DNA methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in a target-specific manner

. 2022 Sep ; 235 (6) : 2285-2299. [epub] 20220531

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35524464

Grantová podpora
Wellcome Trust - United Kingdom
206194 Wellcome Trust - United Kingdom

The impact of epigenetic modifications on the efficacy of CRISPR/Cas9-mediated double-stranded DNA breaks and subsequent DNA repair is poorly understood, especially in plants. In this study, we investigated the effect of the level of cytosine methylation on the outcome of CRISPR/Cas9-induced mutations at multiple Cas9 target sites in Nicotiana benthamiana leaf cells using next-generation sequencing. We found that high levels of promoter methylation, but not gene-body methylation, decreased the frequency of Cas9-mediated mutations. DNA methylation also influenced the ratio of insertions and deletions and potentially the type of Cas9 cleavage in a target-specific manner. In addition, we detected an over-representation of deletion events governed by a single 5'-terminal nucleotide at Cas9-induced DNA breaks. Our findings suggest that DNA methylation can indirectly impair Cas9 activity and subsequent DNA repair, probably through changes in the local chromatin structure. In addition to the well described Cas9-induced blunt-end double-stranded DNA breaks, we provide evidence for Cas9-mediated staggered DNA cuts in plant cells. Both types of cut may direct microhomology-mediated DNA repair by a novel, as yet undescribed, mechanism.

Komentář v

PubMed

Zobrazit více v PubMed

Ahmad S, Wei X, Sheng Z, Hu P, Tang S. 2020. CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Briefings in Functional Genomics 19: 26–39. PubMed

Allen F, Crepaldi L, Alsinet C, Strong AJ, Kleshchevnikov V, De Angeli P, Páleníková P, Khodak A, Kiselev V, Kosicki M et al. 2019. Predicting the mutations generated by repair of Cas9‐induced double‐strand breaks. Nature Biotechnology 37: 64–72. PubMed PMC

Bae S, Park J, Kim J‐S. 2014. Cas‐OFFinder: a fast and versatile algorithm that searches for potential off‐target sites of Cas9 RNA‐guided endonucleases. Bioinformatics 30: 1473–1475. PubMed PMC

Beying N, Schmidt C, Puchta H. 2021. Double strand break (DSB) repair pathways in plants and their application in genome engineering. In: Willmann MR, ed. Genome editing for precision crop breeding. London, UK: Burleigh Dodds Science Publishing, 27–62.

Bothmer A, Phadke T, Barrera LA, Margulies CM, Lee CS, Buquicchio F, Moss S, Abdulkerim HS, Selleck W, Jayaram H et al. 2017. Characterization of the interplay between DNA repair and CRISPR/Cas9‐induced DNA lesions at an endogenous locus. Nature Communications 8: 13905. PubMed PMC

Brinkman EK, Chen T, Amendola M, van Steensel B. 2014. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research 42: e168. PubMed PMC

Chen X, Rinsma M, Janssen JM, Liu J, Maggio I, Gonçalves MAFV. 2016. Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Research 44: 6482–6492. PubMed PMC

Chiruvella KK, Liang Z, Wilson TE. 2013. Repair of double‐strand breaks by end joining. Cold Spring Harbor Perspectives in Biology 5: a012757. PubMed PMC

Clement K, Rees H, Canver MC, Gehrke JM, Farouni R, Hsu JY, Cole MA, Liu DR, Joung JK, Bauer DE et al. 2019. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nature Biotechnology 37: 224–226. PubMed PMC

Coleman‐Derr D, Zilberman D. 2012. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genetics 8: e1002988. PubMed PMC

Cui Y, Xu J, Cheng M, Liao X, Peng S. 2018. Review of CRISPR/Cas9 sgRNA design tools. Interdisciplinary Sciences: Computational Life Sciences 10: 455–465. PubMed

Daer R, Barrett CM, Haynes KA. 2018. Manipulation of chromatin to enhance CRISPR activity. bioRxiv. doi: 10.1101/228601. DOI

Daer RM, Cutts JP, Brafman DA, Haynes KA. 2017. The impact of chromatin dynamics on Cas9‐mediated genome editing in human cells. ACS Synthetic Biology 6: 428–438. PubMed PMC

Farnung L, Ochmann M, Engeholm M, Cramer P. 2021. Structural basis of nucleosome transcription mediated by Chd1 and FACT. Nature Structural & Molecular Biology 28: 382–387. PubMed PMC

Fauser F, Schiml S, Puchta H. 2014. Both CRISPR/Cas‐based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana . The Plant Journal 79: 348–359. PubMed

