Quantitative spectrofluorometric assay detecting nuclear condensation and fragmentation in intact cells
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34099803
PubMed Central
PMC8184882
DOI
10.1038/s41598-021-91380-3
PII: 10.1038/s41598-021-91380-3
Knihovny.cz E-resources
- MeSH
- Apoptosis drug effects MeSH
- Bisbenzimidazole chemistry MeSH
- Cell Death drug effects MeSH
- Cell Nucleus drug effects metabolism MeSH
- Cell Line MeSH
- Hep G2 Cells MeSH
- Cisplatin pharmacology MeSH
- Microscopy, Fluorescence methods MeSH
- Spectrometry, Fluorescence methods MeSH
- DNA Fragmentation drug effects MeSH
- Camptothecin pharmacology MeSH
- Humans MeSH
- Antineoplastic Agents pharmacology MeSH
- Flow Cytometry methods MeSH
- Reproducibility of Results MeSH
- Staurosporine pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bisbenzimidazole MeSH
- Cisplatin MeSH
- Camptothecin MeSH
- Antineoplastic Agents MeSH
- Staurosporine MeSH
At present, nuclear condensation and fragmentation have been estimated also using Hoechst probes in fluorescence microscopy and flow cytometry. However, none of the methods used the Hoechst probes for quantitative spectrofluorometric assessment. Therefore, the aim of the present study was to develop a spectrofluorometric assay for detection of nuclear condensation and fragmentation in the intact cells. We used human hepatoma HepG2 and renal HK-2 cells cultured in 96-well plates treated with potent apoptotic inducers (i.e. cisplatin, staurosporine, camptothecin) for 6-48 h. Afterwards, the cells were incubated with Hoechst 33258 (2 µg/mL) and the increase of fluorescence after binding of the dye to DNA was measured. The developed spectrofluorometric assay was capable to detect nuclear changes caused by all tested apoptotic inducers. Then, we compared the outcomes of the spectrofluorometric assay with other methods detecting cell impairment and apoptosis (i.e. WST-1 and glutathione tests, TUNEL, DNA ladder, caspase activity, PARP-1 and JNKs expressions). We found that our developed spectrofluorometric assay provided results of the same sensitivity as the TUNEL assay but with the advantages of being fast processing, low-cost and a high throughput. Because nuclear condensation and fragmentation can be typical markers of cell death, especially in apoptosis, we suppose that the spectrofluorometric assay could become a routinely used method for characterizing cell death processes.
See more in PubMed
Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980;284:555–556. doi: 10.1038/284555a0. PubMed DOI
Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007;35:495–516. doi: 10.1080/01926230701320337. PubMed DOI PMC
Caruso S, et al. Defining the role of cytoskeletal components in the formation of apoptopodia and apoptotic bodies during apoptosis. Apoptosis. 2019;24:862–877. doi: 10.1007/s10495-019-01565-5. PubMed DOI
Hou L, et al. Necrotic pyknosis is a morphologically and biochemically distinct event from apoptotic pyknosis. J. Cell Sci. 2016;129:3084–3090. doi: 10.1242/jcs.184374. PubMed DOI
Burgoyne LA. The mechanisms of pyknosis: Hypercondensation and death. Exp. Cell Res. 1999;248:214–222. doi: 10.1006/excr.1999.4406. PubMed DOI
