMC
Aklilu BB, Soderquist RS, Culligan KM.. 2014. Genetic analysis of the replication protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication. Nucleic Acids Research 42, 3104–3118. PubMed PMC
Akutsu N, Iijima K, Hinata T, Tauchi H.. 2007. Characterization of the plant homolog of Nijmegen breakage syndrome 1: involvement in DNA repair and recombination. Biochemical and Biophysical Research Communications 353, 394–398. PubMed
Aldag P, Welzel F, Jakob L, Schmidbauer A, Rutkauskas M, Fettes F, Grohmann D, Seidel R.. 2021. Probing the stability of the SpCas9–DNA complex after cleavage. Nucleic Acids Research 49, 12411–12421. PubMed PMC
Ali S, Kim W-C.. 2019. A fruitful decade using synthetic promoters in the improvement of transgenic plants. Frontiers in Plant Science 10, 1433. PubMed PMC
Altae-Tran H, Kannan S, Suberski AJ, et al.. 2023. Uncovering the functional diversity of rare CRISPR–Cas systems with deep terascale clustering. Science 382, eadi1910. PubMed PMC
Amiard S, Charbonnel C, Allain E, Depeiges A, White CI, Gallego ME.. 2010. Distinct roles of the ATR kinase and the Mre11–Rad50–Nbs1 complex in the maintenance of chromosomal stability in Arabidopsis. The Plant Cell 22, 3020–3033. PubMed PMC
Anders C, Niewoehner O, Duerst A, Jinek M.. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573. PubMed PMC
Anton T, Leonhardt H, Markaki Y.. 2016. Visualization of genomic loci in living cells with a fluorescent CRISPR/Cas9 system. Methods in Molecular Biology 1411, 407–417. PubMed
Anzalone AV, Randolph PB, Davis JR, et al.. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157. PubMed PMC
Bae S, Park J, Kim J-S.. 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475. PubMed PMC
Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim J-S, Jin E, Bae S.. 2016. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR–Cas9 ribonucleoproteins. Scientific Reports 6, 30620. PubMed PMC
Barrangou R, Marraffini LA.. 2014. CRISPR–Cas systems: prokaryotes upgrade to adaptive immunity. Molecular Cell 54, 234–244. PubMed PMC
Bennett EP, Petersen BL, Johansen IE, Niu Y, Yang Z, Chamberlain CA, Met O, Wandall HH, Frödin M.. 2020. INDEL detection, the ‘Achilles heel’ of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels. Nucleic Acids Research 48, 11958–11981. PubMed PMC
Beying N, Schmidt C, Puchta H.. 2021. Double strand break (DSB) repair pathways in plants and their application in genome engineering. In: Willmann MR, ed. Genome editing for precision crop breeding. London: Burleigh Dodds Science Publishing, 27–62.
Bharat SS, Li S, Li J, Yan L, Xia L.. 2020. Base editing in plants: current status and challenges. The Crop Journal 8, 384–395.
Bhargava R, Onyango DO, Stark JM.. 2016. Regulation of single-strand annealing and its role in genome maintenance. Trends in Genetics 32, 566–575. PubMed PMC
Blomme J, Develtere W, Köse A, et al.. 2022. The heat is on: a simple method to increase genome editing efficiency in plants. BMC Plant Biology 22, 142. PubMed PMC
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U.. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512. PubMed
Bothmer A, Phadke T, Barrera LA, et al.. 2017. Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus. Nature Communications 8, 13905. PubMed PMC
Boyle EA, Andreasson JOL, Chircus LM, Sternberg SH, Wu MJ, Guegler CK, Doudna JA, Greenleaf WJ.. 2017. High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding. Proceedings of the National Academy of Sciences, USA 114, 5461–5466. PubMed PMC
Brambati A, Sacco O, Porcella S, Heyza J, Kareh M, Schmidt JC, Sfeir A.. 2023. RHINO directs MMEJ to repair DNA breaks in mitosis. Science 381, 653–660. PubMed PMC
Brinkman EK, Chen T, Amendola M, van Steensel B.. 2014. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research 42, e168. PubMed PMC
Britton S, Coates J, Jackson SP.. 2013. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. Journal of Cell Biology 202, 579–595. PubMed PMC
Cannavo E, Cejka P.. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11–Rad50–Xrs2 to resect DNA breaks. Nature 514, 122–125. PubMed
