Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics

. 2021 Jun 14 ; 13 (1) : 143. [epub] 20210614

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34138389
Odkazy

PubMed 34138389
PubMed Central PMC8203759
DOI 10.1007/s40820-021-00660-0
PII: 10.1007/s40820-021-00660-0
Knihovny.cz E-zdroje

The rapid development of two-dimensional (2D) transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties. In particular, palladium diselenide (PdSe2) with a novel pentagonal structure and unique physical characteristics have recently attracted extensive research interest. Consequently, tremendous research progress has been achieved regarding the physics, chemistry, and electronics of PdSe2. Accordingly, in this review, we recapitulate and summarize the most recent research on PdSe2, including its structure, properties, synthesis, and applications. First, a mechanical exfoliation method to obtain PdSe2 nanosheets is introduced, and large-area synthesis strategies are explained with respect to chemical vapor deposition and metal selenization. Next, the electronic and optoelectronic properties of PdSe2 and related heterostructures, such as field-effect transistors, photodetectors, sensors, and thermoelectric devices, are discussed. Subsequently, the integration of systems into infrared image sensors on the basis of PdSe2 van der Waals heterostructures is explored. Finally, future opportunities are highlighted to serve as a general guide for physicists, chemists, materials scientists, and engineers. Therefore, this comprehensive review may shed light on the research conducted by the 2D material community.

Center for Advancing Electronics Dresden Technische Universität Dresden 01069 Dresden Germany

Centre of Polymer and Carbon Materials Polish Academy of Sciences M Curie Sklodowskiej 34 41 819 Zabrze Poland

Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research University of Jinan Shandong Jinan 250022 People's Republic of China

College of Energy Soochow Institute for Energy and Materials Innovations Soochow University Suzhou 215006 People's Republic of China

Department of Chemistry Guangdong Provincial Key Laboratory of Catalytic Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 People's Republic of China

Dresden Center for Computational Materials Science Technische Universität Dresden 01062 Dresden Germany

Dresden Center for Intelligent Materials Technische Universität Dresden 01062 Dresden Germany

Institute for Complex Materials IFW Dresden 20 Helmholtz Strasse 01069 Dresden Germany

Institute for Materials Science and Max Bergmann Center of Biomaterials Technische Universität Dresden 01069 Dresden Germany

Institute of Environmental Technology VŠB Technical University of Ostrava 17 listopadu 15 Ostrava 708 33 Czech Republic

Institute of Marine Science and Technology Shandong University Qingdao 266237 People's Republic of China

Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 People's Republic of China

Shenzhen Institutes of Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences 1068 Xueyuan Avenue Shenzhen University Town Shenzhen 518055 People's Republic of China

State Key Laboratory of Advanced Materials for Smart Sensing GRINM Group Co Ltd Xinwai Street 2 Beijing 100088 People's Republic of China

State Key Laboratory of Crystal Materials Center of Bio and Micro Nano Functional Materials Shandong University 27 Shandanan Road Jinan 250100 People's Republic of China

Zobrazit více v PubMed

Saito Y, Ge J, Watanabe K, Taniguchi T, Young AF. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 2020;16(9):926–930. doi: 10.1038/s41567-020-0928-3. DOI

Jin C, Kim J, Utama MIB, Regan EC, Kleemann H, et al. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science. 2018;360(6391):893–896. doi: 10.1126/science.aao3503. PubMed DOI

Pang Y, Yang Z, Yang Y, Ren TL. Wearable electronics based on 2D materials for human physiological information detection. Small. 2020;16(15):1901124. doi: 10.1002/smll.201901124. PubMed DOI

Agrawal AV, Kumar N, Kumar M. Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 2021;13(1):38. doi: 10.1007/s40820-020-00558-3. PubMed DOI PMC

Holden NE, Coplen TB, Böhlke JK, Tarbox LV, Benefield J, et al. IUPAC periodic table of the elements and isotopes (IPTEI) for the education community (IUPAC Technical Report) Pure Appl. Chem. 2018;90(12):1833–2092. doi: 10.1515/pac-2015-0703. DOI

Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016;10(4):216–226. doi: 10.1038/nphoton.2015.282. DOI

Zeng L, Lin S, Lou Z, Yuan H, Long H, et al. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018;10(4):352–362. doi: 10.1038/s41427-018-0035-4. DOI

Kempt R, Kuc A, Heine T. Two-dimensional noble-metal chalcogenides and phosphochalcogenides. Angew. Chem. Int. Ed. 2020;59(24):9242–9254. doi: 10.1002/anie.201914886. PubMed DOI PMC

Ahmad S. Strain dependent tuning electronic properties of noble metal di chalcogenides PdX2 (X = S, Se) mono-layer. Mater. Chem. Phys. 2017;198(1):162–166. doi: 10.1016/j.matchemphys.2017.05.060. DOI

Zeng L, Wu D, Jie J, Ren X, Hu X, et al. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 microm. Adv. Mater. 2020;32(52):2004412. doi: 10.1002/adma.202004412. PubMed DOI

Zhao Y, Qiao J, Yu Z, Yu P, Xu K, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017;29(5):1604230. doi: 10.1002/adma.201604230. PubMed DOI

Yang H, Li Y, Yang Z, Shi X, Lin Z, et al. First-principles calculations of the electronic properties of two-dimensional pentagonal structure XS2 (X=Ni, Pd, Pt) Vacuum. 2020;174(1):109176. doi: 10.1016/j.vacuum.2020.109176. DOI

Saraf D, Chakraborty S, Kshirsagar A, Ahuja R. In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping. Nano Energy. 2018;49(4):283–289. doi: 10.1016/j.nanoen.2018.04.019. DOI

Ghorbani-Asl M, Kuc A, Miro P, Heine T. A single-material logical junction based on 2D Crystal PdS2. Adv. Mater. 2016;28(5):853–856. doi: 10.1002/adma.201504274. PubMed DOI

Oyedele AD, Yang S, Liang L, Puretzky AA, Wang K, et al. PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017;139(40):14090–14097. doi: 10.1021/jacs.7b04865. PubMed DOI

Gu Y, Cai H, Dong J, Yu Y, Hoffman AN, et al. Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater. 2020;32(19):1906238. doi: 10.1002/adma.201906238. PubMed DOI

Chow WL, Yu P, Liu F, Hong J, Wang X, et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 2017;29(21):1602969. doi: 10.1002/adma.201602969. PubMed DOI

Puretzky AA, Oyedele AD, Xiao K, Haglund AV, Sumpter BG, et al. Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2D Mater. 2018;5(3):35016. doi: 10.1088/2053-1583/aabe4d. DOI

Liang Q, Wang Q, Zhang Q, Wei J, Lim SX, et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019;31(24):1807609. doi: 10.1002/adma.201807609. PubMed DOI

Yang H, Kim SW, Chhowalla M, Lee YH. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 2017;13(10):931–937. doi: 10.1038/nphys4188. DOI

Wu D, Guo J, Du J, Xia C, Zeng L, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano. 2019;13(9):9907–9917. doi: 10.1021/acsnano.9b03994. PubMed DOI

Tai KL, Chen J, Wen Y, Park H, Zhang Q, et al. Phase variations and layer epitaxy of 2D PdSe2 GRown on 2D monolayers by direct selenization of molecular Pd precursors. ACS Nano. 2020;14(9):11677–11690. doi: 10.1021/acsnano.0c04230. PubMed DOI

Jakhar M, Singh J, Kumar A, Tankeshwar K. Pressure and electric field tuning of Schottky contacts in PdSe2/ZT-MoSe2 van der Waals heterostructure. Nanotechnology. 2020;31(14):145710. doi: 10.1088/1361-6528/ab5de1. PubMed DOI

Afzal AM, Iqbal MZ, Mumtaz S, Akhtar I. Multifunctional and high-performance GeSe/PdSe2 heterostructure device with a fast photoresponse. J. Mater. Chem. C. 2020;8(14):4743–4753. doi: 10.1039/d0tc00004c. DOI

Wu D, Jia C, Shi F, Zeng L, Lin P, et al. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A. 2020;8(7):3632–3642. doi: 10.1039/c9ta13611h. DOI