Fei Y, Nyikó T, Molnar A. 2021. Non‐perfectly matching small RNAs can induce stable and heritable epigenetic modifications and can be used as molecular markers to trace the origin and fate of silencing RNAs. Nucleic Acids Research 49: 1900–1913. PubMed PMC

Fellenberg C, Corea O, Yan L‐H, Archinuk F, Piirtola E‐M, Gordon H, Reichelt M, Brandt W, Wulff J, Ehlting J et al. 2020. Discovery of salicyl benzoate UDP‐glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis. The Plant Journal 102: 99–115. PubMed

Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F. 2016. Efficient targeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics and Genomics 43: 37–43. PubMed

Fernandez‐Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher‐York T, Pujar A, Foerster H et al. 2015. The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Research 43: D1036–D1041. PubMed PMC

Fujita T, Yuno M, Fujii H. 2016. Allele‐specific locus binding and genome editing by CRISPR at the p16INK4a locus. Scientific Reports 6: 30485. PubMed PMC

Hinz JM, Laughery MF, Wyrick JJ. 2015. Nucleosomes inhibit Cas9 endonuclease activity in vitro . Biochemistry 54: 7063–7066. PubMed

Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, Torigoe SE, Tjian R, Weissman JS. 2016. Nucleosomes impede Cas9 access to DNA in vivo and in vitro . eLife 5: e12677. PubMed PMC

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O et al. 2013. DNA targeting specificity of RNA‐guided Cas9 nucleases. Nature Biotechnology 31: 827–832. PubMed PMC

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual‐RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821. PubMed PMC

Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, Jacobsen SE. 2007. The SRA methyl‐cytosine‐binding domain links DNA and histone methylation. Current Biology 17: 379–384. PubMed PMC

Jones L, Ratcliff F, Baulcombe DC. 2001. RNA‐directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Current Biology 11: 747–757. PubMed

Josephs EA, Kocak DD, Fitzgibbon CJ, McMenemy J, Gersbach CA, Marszalek PE. 2015. Structure and specificity of the RNA‐guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Research 43: 8924–8941. PubMed PMC

Kallimasioti‐Pazi EM, Chathoth KT, Taylor GC, Meynert A, Ballinger T, Kelder MJE, Lalevée S, Sanli I, Feil R, Wood AJ. 2018. Heterochromatin delays CRISPR‐Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLoS Biology 16: e2005595. PubMed PMC

Kearse M, Moir R, Wilson A, Stones‐Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. PubMed PMC

Kelly TK, Liu Y, Lay FD, Liang G, Berman BP, Jones PA. 2012. Genome‐wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Research 22: 2497–2506. PubMed PMC

Keskin H, Shen Y, Huang F, Patel M, Yang T, Ashley K, Mazin AV, Storici F. 2014. Transcript‐RNA‐templated DNA recombination and repair. Nature 515: 436–439. PubMed PMC

Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson J‐B, Dahan M et al. 2015. Dynamics of CRISPR‐Cas9 genome interrogation in living cells. Science 350: 823–826. PubMed

Kumar N, Galli M, Ordon J, Stuttmann J, Kogel K‐H, Imani J. 2018. Further analysis of barley MORC1 using a highly efficient RNA‐guided Cas9 gene‐editing system. Plant Biotechnology Journal 16: 1892–1903. PubMed PMC

LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish VF, Jacob Y. 2018. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. The Plant Journal 93: 377–386. PubMed

Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Malzahn A, Zarecor S, Lawrence‐Dill CJ, Joung JK et al. 2019. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal 17: 362–372. PubMed PMC

Lemos BR, Kaplan AC, Bae JE, Ferrazzoli AE, Kuo J, Anand RP, Waterman DP, Haber JE. 2018. CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand‐specific insertion/deletion profiles. Proceedings of the National Academy of Sciences, USA 115: E2040–E2047. PubMed PMC

Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang J, Liu H, Qin L, Rui H et al. 2019. Whole genome sequencing reveals rare off‐target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9‐edited cotton plants. Plant Biotechnology Journal 17: 858–868. PubMed PMC

Li J‐F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. 2013. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31: 688–691. PubMed PMC

Li Y, Park AI, Mou H, Colpan C, Bizhanova A, Akama‐Garren E, Joshi N, Hendrickson EA, Feldser D, Yin H et al. 2015. A versatile reporter system for CRISPR‐mediated chromosomal rearrangements. Genome Biology 16: 111. PubMed PMC

Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen L‐L. 2017. Crispr‐P 2.0: an improved CRISPR‐Cas9 tool for genome editing in plants. Molecular Plant 10: 530–532. PubMed

Naim F, Shand K, Hayashi S, O’Brien M, McGree J, Johnson AAT, Dugdale B, Waterhouse PM. 2020. Are the current gRNA ranking prediction algorithms useful for genome editing in plants? PLoS ONE 15: e0227994. PubMed PMC

Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA‐guided endonuclease. Nature Biotechnology 31: 691–693. PubMed

van Overbeek M, Capurso D, Carter M, Thompson M, Frias E, Russ C, Reece‐Hoyes J, Nye C, Gradia S, Vidal B et al. 2016. DNA repair profiling reveals nonrandom outcomes at Cas9‐mediated breaks. Molecular Cell 63: 633–646. PubMed

Přibylová A, Čermák V, Tyč D, Fischer L. 2019. Detailed insight into the dynamics of the initial phases of de novo RNA‐directed DNA methylation in plant cells. Epigenetics & Chromatin 12: 54. PubMed PMC

Pyott DE, Sheehan E, Molnar A. 2016. Engineering of CRISPR/Cas9‐mediated potyvirus resistance in transgene‐free Arabidopsis plants. Molecular Plant Pathology 17: 1276–1288. PubMed PMC

Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM. 2003. Assumption‐free analysis of quantitative real‐time polymerase chain reaction (PCR) data. Neuroscience Letters 339: 62–66. PubMed

Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. 2016. Enhancing homology‐directed genome editing by catalytically active and inactive CRISPR‐Cas9 using asymmetric donor DNA. Nature Biotechnology 34: 339–344. PubMed

Roth N, Klimesch J, Dukowic‐Schulze S, Pacher M, Mannuss A, Puchta H. 2012. The requirement for recombination factors differs considerably between different pathways of homologous double‐strand break repair in somatic plant cells. The Plant Journal 72: 781–790. PubMed

Ruiz MT, Voinnet O, Baulcombe DC. 1998. Initiation and maintenance of virus‐induced gene silencing. Plant Cell 10: 937–946. PubMed PMC

Schep R, Brinkman EK, Leemans C, Vergara X, van der Weide RH, Morris B, van Schaik T, Manzo SG, Peric‐Hupkes D, van den Berg J et al. 2021. Impact of chromatin context on Cas9‐induced DNA double‐strand break repair pathway balance. Molecular Cell 81: 2216–2230. PubMed PMC

Sentmanat MF, Peters ST, Florian CP, Connelly JP, Pruett‐Miller SM. 2018. A survey of validation strategies for CRISPR‐Cas9 editing. Scientific Reports 8: 888. PubMed PMC

Sfeir A, Symington LS. 2015. Microhomology‐mediated end joining: a back‐up survival mechanism or dedicated pathway? Trends in Biochemical Sciences 40: 701–714. PubMed PMC

Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 2014. DNA interrogation by the CRISPR RNA‐guided endonuclease Cas9. Nature 507: 62–67. PubMed PMC

To TK, Saze H, Kakutani T. 2015. DNA methylation within transcribed regions. Plant Physiology 168: 1219–1225. PubMed PMC

Vu TV, Doan DTH, Kim J, Sung YW, Tran MT, Song YJ, Das S, Kim J‐Y. 2021. CRISPR/Cas‐based precision genome editing via microhomology‐mediated end joining. Plant Biotechnology Journal 19: 230–239. PubMed PMC

Yarrington RM, Verma S, Schwartz S, Trautman JK, Carroll D. 2018. Nucleosomes inhibit target cleavage by CRISPR‐Cas9 in vivo . Proceedings of the National Academy of Sciences, USA 115: 9351–9358. PubMed PMC

Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G. 2013. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195: 289–291. PubMed PMC

Zemach A, Grafi G. 2003. Characterization of Arabidopsis thaliana methyl‐CpG‐binding domain (MBD) proteins. The Plant Journal 34: 565–572. PubMed

Zhong Z, Feng S, Duttke SH, Potok ME, Zhang Y, Gallego‐Bartolomé J, Liu W, Jacobsen SE. 2021. DNA methylation‐linked chromatin accessibility affects genomic architecture in Arabidopsis. Proceedings of the National Academy of Sciences, USA 118: e2023347118. PubMed PMC

Zuo Z, Liu J. 2016. Cas9‐catalyzed DNA cleavage generates staggered ends: evidence from molecular dynamics simulations. Scientific Reports 6: 37584. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...