Caron M-C, Sharma AK, O’Sullivan J, et al.. 2019. Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nature Communications 10, 2954. PubMed PMC
Čermák T, Curtin SJ, Gil-Humanes J, et al.. 2017. A multipurpose toolkit to enable advanced genome engineering in plants. The Plant Cell 29, 1196–1217. PubMed PMC
Chan SH, Yu AM, McVey M.. 2010. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genetics 6, e1001005. PubMed PMC
Chang HHY, Pannunzio NR, Adachi N, Lieber MR.. 2017. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews. Molecular Cell Biology 18, 495–506. PubMed PMC
Chen B, Zou W, Xu H, Liang Y, Huang B.. 2018. Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag. Nature Communications 9, 5065. PubMed PMC
Chen J, Li S, He Y, Li J, Xia L.. 2022. An update on precision genome editing by homology-directed repair in plants. Plant Physiology 188, 1780–1794. PubMed PMC
Chen L, Li W, Katin-Grazzini L, et al.. 2018. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Horticulture Research 5, 13. PubMed PMC
Chen W, McKenna A, Schreiber J, Haeussler M, Yin Y, Agarwal V, Noble WS, Shendure J.. 2019. Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Nucleic Acids Research 47, 7989–8003. PubMed PMC
Chen X, Rinsma M, Janssen JM, Liu J, Maggio I, Gonçalves MAFV.. 2016. Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Research 44, 6482–6492. PubMed PMC
Chen Y-M, Shall S, O’Farrell M.. 1994. Poly(ADP-ribose) polymerase in plant nuclei. European Journal of Biochemistry 224, 135–142. PubMed
Citarelli M, Teotia S, Lamb RS.. 2010. Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evolutionary Biology 10, 308. PubMed PMC
Clow PA, Du M, Jillette N, Taghbalout A, Zhu JJ, Cheng AW.. 2022. CRISPR-mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA per locus. Nature Communications 13, 1871. PubMed PMC
Concordet J-P, Haeussler M.. 2018. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research 46, W242–W245. PubMed PMC
Cong L, Ran FA, Cox D, et al.. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823. PubMed PMC
Corsi GI, Qu K, Alkan F, Pan X, Luo Y, Gorodkin J.. 2022. CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context. Nature Communications 13, 3006. PubMed PMC
Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB.. 2006. ATR and ATM play both distinct and additive roles in response to ionizing radiation. The Plant Journal 48, 947–961. PubMed
Daer RM, Cutts JP, Brafman DA, Haynes KA.. 2017. The impact of chromatin dynamics on Cas9-mediated genome editing in human cells. ACS Synthetic Biology 6, 428–438. PubMed PMC
Daer R, Barrett CM, Haynes KA.. 2018. Manipulation of chromatin to enhance CRISPR activity. BioRxiv 228601. [Preprint].
Daoudal-Cotterell S, Gallego M, White C.. 2002. The plant Rad50–Mre11 protein complex. FEBS Letters 516, 164–166. PubMed
David SR, Maheshwaram SK, Shet D, Lakshminarayana MB, Soni GV.. 2022. Temperature dependent in vitro binding and release of target DNA by Cas9 enzyme. Scientific Reports 12, 15243. PubMed PMC
Dominguez AA, Lim WA, Qi LS.. 2016. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nature Reviews. Molecular Cell Biology 17, 5–15. PubMed PMC
Dong F, Xie K, Chen Y, Yang Y, Mao Y.. 2017. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells. Biochemical and Biophysical Research Communications 482, 889–895. PubMed PMC
Doucet-Chabeaud G, Godon C, Brutesco C, de Murcia G, Kazmaier M.. 2001. Ionising radiation induces the expression of PARP-1 and PARP-2 genes in Arabidopsis. Molecular Genetics and Genomics 265, 954–963. PubMed
Doutriaux M-P, Couteau F, Bergounioux C, White C.. 1998. Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Molecular & General Genetics 257, 283–291. PubMed
Dray E, Siaud N, Dubois E, Doutriaux M-P.. 2006. Interaction between Arabidopsis Brca2 and its partners Rad51, Dmc1, and Dss1. Plant Physiology 140, 1059–1069. PubMed PMC
Dubest S, Gallego ME, White CI.. 2002. Role of the AtRad1p endonuclease in homologous recombination in plants. EMBO Reports 3, 1049–1054. PubMed PMC
Dumont M, Massot S, Doutriaux M-P, Gratias A.. 2011. Characterization of Brca2-deficient plants excludes the role of NHEJ and SSA in the meiotic chromosomal defect phenotype. PLoS One 6, e26696. PubMed PMC