Zeng LH, Chen QM, Zhang ZX, Wu D, Yuan H, et al. Multilayered PdSe2/perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 2019;6(19):1901134. doi: 10.1002/advs.201901134. PubMed DOI PMC

Sun J, Shi H, Siegrist T, Singh DJ. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 2015;107(15):153902. doi: 10.1063/1.4933302. DOI

Grønvold F, Røst E. The crystal structure of PdSe2 and PdS2. Acta Crystallogr. 1957;10(4):329–331. doi: 10.1107/s0365110x57000948. DOI

Zhong J, Yu J, Cao L, Zeng C, Ding J, et al. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020;13(6):1780–1786. doi: 10.1007/s12274-020-2804-y. DOI

Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, et al. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016;28(12):2399–2407. doi: 10.1002/adma.201504572. PubMed DOI

Kuklin AV, Ågren H. Quasiparticle electronic structure and optical spectra of single-layer and bilayer PdSe2: Proximity and defect-induced band gap renormalization. Phys. Rev. B. 2019;99(24):2469–9950. doi: 10.1103/PhysRevB.99.245114. DOI

Zhao X, Zhao Q, Zhao B, Dai X, Wei S, et al. Electronic and optical properties of PdSe2 from monolayer to trilayer. Superlattices Microstr. 2020;142(4):106514. doi: 10.1016/j.spmi.2020.106514. DOI

Lei W, Cai B, Zhou H, Heymann G, Tang X, et al. Ferroelastic lattice rotation and band-gap engineering in quasi 2D layered-structure PdSe2 under uniaxial stress. Nanoscale. 2019;11(25):12317–12325. doi: 10.1039/c9nr03101d. PubMed DOI

Zhao X, Qiu B, Hu G, Yue W, Ren J, et al. Spin polarization properties of pentagonal PdSe(2) induced by 3D transition-metal doping: first-principles calculations. Materials. 2018;11(11):2339. doi: 10.3390/ma11112339. PubMed DOI PMC

Zhang S-H, Liu B-G. Hole-doping-induced half-metallic ferromagnetism in a highly-air-stable PdSe2 monolayer under uniaxial stress. J. Mater. Chem. C. 2018;6(25):6792–6798. doi: 10.1039/c8tc01450g. DOI

Deng S, Li L, Zhang Y. Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices. ACS Appl. Nano Mater. 2018;1(4):1932–1939. doi: 10.1021/acsanm.8b00363. DOI

Liu G, Zeng QM, Zhu PF, Quhe RG, Lu PF. Negative Poisson's ratio in monolayer PdSe2. Comput. Mater. Sci. 2019;160(1):309–314. doi: 10.1016/j.commatsci.2019.01.024. DOI

ElGhazali MA, Naumov PG, Mirhosseini H, Suss V, Muchler L, et al. Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2. Phys. Rev. B. 2017;96(6):060509. doi: 10.1103/PhysRevB.96.060509. DOI

Yu J, Kuang X, Gao Y, Wang Y, Chen K, et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 2020;20(2):1172–1182. doi: 10.1021/acs.nanolett.9b04598. PubMed DOI

Lei W, Zhang S, Heymann G, Tang X, Wen J, et al. A new 2D high-pressure phase of PdSe2 with high-mobility transport anisotropy for photovoltaic applications. J. Mater. Chem. C. 2019;7(7):2096–2105. doi: 10.1039/c8tc06050a. DOI

Walmsley TS, Andrews K, Wang T, Haglund A, Rijal U, et al. Near-infrared optical transitions in PdSe2 phototransistors. Nanoscale. 2019;11(30):14410–14416. doi: 10.1039/c9nr03505b. PubMed DOI

Sun M, Chou JP, Shi L, Gao J, Hu A, et al. Few-Layer PdSe2 sheets: promising thermoelectric materials driven by high valley convergence. ACS Omega. 2018;3(6):5971–5979. doi: 10.1021/acsomega.8b00485. PubMed DOI PMC