Gotzmann J, Meissner M, Gerner C. The fate of the nuclear matrix-associated-region-binding protein SATB1 during apoptosis. Cell Death Differ. 2000;7:425–438. doi: 10.1038/sj.cdd.4400668. PubMed DOI
Takada S, Watanabe T, Mizuta R. DNase gamma-dependent DNA fragmentation causes karyolysis in necrotic hepatocyte. J. Vet. Med. Sci. 2020;82:23–26. doi: 10.1292/jvms.19-0499. PubMed DOI PMC
Ferri KF, Kroemer G. Control of apoptotic DNA degradation. Nat. Cell Biol. 2000;2:E63–64. doi: 10.1038/35008692. PubMed DOI
Walsh JG, et al. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc. Natl. Acad. Sci. USA. 2008;105:12815–12819. doi: 10.1073/pnas.0707715105. PubMed DOI PMC
Zhou P, Lugovskoy AA, McCarty JS, Li P, Wagner G. Solution structure of DFF40 and DFF45 N-terminal domain complex and mutual chaperone activity of DFF40 and DFF45. Proc. Natl. Acad. Sci. USA. 2001;98:6051–6055. doi: 10.1073/pnas.111145098. PubMed DOI PMC
Nagata S, Nagase H, Kawane K, Mukae N, Fukuyama H. Degradation of chromosomal DNA during apoptosis. Cell Death Differ. 2003;10:108–116. doi: 10.1038/sj.cdd.4401161. PubMed DOI
Skalka M, Matyasova J, Cejkova M. Dna in chromatin of irradiated lymphoid tissues degrades in vivo into regular fragments. FEBS Lett. 1976;72:271–274. doi: 10.1016/0014-5793(76)80984-2. PubMed DOI
Pariente R, Pariente JA, Rodríguez AB, Espino J. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: Effects on oxidative stress and DNA fragmentation. J. Pineal Res. 2016;60:55–64. doi: 10.1111/jpi.12288. PubMed DOI
Majtnerová P, Roušar T. An overview of apoptosis assays detecting DNA fragmentation. Mol. Biol. Rep. 2018;45:1469–1478. doi: 10.1007/s11033-018-4258-9. PubMed DOI
Martin RM, Leonhardt H, Cardoso MC. DNA labeling in living cells. Cytometry A. 2005;67:45–52. doi: 10.1002/cyto.a.20172. PubMed DOI
Zhang XT, Song TB, Du BL, Li DM, Li XM. Caspase-3 antisense oligodeoxynucleotides inhibit apoptosis in gamma-irradiated human leukemia HL-60 cells. Apoptosis. 2007;12:743–751. doi: 10.1007/s10495-006-0018-8. PubMed DOI
Miao ZH, et al. 4-nitroquinoline-1-oxide induces the formation of cellular topoisomerase I-DNA cleavage complexes. Cancer Res. 2006;66:6540–6545. doi: 10.1158/0008-5472.CAN-05-4471. PubMed DOI
Seiler JA, Syed A, Aladjem MI, Pommier Y. Replication checkpoint selectivity for late S phase cells induced by topoisomerase I cleavage complexes. Cancer Res. 2006;66:1153.
Gomes CJ, Harman MW, Centuori SM, Wolgemuth CW, Martinez JD. Measuring DNA content in live cells by fluorescence microscopy. Cell Div. 2018;13:6. doi: 10.1186/s13008-018-0039-z. PubMed DOI PMC
Liu C-H, Tsao M-H, Sahoo SL, Wu W-C. Magnetic nanoparticles with fluorescence and affinity for DNA sensing and nucleus staining. RSC Adv. 2017;7:5937–5947. doi: 10.1039/c6ra25610d. DOI
Carlson CR, Grallert B, Bernander R, Stokke T, Boye E. Measurement of nuclear DNA content in fission yeast by flow cytometry. Yeast. 1997;13:1329–1335. doi: 10.1002/(SICI)1097-0061(199711)13:14<1329::AID-YEA185>3.0.CO;2-M. PubMed DOI
Vardevanyan PO, Parsadanyan MA, Antonyan AP, Shahinyan MA, Karapetyan AT. Spectroscopic study of interaction of various GC-content DNA with Hoechst 33258 depending on Na(+) concentration. J. Biomol. Struct. Dyn. 2020 doi: 10.1080/07391102.2020.1730244. PubMed DOI