Dutta A, Eckelmann B, Adhikari S, et al.. 2017. Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex. Nucleic Acids Research 45, 2585–2599. PubMed PMC
Eleveld TF, Bakali C, Eijk PP, Stathi P, Vriend LE, Poddighe PJ, Ylstra B.. 2021. Engineering large-scale chromosomal deletions by CRISPR–Cas9. Nucleic Acids Research 49, 12007–12016. PubMed PMC
Ellison EE, Nagalakshmi U, Gamo ME, Huang P, Dinesh-Kumar S, Voytas DF.. 2020. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nature Plants 6, 620–624. PubMed
Engler C, Kandzia R, Marillonnet S.. 2008. A one pot, one step, precision cloning method with high throughput capability. PLoS One 3, e3647. PubMed PMC
Farboud B, Severson AF, Meyer BJ.. 2019. Strategies for efficient genome editing using CRISPR–Cas9. Genetics 211, 431–457. PubMed PMC
Fauser F, Schiml S, Puchta H.. 2014. Both CRISPR/Cas‐based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal 79, 348–359. PubMed
Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F.. 2016. Efficient targeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics and Genomics 43, 37–43. PubMed
Ferenczi A, Chew YP, Kroll E, von Koppenfels C, Hudson A, Molnar A.. 2021. Mechanistic and genetic basis of single-strand templated repair at Cas12a-induced DNA breaks in Chlamydomonas reinhardtii. Nature Communications 12, 6751. PubMed PMC
Ferreira SS, Reis RS.. 2023. Using CRISPR/Cas to enhance gene expression for crop trait improvement by editing miRNA targets. Journal of Experimental Botany 74, 2208–2212. PubMed PMC
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK.. 2014. Improving CRISPR–Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32, 279–284. PubMed PMC
Fu Y-W, Dai X-Y, Wang W-T, et al.. 2021. Dynamics and competition of CRISPR–Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucleic Acids Research 49, 969–985. PubMed PMC
Fujimoto S, Matsunaga S.. 2017. Visualization of chromatin loci with transiently expressed CRISPR/Cas9 in plants. Cytologia 82, 559–562.
Gallego ME, Jeanneau M, Granier F, Bouchez D, Bechtold N, White CI.. 2001. Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity. The Plant Journal 25, 31–41. PubMed
Garcia V, Phelps SEL, Gray S, Neale MJ.. 2011. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241–244. PubMed PMC
Garneau JE, Dupuis M-E, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S.. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71. PubMed
Gasiunas G, Barrangou R, Horvath P, Siksnys V.. 2012. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, USA 109, E2579–E2586. PubMed PMC
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR.. 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551, 464–471. PubMed PMC
Gehrke F, Schindele A, Puchta H.. 2022. Nonhomologous end joining as key to CRISPR/Cas-mediated plant chromosome engineering. Plant Physiology 188, 1769–1779. PubMed PMC
Gisler S, Gonçalves JP, Akhtar W, de Jong J, Pindyurin AV, Wessels LFA, van Lohuizen M.. 2019. Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency. Nature Communications 10, 1598. PubMed PMC
Gong Y, Handa N, Kowalczykowski SC, de Lange T.. 2017. PHF11 promotes DSB resection, ATR signaling, and HR. Genes & Development 31, 46–58. PubMed PMC
Gong S, Yu HH, Johnson KA, Taylor DW.. 2018. DNA unwinding is the primary determinant of CRISPR–Cas9 activity. Cell Reports 22, 359–371. PubMed PMC
Grützner R, Martin P, Horn C, Mortensen S, Cram EJ, Lee-Parsons CWT, Stuttmann J, Marillonnet S.. 2021. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. Plant Communications 2, 100135. PubMed PMC
Haince J-F, McDonald D, Rodrigue A, Déry U, Masson J-Y, Hendzel MJ, Poirier GG.. 2008. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. Journal of Biological Chemistry 283, 1197–1208. PubMed
Harris PV, Mazina OM, Leonhardt EA, Case RB, Boyd JB, Burtis KC.. 1996. Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes. Molecular and Cellular Biology 16, 5764–5771. PubMed PMC
Hartung F, Puchta H.. 1999. Isolation of the complete cDNA of the Mre11 homolog of Arabidopsis (accession no. Aj243822) indicates conservation of DNA recombination mechanisms between plants and other eucaryotes. Plant Physiology 121, 312.