Cai Y, Zhang G, Zhang YW. Polarity-reversed robust carrier mobility in monolayer MoS(2) nanoribbons. J. Am. Chem. Soc. 2014;136(17):6269–6275. doi: 10.1021/ja4109787. PubMed DOI

Ge X-J, Qin D, Yao K-L, Lü J-T. First-principles study of thermoelectric transport properties of monolayer gallium chalcogenides. J. Phys. D-Appl. Phys. 2017;50(40):405301. doi: 10.1088/1361-6463/aa85b4. DOI

Nguyen GD, Liang L, Zou Q, Fu M, Oyedele AD, et al. 3D imaging and manipulation of subsurface selenium vacancies in PdSe2. Phys. Rev. Lett. 2018;121(8):086101. doi: 10.1103/PhysRevLett.121.086101. PubMed DOI

Lin J, Zuluaga S, Yu P, Liu Z, Pantelides ST, et al. Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 2017;119(1):016101. doi: 10.1103/PhysRevLett.119.016101. PubMed DOI

Chen J, Ryu GH, Sinha S, Warner JH. Atomic structure and dynamics of defects and grain boundaries in 2D Pd2Se3 Monolayers. ACS Nano. 2019;13(7):8256–8264. doi: 10.1021/acsnano.9b03645. PubMed DOI

Zuluaga S, Lin J, Suenaga K, Pantelides ST. Two-dimensional PdSe2-Pd2Se3 junctions can serve as nanowires. 2D Mater. 2018;5(3):035025. doi: 10.1088/2053-1583/aac34c. DOI

Ryu GH, Zhu T, Chen J, Sinha S, Shautsova V. Striated 2D lattice with sub-nm 1D etch channels by controlled thermally induced phase transformations of PdSe2. Adv. Mater. 2019;31(46):1904251. doi: 10.1002/adma.201904251. PubMed DOI

Shautsova V, Sinha S, Hou L, Zhang Q, Tweedie M, et al. Direct laser patterning and phase transformation of 2D PdSe2 films for on-demand device fabrication. ACS Nano. 2019;13(12):14162–14171. doi: 10.1021/acsnano.9b06892. PubMed DOI

Takabatake T, Ishikawa M, Jorda JL. Superconductivity and phase relations in the Pd-Se system. J. Less Common Met. 1987;134(1):79–89. doi: 10.1016/0022-5088(87)90444-9. DOI

Oyedele AD, Yang S, Feng T, Haglund AV, Gu Y, et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 2019;141(22):8928–8936. doi: 10.1021/jacs.9b02593. PubMed DOI

Wang D, Luo F, Lu M, Xie X, Huang L, et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts. Small. 2019;15(40):1804404. doi: 10.1002/smll.201804404. PubMed DOI

Long M, Wang Y, Wang P, Zhou X, Xia H, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano. 2019;13(2):2511–2519. doi: 10.1021/acsnano.8b09476. PubMed DOI

Velicky M, Donnelly GE, Hendren WR, McFarland S, Scullion D, et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano. 2018;12(10):10463–10472. doi: 10.1021/acsnano.8b06101. PubMed DOI

Heyl M, Burmeister D, Schultz T, Pallasch S, Ligorio G, et al. Thermally activated gold-mediated transition metal dichalcogenide exfoliation and a unique gold-mediated transfer. Phys. Status Solidi (RRL) 2020;14(11):2000408. doi: 10.1002/pssr.202000408. DOI

Desai SB, Madhvapathy SR, Amani M, Kiriya D, Hettick M, et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 2016;28(21):4053–4058. doi: 10.1002/adma.201506171. PubMed DOI

Huang Y, Pan YH, Yang R, Bao LH, Meng L, et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020;11(1):2453. doi: 10.1038/s41467-020-16266-w. PubMed DOI PMC

Zhao D, Xie S, Wang Y, Zhu H, Chen L, et al. Synthesis of large-scale few-layer PtS2 films by chemical vapor deposition. AIP Adv. 2019;9(2):025225. doi: 10.1063/1.5086447. DOI