Campos V, Rappaz B, Kuttler F, Turcatti G, Naveiras O. High-throughput, nonperturbing quantification of lipid droplets with digital holographic microscopy. J. Lipid Res. 2018;59:1301–1310. doi: 10.1194/jlr.D085217. PubMed DOI PMC
Nogueira E, et al. Assessment of liposome disruption to quantify drug delivery in vitro. Biochim. Biophys. Acta. 2016;1858:163–167. doi: 10.1016/j.bbamem.2015.11.008. PubMed DOI
Zhou YB, et al. Multiplexed imaging detection of live cell intracellular changes in early apoptosis with aggregation-induced emission fluorogens. Sci. China Chem. 2018;61:892–897. doi: 10.1007/s11426-018-9287-x. DOI
Sakamoto T, Hasegawa D, Fujimoto K. Fluorine-modified bisbenzimide derivative as a molecular probe for bimodal and simultaneous detection of DNAs by F-19 NMR and fluorescence. Chem. Commun. 2015;51:8749–8752. doi: 10.1039/c5cc01995h. PubMed DOI
Martin RM, Leonhardt H, Cardoso MC. DNA labeling in living cells. Cytom. Part A. 2005;67A:45–52. doi: 10.1002/cyto.a.20172. PubMed DOI
Qin GQ, et al. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells. Apoptosis. 2015;20:1072–1086. doi: 10.1007/s10495-015-1132-2. PubMed DOI
Kapoor R, Rizvi F, Kakkar P. Naringenin prevents high glucose-induced mitochondria-mediated apoptosis involving AIF, Endo-G and caspases. Apoptosis. 2013;18:9–27. doi: 10.1007/s10495-012-0781-7. PubMed DOI
Chen G, et al. Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis. 2012;17:90–101. doi: 10.1007/s10495-011-0658-1. PubMed DOI
Soares J, et al. Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology. 2019;75:158–173. doi: 10.1016/j.neuro.2019.08.009. PubMed DOI
Zhang Z, et al. Cytochrome P450 2A13 is an efficient enzyme in metabolic activation of aflatoxin G1 in human bronchial epithelial cells. Arch. Toxicol. 2013;87:1697–1707. doi: 10.1007/s00204-013-1108-3. PubMed DOI
Wang J, et al. Biochanin A protects against lipopolysaccharide-induced damage of dopaminergic neurons both in vivo and in vitro via inhibition of microglial activation. Neurotox. Res. 2016;30:486–498. doi: 10.1007/s12640-016-9648-y. PubMed DOI
Ki, S. H. et al. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma. J. Phys. D Appl. Phys.49, Artn 085401 10.1088/0022-3727/49/8/085401 (2016).
Hadi LM, Yaghini E, Stamati K, Loizidou M, MacRobert AJ. Therapeutic enhancement of a cytotoxic agent using photochemical internalisation in 3D compressed collagen constructs of ovarian cancer. Acta Biomater. 2018;81:80–92. doi: 10.1016/j.actbio.2018.09.041. PubMed DOI
Aston NS, Watt N, Morton IE, Tanner MS, Evans GS. Copper toxicity affects proliferation and viability of human hepatoma cells (HepG2 line) Hum. Exp. Toxicol. 2000;19:367–376. doi: 10.1191/096032700678815963. PubMed DOI
Handl J, Capek J, Majtnerova P, Bacova J, Rousar T. The effect of repeated passaging on the susceptibility of human proximal tubular HK-2 cells to toxic compounds. Physiol. Res. 2020;69:731–738. doi: 10.33549/physiolres.934491. PubMed DOI PMC
Siemann DW, Keng PC. Cell cycle specific toxicity of the Hoechst 33342 stain in untreated or irradiated murine tumor cells. Cancer Res. 1986;46:3556–3559. PubMed
Purschke M, Rubio N, Held KD, Redmond RW. Phototoxicity of Hoechst 33342 in time-lapse fluorescence microscopy. Photochem. Photobiol. Sci. 2010;9:1634–1639. doi: 10.1039/c0pp00234h. PubMed DOI