He C, Liu H, Chen D, Xie W-Z, Wang M, Li Y, Gong X, Yan W, Chen L-L.. 2021. CRISPR-Cereal: a guide RNA design tool integrating regulome and genomic variation for wheat, maize and rice. Plant Biotechnology Journal 19, 2141–2143. PubMed PMC
Henderson SW, Henderson ST, Goetz M, Koltunow AMG.. 2020. Efficient CRISPR/Cas9-mediated knockout of an endogenous PHYTOENE DESATURASE gene in T1 progeny of apomictic Hieracium enables new strategies for apomixis gene identification. Genes 11, 1064. PubMed PMC
Hinz JM, Laughery MF, Wyrick JJ.. 2015. Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry 54, 7063–7066. PubMed
Hirakawa T, Hasegawa J, White CI, Matsunaga S.. 2017. RAD54 forms DNA repair foci in response to DNA damage in living plant cells. The Plant Journal 90, 372–382. PubMed
Hogg M, Sauer-Eriksson AE, Johansson E.. 2012. Promiscuous DNA synthesis by human DNA polymerase θ. Nucleic Acids Research 40, 2611–2622. PubMed PMC
Hong J-P, Byun MY, An K, Yang S-J, An G, Kim WT.. 2010. OsKu70 is associated with developmental growth and genome stability in rice. Plant Physiology 152, 374–387. PubMed PMC
Hopfner K-P, Craig L, Moncalian G, et al.. 2002. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418, 562–566. PubMed
Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, Torigoe SE, Tjian R, Weissman JS.. 2016. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5, e12677. PubMed PMC
Hu JH, Miller SM, Geurts MH, et al.. 2018. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63. PubMed PMC
Hu N, Xian Z, Li N, Liu Y, Huang W, Yan F, Su D, Chen J, Li Z.. 2019. Rapid and user-friendly open-source CRISPR/Cas9 system for single- or multi-site editing of tomato genome. Horticulture Research 6, 7. PubMed PMC
Huang T-K, Puchta H.. 2021. Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. Transgenic Research 30, 529–549. PubMed PMC
Hudzieczek V, Cegan R, Cermak T, Bacovska N, Machalkova Z, Dolezal K, Plihalova L, Voytas D, Hobza R, Vyskot B.. 2019. Agrobacterium rhizogenes-mediated transformation of a dioecious plant model Silene latifolia. New Biotechnology 48, 20–28. PubMed
Inagaki S, Suzuki T, Ohto M, Urawa H, Horiuchi T, Nakamura K, Morikami A.. 2006. Arabidopsis TEBICHI, with helicase and DNA polymerase domains, is required for regulated cell division and differentiation in meristems. The Plant Cell 18, 879–892. PubMed PMC
Jia Q, Dulk-Ras A, Shen H, Hooykaas PJJ, de Pater S.. 2013. Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana. Plant Molecular Biology 82, 339–351. PubMed
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E.. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821. PubMed PMC
Josephs EA, Kocak DD, Fitzgibbon CJ, McMenemy J, Gersbach CA, Marszalek PE.. 2015. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Research 43, 8924–8941. PubMed PMC
Kallimasioti-Pazi EM, Chathoth KT, Taylor GC, Meynert A, Ballinger T, Kelder MJE, Lalevée S, Sanli I, Feil R, Wood AJ.. 2018. Heterochromatin delays CRISPR–Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLoS Biology 16, e2005595. PubMed PMC
Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC.. 2021. CRISPR/dCas9-based systems: mechanisms and applications in plant sciences. Plants 10, 2055. PubMed PMC
Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, Cigan M, Siksnys V.. 2015. Rapid characterization of CRISPR–Cas9 protospacer adjacent motif sequence elements. Genome Biology 16, 253. PubMed PMC
Kazda A, Zellinger B, Rössler M, Derboven E, Kusenda B, Riha K.. 2012. Chromosome end protection by blunt-ended telomeres. Genes & Development 26, 1703–1713. PubMed PMC
Khosravi S, Dreissig S, Schindele P, Wolter F, Rutten T, Puchta H, Houben A.. 2020. Live-cell CRISPR imaging in plant cells with a telomere-specific guide RNA. Methods in Molecular Biology 2166, 343–356. PubMed
Kim YG, Cha J, Chandrasegaran S.. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences, USA 93, 1156–1160. PubMed PMC
Kim W-N, Kim H-J, Chung Y-S, Kim H-U.. 2021. Construction of multiple guide RNAs in CRISPR/Cas9 vector using stepwise or simultaneous golden gate cloning: case study for targeting the FAD2 and FATB multigene in soybean. Plants 10, 2542. PubMed PMC
Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA.. 2016. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. The Plant Journal 88, 1058–1070. PubMed
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR.. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424. PubMed PMC
Kumar KRR. 2023. Lost in the bloom: DNA-PKcs in green plants. Frontiers in Plant Science 14, 1231678. PubMed PMC