Jia L, Wu J, Yang T, Jia B, Moss DJ. Large third-order optical kerr nonlinearity in nanometer-thick PdSe2 2D dichalcogenide films: implications for nonlinear photonic devices. ACS Appl. Nano Mater. 2020;3(7):6876–6883. doi: 10.1021/acsanm.0c01239. DOI

Zhou J, Lin J, Huang X, Zhou Y, Chen Y, et al. A library of atomically thin metal chalcogenides. Nature. 2018;556(7701):355–359. doi: 10.1038/s41586-018-0008-3. PubMed DOI

Zeng LH, Wu D, Lin SH, Xie C, Yuan HY, et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019;29(1):1806878. doi: 10.1002/adfm.201806878. DOI

Lu LS, Chen GH, Cheng HY, Chuu CP, Lu KC, et al. Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano. 2020;14(4):4963–4972. doi: 10.1021/acsnano.0c01139. PubMed DOI

Nguyen GD, Oyedele AD, Haglund A, Ko W, Liang L, et al. Atomically precise PdSe2 pentagonal nanoribbons. ACS Nano. 2020;14(2):1951–1957. doi: 10.1021/acsnano.9b08390. PubMed DOI

Zeng LH, Lin SH, Li ZJ, Zhang ZX, Zhang TF, et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018;28(16):1705970. doi: 10.1002/adfm.201705970. DOI

Hoffman AN, Gu Y, Tokash J, Woodward J, Xiao K, et al. Layer-by-layer thinning of pdse2 flakes via plasma induced oxidation and sublimation. ACS Appl. Mater. Interfaces. 2020;12(6):7345–7350. doi: 10.1021/acsami.9b21287. PubMed DOI

Q. Liang, Q. Zhang, J. Gou, T. Song, Arramel et al., Performance improvement by ozone treatment of 2D PdSe2. ACS Nano 14(5), 5668–5677 (2020). 10.1021/acsnano.0c00180 PubMed

Di Bartolomeo A, Urban F, Pelella A, Grillo A, Passacantando M, et al. Electron irradiation of multilayer PdSe2 field effect transistors. Nanotechnology. 2020;31(37):375204. doi: 10.1088/1361-6528/ab9472. PubMed DOI

Hassan A, Guo Y, Wang Q. Performance of the pentagonal PdSe2 sheet as a channel material in contact with metal surfaces and graphene. ACS Appl. Electron. Mater. 2020;2(8):2535–2542. doi: 10.1021/acsaelm.0c00438. DOI

Di Bartolomeo A, Pelella A, Liu X, Miao F, Passacantando M, et al. Pressure-tunable ambipolar conduction and hysteresis in thin palladium diselenide field effect transistors. Adv. Funct. Mater. 2019;29(29):1902483. doi: 10.1002/adfm.201902483. DOI

Gao J, Gao Y, Han Y, Pang J, Wang C, et al. Ultrasensitive label-free MiRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Appl. Electron. Mater. 2020;2(4):1090–1098. doi: 10.1021/acsaelm.0c00095. DOI

Tankut A, Karaman M, Yildiz I, Canli S, Turan R. Effect of Al vacuum annealing prior to a-Si deposition on aluminum-induced crystallization. Phys. Status Solidi A Appl. Mater. Sci. 2015;212(12):2702–2707. doi: 10.1002/pssa.201532857. DOI

Takenobu T, Kanbara T, Akima N, Takahashi T, Shiraishi M, et al. Control of carrier density by a solution method in carbon-nanotube devices. Adv. Mater. 2005;17(20):2430–2434. doi: 10.1002/adma.200500759. DOI

Giubileo F, Grillo A, Iemmo L, Luongo G, Urban F, et al. Environmental effects on transport properties of PdSe2 field effect transistors. Mater. Today Proc. 2020;20(1):50–53. doi: 10.1016/j.matpr.2019.08.226. DOI

Xia GT, Huang YN, Li FJ, Wang LC, Pang JB, et al. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Front. Chem. Sci. Eng. 2020;14(6):1039–1051. doi: 10.1007/s11705-019-1901-5. DOI