Hammond CL, Madejczyk MS, Ballatori N. Activation of plasma membrane reduced glutathione transport in death receptor apoptosis of HepG2 cells. Toxicol. Appl. Pharmacol. 2004;195:12–22. doi: 10.1016/j.taap.2003.10.008. PubMed DOI
Cao MR, et al. Harmine induces apoptosis in HepG2 cells via mitochondrial signaling pathway. Hepatobiliary Pancreat. Dis. Int. 2011;10:599–604. doi: 10.1016/s1499-3872(11)60102-1. PubMed DOI
Beaton-Green LA, Wilkins RC. Quantitation of chromosome damage by imaging flow cytometry. Methods Mol. Biol. 2016;1389:97–110. doi: 10.1007/978-1-4939-3302-0_6. PubMed DOI
Bogush TA, et al. A new approach to epithelial-mesenchymal transition diagnostics in epithelial tumors: Double immunofluorescent staining and flow cytometry. Biotechniques. 2020 doi: 10.2144/btn-2020-0024. PubMed DOI
Zhang LJ, Li ZQ, Yang YP, Li XW, Ji JF. Tunicamycin suppresses cisplatin-induced HepG2 cell apoptosis via enhancing p53 protein nuclear export. Mol. Cell. Biochem. 2009;327:171–182. doi: 10.1007/s11010-009-0055-z. PubMed DOI
Yang SK, et al. Mitochondria targeted peptide SS-31 prevent on cisplatin-induced acute kidney injury via regulating mitochondrial ROS-NLRP3 pathway. Biomed. Pharmacother. 2020;130:110521. doi: 10.1016/j.biopha.2020.110521. PubMed DOI
Tanida S, et al. Mechanisms of cisplatin-induced apoptosis and of cisplatin sensitivity: Potential of BIN1 to act as a potent predictor of cisplatin sensitivity in gastric cancer treatment. Int. J. Surg. Oncol. 2012;2012:862879. doi: 10.1155/2012/862879. PubMed DOI PMC
Garcia CP, et al. Topoisomerase I inhibitor, camptothecin, induces apoptogenic signaling in human embryonic stem cells. Stem Cell Res. 2014;12:400–414. doi: 10.1016/j.scr.2013.12.002. PubMed DOI
Rath G, et al. De novo ceramide synthesis is responsible for the anti-tumor properties of camptothecin and doxorubicin in follicular thyroid carcinoma. Int. J. Biochem. Cell B. 2009;41:1165–1172. doi: 10.1016/j.biocel.2008.10.021. PubMed DOI
Pommier Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer. 2006;6:789–802. doi: 10.1038/Nrc1977. PubMed DOI
Ding, Y. M., Wang, B., Chen, X. Y., Zhou, Y. & Ge, J. H. Staurosporine suppresses survival of HepG2 cancer cells through Omi/HtrA2-mediated inhibition of PI3K/Akt signaling pathway. Tumor Biol.39, Artn 694317 10.1177/1010428317694317 (2017). PubMed
Deshmukh M, Johnson EM. Staurosporine-induced neuronal death: Multiple mechanisms and methodological implications. Cell Death Differ. 2000;7:250–261. doi: 10.1038/sj.cdd.4400641. PubMed DOI
Petkovic J, et al. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology. 2011;5:341–353. doi: 10.3109/17435390.2010.507316. PubMed DOI
Ji YB, Gao SY. Arylamine N-acetyltransferases: a new inhibitor of apoptosis in HepG2 cells. J. Zhejiang Univ.-Sc B. 2008;9:701–706. doi: 10.1631/jzus.B0820090. PubMed DOI PMC
Gorman AM, Hirt UA, Orrenius S, Ceccatelli S. Dexamethasone pre-treatment interferes with apoptotic death in glioma cells. Neuroscience. 2000;96:417–425. doi: 10.1016/S0306-4522(99)00565-5. PubMed DOI
Park MS, De Leon M, Devarajan P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J. Am. Soc. Nephrol. 2002;13:858–865. doi: 10.1681/ASN.V134858. PubMed DOI