Kurgan G, Turk R, Li H, et al.. 2021. CRISPAltRations: a validated cloud-based approach for interrogation of double-strand break repair mediated by CRISPR genome editing. Molecular Therapy. Methods & Clinical Development 21, 478–491. PubMed PMC
Lavin MF, Birrell G, Chen P, Kozlov S, Scott S, Gueven N.. 2005. ATM signaling and genomic stability in response to DNA damage. Mutation Research 569, 123–132. PubMed
LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish VF, Jacob Y.. 2018. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. The Plant Journal 93, 377–386. PubMed
Lees-Miller JP, Cobban A, Katsonis P, et al.. 2021. Uncovering DNA-PKcs ancient phylogeny, unique sequence motifs and insights for human disease. Progress in Biophysics and Molecular Biology 163, 87–108. PubMed PMC
Lemos BR, Kaplan AC, Bae JE, Ferrazzoli AE, Kuo J, Anand RP, Waterman DP, Haber JE.. 2018. CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proceedings of the National Academy of Sciences, USA 115, E2040–E2047. PubMed PMC
Li Y, Park AI, Mou H, et al.. 2015. A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biology 16, 111. PubMed PMC
Liang L, Deng L, Nguyen SC, Zhao X, Maulion CD, Shao C, Tischfield JA.. 2008. Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Research 36, 3297–3310. PubMed PMC
Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen L-L.. 2017. CRISPR-P 2.0: an improved CRISPR–Cas9 tool for genome editing in plants. Molecular Plant 10, 530–532. PubMed
Liu M-J, Seddon AE, Tsai ZT-Y, Major IT, Floer M, Howe GA, Shiu S-H.. 2015. Determinants of nucleosome positioning and their influence on plant gene expression. Genome Research 25, 1182–1195. PubMed PMC
Makarova KS, Wolf YI, Iranzo J, et al.. 2020. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews. Microbiology 18, 67–83. PubMed PMC
Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Nagamangala Kanchiswamy C.. 2016. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science 7, 1904. PubMed PMC
Maloisel L, Fabre F, Gangloff S.. 2008. DNA polymerase δ is preferentially recruited during homologous recombination to promote heteroduplex DNA extension. Molecular and Cellular Biology 28, 1373–1382. PubMed PMC
Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A.. 2015. Mammalian polymerase theta promotes alternative-NHEJ and suppresses recombination. Nature 518, 254–257. PubMed PMC
Mayer K, Schüller C, Wambutt R, et al.. 1999. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402, 769–777. PubMed
Meng X, Hu X, Liu Q, Song X, Gao C, Li J, Wang K.. 2018. Robust genome editing of CRISPR–Cas9 at NAG PAMs in rice. Science China Life Sciences 61, 122–125. PubMed
Milner MJ, Craze M, Hope MS, Wallington EJ.. 2020. Turning up the temperature on CRISPR: increased temperature can improve the editing efficiency of wheat using CRISPR/Cas9. Frontiers in Plant Science 11, 583374. PubMed PMC
Mimitou EP, Symington LS.. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774. PubMed PMC
Mosler T, Baymaz HI, Gräf JF, et al.. 2022. PARP1 proximity proteomics reveals interaction partners at stressed replication forks. Nucleic Acids Research 50, 11600–11618. PubMed PMC
Mukherjee S, Chakraborty P, Saha P.. 2016. Phosphorylation of Ku70 subunit by cell cycle kinases modulates the replication related function of Ku heterodimer. Nucleic Acids Research 44, 7755–7765. PubMed PMC
Myler LR, Gallardo IF, Soniat MM, Deshpande RA, Gonzalez XB, Kim Y, Paull TT, Finkelstein IJ.. 2017. Single-molecule imaging reveals how Mre11–Rad50–Nbs1 initiates DNA break repair. Molecular Cell 67, 891–898.e4. PubMed PMC
Nelson JW, Randolph PB, Shen SP, et al.. 2022. Engineered pegRNAs improve prime editing efficiency. Nature Biotechnology 40, 402–410. PubMed PMC
Nishimasu H, Shi X, Ishiguro S, et al.. 2018. Engineered CRISPR–Cas9 nuclease with expanded targeting space. Science 361, 1259–1262. PubMed PMC
Ochoa-Fernandez R, Abel NB, Wieland F-G, et al.. 2020. Optogenetic control of gene expression in plants in the presence of ambient white light. Nature Methods 17, 717–725. PubMed
Omelina ES, Yushkova AA, Motorina DM, Volegov GA, Kozhevnikova EN, Pindyurin AV.. 2022. Optogenetic and chemical induction systems for regulation of transgene expression in plants: use in basic and applied research. International Journal of Molecular Sciences 23, 1737. PubMed PMC
Orel N, Kyryk A, Puchta H.. 2003. Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. The Plant Journal 35, 604–612. PubMed
Osakabe K, Abe K, Yoshioka T, Osakabe Y, Todoriki S, Ichikawa H, Hohn B, Toki S.. 2006. Isolation and characterization of the RAD54 gene from Arabidopsis thaliana. The Plant Journal 48, 827–842. PubMed
Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K.. 2016. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Scientific Reports 6, 26685. PubMed PMC
Penkner A, Portik-Dobos Z, Tang L, Schnabel R, Novatchkova M, Jantsch V, Loidl J.. 2007. A conserved function for a Caenorhabditis elegans Com1/Sae2/CtIP protein homolog in meiotic recombination. The EMBO Journal 26, 5071–5082. PubMed PMC
Pietrzak J, Spickett CM, Płoszaj T, Virág L, Robaszkiewicz A.. 2018. PARP1 promoter links cell cycle progression with adaptation to oxidative environment. Redox Biology 18, 1–5. PubMed PMC
Pöggeler S, Kück U.. 2006. Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378, 1–10. PubMed
Přibylová A, Fischer L, Pyott DE, Bassett A, Molnar A.. 2022. DNA methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in a target-specific manner. New Phytologist 235, 2285–2299. PubMed PMC
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA.. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183. PubMed PMC
Rahman F, Mishra A, Gupta A, Sharma R.. 2022. Spatiotemporal regulation of CRISPR/Cas9 enables efficient, precise, and heritable edits in plant genomes. Frontiers in Genome Editing 4, 870108. PubMed PMC
Raitskin O, Schudoma C, West A, Patron NJ.. 2019. Comparison of efficiency and specificity of CRISPR-associated (Cas) nucleases in plants: an expanded toolkit for precision genome engineering. PLoS One 14, e0211598. PubMed PMC
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F.. 2013. Genome engineering using the CRISPR–Cas9 system. Nature Protocols 8, 2281–2308. PubMed PMC
Raper AT, Stephenson AA, Suo Z.. 2018a. Functional insights revealed by the kinetic mechanism of CRISPR/Cas9. Journal of the American Chemical Society 140, 2971–2984. PubMed
Raper AT, Stephenson AA, Suo Z.. 2018b. Sharpening the scissors: mechanistic details of CRISPR/Cas9 improve functional understanding and inspire future research. Journal of the American Chemical Society 140, 11142–11152. PubMed
Reginato G, Cannavo E, Cejka P.. 2017. Physiological protein blocks direct the Mre11–Rad50–Xrs2 and Sae2 nuclease complex to initiate DNA end resection. Genes & Development 31, 2325–2330. PubMed PMC
Rönspies M, Schindele P, Wetzel R, Puchta H.. 2022a. CRISPR–Cas9-mediated chromosome engineering in Arabidopsis thaliana. Nature Protocols 17, 1332–1358. PubMed
Rönspies M, Schmidt C, Schindele P, Lieberman-Lazarovich M, Houben A, Puchta H.. 2022b. Massive crossover suppression by CRISPR–Cas-mediated plant chromosome engineering. Nature Plants 8, 1153–1159. PubMed
Roth N, Klimesch J, Dukowic-Schulze S, Pacher M, Mannuss A, Puchta H.. 2012. The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells. The Plant Journal 72, 781–790. PubMed
Rudolph J, Mahadevan J, Dyer P, Luger K.. 2018. Poly(ADP-ribose) polymerase 1 searches DNA via a ‘monkey bar’ mechanism. eLife 7, e37818. PubMed PMC
Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, Granell A, Orzaez D.. 2011. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6, e21622. PubMed PMC
Schaub JM, Soniat MM, Finkelstein IJ.. 2022. Polymerase theta-helicase promotes end joining by stripping single-stranded DNA-binding proteins and bridging DNA ends. Nucleic Acids Research 50, 3911–3921. PubMed PMC
Sfeir A, Symington LS.. 2015. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends in Biochemical Sciences 40, 701–714. PubMed PMC
Shen M, Nie Y, Chen Y, Zhang X, Zhao J.. 2021. OsMre11 is required for mitosis during rice growth and development. International Journal of Molecular Sciences 22, 169. PubMed PMC
Sheva M, Hanania U, Ariel T, Turbovski A, Rathod VKR, Oz D, Tekoah Y, Shaaltiel Y.. 2020. Sequential genome editing and induced excision of the transgene in N. tabacum BY2 cells. Frontiers in Plant Science 11, 607174. PubMed PMC
Siebert R, Puchta H.. 2002. Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. The Plant Cell 14, 1121–1131. PubMed PMC
Singh D, Sternberg SH, Fei J, Doudna JA, Ha T.. 2016. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nature Communications 7, 1–8. PubMed PMC
Singha DL, Das D, Sarki YN, Chowdhury N, Sharma M, Maharana J, Chikkaputtaiah C.. 2021. Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects. Planta 255, 28. PubMed
Song J, Keppler BD, Wise RR, Bent AF.. 2015. PARP2 is the predominant poly(ADP-ribose) polymerase in Arabidopsis DNA damage and immune responses. PLoS Genetics 11, e1005200. PubMed PMC
Sreekanth V, Zhou Q, Kokkonda P, et al.. 2020. Chemogenetic system demonstrates that Cas9 longevity impacts genome editing outcomes. ACS Central Science 6, 2228–2237. PubMed PMC
Srivastava V, Underwood JL, Zhao S.. 2017. Dual-targeting by CRISPR/Cas9 for precise excision of transgenes from rice genome. Plant Cell, Tissue and Organ Culture 129, 153–160.