Schweyer S, et al. Cisplatin-induced apoptosis in human malignant testicular germ cell lines depends on MEK/ERK activation. Br. J. Cancer. 2004;91:589–598. doi: 10.1038/sj.bjc.6601919. PubMed DOI PMC
Rathinam, R., Ghosh, S., Neumann, W. L. & Jamesdaniel, S. Cisplatin-induced apoptosis in auditory, renal, and neuronal cells is associated with nitration and downregulation of LMO4. Cell Death Discov.1, Artn 15052 10.1038/Cddiscovery.2015.52 (2015). PubMed PMC
Yasuda M, Kishimoto S, Amano M, Fukushima S. The involvement of pregnane X receptor-regulated pathways in the antitumor activity of cisplatin. Anticancer Res. 2019;39:3601–3608. doi: 10.21873/anticanres.13507. PubMed DOI
Chaudhuri AR, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 2017;18:610–621. doi: 10.1038/nrm.2017.53. PubMed DOI PMC
Chaitanya, G. V., Steven, A. J. & Babu, P. P. PARP-1 cleavage fragments: Signatures of cell-death proteases in neurodegeneration. Cell Commun. Signal.8, Artn 31 10.1186/1478-811x-8-31 (2010). PubMed PMC
Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(adp-ribose) polymerase—An early marker of chemotherapy-induced apoptosis. Cancer Res. 1993;53:3976–3985. PubMed
Ju SM, et al. Phosphorylation of eIF2 alpha suppresses cisplatin-induced p53 activation and apoptosis by attenuating oxidative stress via ATF4-mediated HO-1 expression in human renal proximal tubular cells. Int. J. Mol. Med. 2017;40:1957–1964. doi: 10.3892/ijmm.2017.3181. PubMed DOI
Hayakawa J, Depatie C, Ohmichi M, Mercola D. The activation of c-Jun NH2-terminal kinase (JNK) by DNA-damaging agents serves to promote drug resistance via activating transcription factor 2 (ATF2)-dependent enhanced DNA repair. J. Biol. Chem. 2003;278:20582–20592. doi: 10.1074/jbc.M210992200. PubMed DOI
Brozovic A, et al. Long-term activation of SAPK/JNK, p38 kinase and Fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance. Int. J. Cancer. 2004;112:974–985. doi: 10.1002/ijc.20522. PubMed DOI
Lee D, Lee SR, Kang KS, Kim KH. Benzyl salicylate from the stems and stem barks of Cornus walteri as a nephroprotective agent against cisplatin-induced apoptotic cell death in LLC-PK1 cells. RSC Adv. 2020;10:5777–5784. doi: 10.1039/c9ra07009e. PubMed DOI PMC
Lau AH. Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int. 1999;56:1295–1298. doi: 10.1046/j.1523-1755.1999.00687.x. PubMed DOI
Ryan MJ, et al. HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 1994;45:48–57. doi: 10.1038/ki.1994.6. PubMed DOI
Hauschke M, et al. Neutrophil gelatinase-associated lipocalin production negatively correlates with HK-2 cell impairment: Evaluation of NGAL as a marker of toxicity in HK-2 cells. Toxicol. In Vitro. 2017;39:52–57. doi: 10.1016/j.tiv.2016.11.012. PubMed DOI
Handl J, et al. Transient increase in cellular dehydrogenase activity after cadmium treatment precedes enhanced production of reactive oxygen species in human proximal tubular kidney cells. Physiol. Res. 2019;68:481–490. doi: 10.33549/physiolres.934121. PubMed DOI
Capek J, Hauschke M, Bruckova L, Rousar T. Comparison of glutathione levels measured using optimized monochlorobimane assay with those from ortho-phthalaldehyde assay in intact cells. J. Pharmacol. Tox. Met. 2017;88:40–45. doi: 10.1016/j.vascn.2017.06.001. PubMed DOI
Evaluating the Use of TiO2 Nanoparticles for Toxicity Testing in Pulmonary A549 Cells