Stemmer M, Thumberger T, Keyer MS, Wittbrodt J, Mateo JL.. 2015. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10, e0124633. PubMed PMC
Stephenson AA, Raper AT, Suo Z.. 2018. Bidirectional degradation of DNA cleavage products catalyzed by CRISPR/Cas9. Journal of the American Chemical Society 140, 3743–3750. PubMed
Sternberg SH, LaFrance B, Kaplan M, Doudna JA.. 2015. Conformational control of DNA target cleavage by CRISPR–Cas9. Nature 527, 110–113. PubMed PMC
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA.. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67. PubMed PMC
Subburaj S, Chung SJ, Lee C, Ryu S-M, Kim DH, Kim J-S, Bae S, Lee G-J.. 2016. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Reports 35, 1535–1544. PubMed
Sun J, Liu H, Liu J, Cheng S, Peng Y, Zhang Q, Yan J, Liu H-J, Chen L-L.. 2019. CRISPR-Local: a local single-guide RNA (sgRNA) design tool for non-reference plant genomes. Bioinformatics 35, 2501–2503. PubMed
Syed A, Tainer JA.. 2018. The MRE11–RAD50–NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annual Review of Biochemistry 87, 263–294. PubMed PMC
Taheri-Ghahfarokhi A, Taylor BJM, Nitsch R, et al.. 2018. Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic Acids Research 46, 8417–8434. PubMed PMC
Taipakova S, Kuanbay A, Saint-Pierre C, Gasparutto D, Baiken Y, Groisman R, Ishchenko AA, Saparbaev M, Bissenbaev AK.. 2020. The Arabidopsis thaliana poly(ADP-pibose) polymerases 1 and 2 modify DNA by ADP-ribosylating terminal phosphate residues. Frontiers in Cell and Developmental Biology 8, 606596. PubMed PMC
Tamura K, Adachi Y, Chiba K, Oguchi K, Takahashi H.. 2002. Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. The Plant Journal 29, 771–781. PubMed
Tisi R, Vertemara J, Zampella G, Longhese MP.. 2020. Functional and structural insights into the MRX/MRN complex, a key player in recognition and repair of DNA double-strand breaks. Computational and Structural Biotechnology Journal 18, 1137–1152. PubMed PMC
Uanschou C, Siwiec T, Pedrosa-Harand A, Kerzendorfer C, Sanchez-Moran E, Novatchkova M, Akimcheva S, Woglar A, Klein F, Schlögelhofer P.. 2007. A novel plant gene essential for meiosis is related to the human CtIP and the yeast COM1/SAE2 gene. The EMBO Journal 26, 5061–5070. PubMed PMC
Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe Y, Osakabe K.. 2017. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports 7, 507. PubMed PMC
van Beek L, McClay E, Patel S, Schimpl M, Spagnolo L, Maia de Oliveira T.. 2021. PARP power: a structural perspective on PARP1, PARP2, and PARP3 in DNA damage repair and nucleosome remodelling. International Journal of Molecular Sciences 22, 5112. PubMed PMC
van Kregten M, de Pater S, Romeijn R, van Schendel R, Hooykaas PJJ, Tijsterman M.. 2016. T-DNA integration in plants results from polymerase-θ-mediated DNA repair. Nature Plants 2, 1–6. PubMed
van Overbeek M, Capurso D, Carter MM, et al.. 2016. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Molecular Cell 63, 633–646. PubMed
van Staalduinen J, van Staveren T, Grosveld F, Wendt KS.. 2023. Live-cell imaging of chromatin contacts opens a new window into chromatin dynamics. Epigenetics & Chromatin 16, 27. PubMed PMC
van Tol N, van Schendel R, Bos A, van Kregten M, de Pater S, Hooykaas PJJ, Tijsterman M.. 2022. Gene targeting in polymerase theta-deficient Arabidopsis thaliana. The Plant Journal 109, 112–125. PubMed PMC
Vazquez‑Vilar M, Bernabé-Orts JM, Fernandez-del-Carmen A, Ziarsolo P, Blanca J, Granell A, Orzaez D.. 2016. A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods 12, 10. PubMed PMC
Vu TV, Das S, Nguyen CC, Kim J, Kim J-Y.. 2022. Single-strand annealing: molecular mechanisms and potential applications in CRISPR–Cas-based precision genome editing. Biotechnology Journal 17, 2100413. PubMed
Vu TV, Nguyen NT, Kim J, Hong JC, Kim J-Y.. 2024. Prime editing: mechanism insight and recent applications in plants. Plant Biotechnology Journal 22, 19–36. PubMed PMC
Walker JR, Corpina RA, Goldberg J.. 2001. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607–614. PubMed
Wang Z-P, Xing H-L, Dong L, Zhang H-Y, Han C-Y, Wang X-C, Chen Q-J.. 2015. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology 16, 144. PubMed PMC
Weiss T, Crisp PA, Rai KM, Song M, Springer NM, Zhang F.. 2022. Epigenetic features drastically impact CRISPR–Cas9 efficacy in plants. Plant Physiology 190, 1153–1164. PubMed PMC
West CE, Waterworth WM, Jiang Q, Bray CM.. 2000. Arabidopsis DNA ligase IV is induced by gamma-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4. The Plant Journal 24, 67–78. PubMed
Williams RS, Dodson GE, Limbo O, et al.. 2009. Nbs1 is a flexible arm binding Ctp1 and Mre11–Rad50 to coordinate dsDNA break processing. Cell 139, 87–99. PubMed PMC
Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim S-G, Kim S-T, Choe S, Kim J-S.. 2015. DNA-free genome editing in plants with preassembled CRISPR–Cas9 ribonucleoproteins. Nature Biotechnology 33, 1162–1164. PubMed
Xie K, Zhang J, Yang Y.. 2014. Genome-wide prediction of highly specific guide RNA spacers for CRISPR–Cas9-mediated genome editing in model plants and major crops. Molecular Plant 7, 923–926. PubMed
Xu X, Qi LS.. 2019. A CRISPR–dCas toolbox for genetic engineering and synthetic biology. Journal of Molecular Biology 431, 34–47. PubMed
Yadav RK, Girke T, Pasala S, Xie M, Reddy GV.. 2009. Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proceedings of the National Academy of Sciences, USA 106, 4941–4946. PubMed PMC
Yang D, Scavuzzo MA, Chmielowiec J, Sharp R, Bajic A, Borowiak M.. 2016. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Scientific Reports 6, 21264. PubMed PMC
Yang G, Liu C, Chen S-H, Kassab MA, Hoff JD, Walter NG, Yu X.. 2018. Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors. Nucleic Acids Research 46, 3446–3457. PubMed PMC
Yang L, Machin F, Wang S, Saplaoura E, Kragler F.. 2023. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks. Nature Biotechnology 41, 958–967. PubMed PMC
Yarrington RM, Verma S, Schwartz S, Trautman JK, Carroll D.. 2018. Nucleosomes inhibit target cleavage by CRISPR–Cas9 in vivo. Proceedings of the National Academy of Sciences, USA 115, 9351–9358. PubMed PMC
Yasmeen E, Wang J, Riaz M, Zhang L, Zuo K.. 2023. Designing artificial synthetic promoters for accurate, smart, and versatile gene expression in plants. Plant Communications 4, 100558. PubMed PMC
Ye H, Rong Z, Lin Y.. 2017. Live cell imaging of genomic loci using dCas9–SunTag system and a bright fluorescent protein. Protein & Cell 8, 853–855. PubMed PMC
Yoshiyama KO, Sakaguchi K, Kimura S.. 2013. DNA damage response in plants: conserved and variable response compared to animals. Biology 2, 1338–1356. PubMed PMC
Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G.. 2013. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195, 289–291. PubMed PMC
Zahid S, Seif El Dahan M, Iehl F, Fernandez-Varela P, Le Du M-H, Ropars V, Charbonnier JB.. 2021. The multifaceted roles of Ku70/80. International Journal of Molecular Sciences 22, 4134. PubMed PMC
Zhang J-P, Li X-L, Neises A, et al.. 2016. Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency. Scientific Reports 6, 28566. PubMed PMC
Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C.. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications 7, 12617. PubMed PMC
Zhou H, Liu B, Weeks DP, Spalding MH, Yang B.. 2014. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research 42, 10903–10914. PubMed PMC
Zuo JR, Chua NH.. 2000. Chemical-inducible systems for regulated expression of plant genes. Current Opinion in Biotechnology 11, 146–151. PubMed
Zuo Z, Liu J.. 2016. Cas9-catalyzed DNA cleavage generates staggered ends: evidence from molecular dynamics simulations. Scientific Reports 6, 37584. PubMed PMC