Chen D, Liu Z, Li Y, Sun D, Liu X, et al. Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-skin with four-dimensional resolution and application for detecting motion direction and airflow rate. ACS Appl. Mater. Interfaces. 2020;12(27):30896–30904. doi: 10.1021/acsami.0c02640. PubMed DOI

Zhou Y, Wang Y, Wang K, Kang L, Peng F, et al. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Appl. Energy. 2020;260(1):114169. doi: 10.1016/j.apenergy.2019.114169. DOI

Shang X, Li S, Wang K, Teng X, Wang X, et al. MnSe2/Se composite nanobelts as an improved performance anode for lithium storage. Int. J. Electrochem. Sci. 2019;14(1):6000–6008. doi: 10.20964/2019.07.37. DOI

Bu C, Li F, Yin K, Pang J, Wang L, et al. Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Appl. Electron. Mater. 2020;2(4):863–878. doi: 10.1021/acsaelm.0c00022. DOI

Dhanabalan SC, Ponraj JS, Zhang H, Bao Q. Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale. 2016;8(12):6410–6434. doi: 10.1039/c5nr09111j. PubMed DOI

Di Bartolomeo A, Pelella A, Urban F, Grillo A, Iemmo L, et al. Field emission in ultrathin PdSe2 back-gated transistors. Adv. Electron. Mater. 2020;6(7):2000094. doi: 10.1002/aelm.202000094. DOI

Zhuo R, Zeng L, Yuan H, Wu D, Wang Y, et al. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2018;12(1):183–189. doi: 10.1007/s12274-018-2200-z. DOI

Buscema M, Groenendijk DJ, Blanter SI, Steele GA, van der Zant HS, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014;14(6):3347–3352. doi: 10.1021/nl5008085. PubMed DOI

Wan X, Xu Y, Guo H, Shehzad K, Ali A, et al. A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? NPJ 2D Mater. Appl. 2017;1(1):2397–7132. doi: 10.1038/s41699-017-0008-4. DOI

Zhuo R, Wang Y, Wu D, Lou Z, Shi Z, et al. High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p–n heterojunction. J. Mater. Chem. C. 2018;6(2):299–303. doi: 10.1039/c7tc04754a. DOI

Mukhokosi EP, Krupanidhi SB, Nanda KK. Band gap engineering of hexagonal SnSe2 nanostructured thin films for infra-red photodetection. Sci. Rep. 2017;7(1):15215. doi: 10.1038/s41598-017-15519-x. PubMed DOI PMC

Luo LB, Wang D, Xie C, Hu JG, Zhao XY, et al. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 2019;29(22):1900849. doi: 10.1002/adfm.201900849. DOI

Yang Y, Liu SC, Wang X, Li Z, Zhang Y, et al. Polarization-sensitive ultraviolet photodetection of anisotropic 2D GeS2. Adv. Funct. Mater. 2019;29(16):1900411. doi: 10.1002/adfm.201900411. DOI

Chu F, Chen M, Wang Y, Xie Y, Liu B, et al. A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. J. Mater. Chem. C. 2018;6(10):2509–2514. doi: 10.1039/c7tc05488b. DOI

Venuthurumilli PK, Ye PD, Xu X. Plasmonic Resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano. 2018;12(5):4861–4867. doi: 10.1021/acsnano.8b01660. PubMed DOI

Yang Y, Liu SC, Yang W, Li Z, Wang Y, et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 2018;140(11):4150–4156. doi: 10.1021/jacs.8b01234. PubMed DOI

Bullock J, Amani M, Cho J, Chen Y-Z, Ahn GH, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photon. 2018;12(10):601–607. doi: 10.1038/s41566-018-0239-8. DOI

Du J, Zhang M, Guo Z, Chen J, Zhu X, et al. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 2017;7(1):42357. doi: 10.1038/srep42357. PubMed DOI PMC

Ma YF, Zhang SC, Din SJ, Liu XX, Yu X, et al. Passively Q-switched Nd:GdLaNbO4 laser based on 2D PdSe2 nanosheet. Opt. Laser Technol. 2020;124(1):105959. doi: 10.1016/j.optlastec.2019.105959. DOI

Ma YF, Peng ZF, Ding SJ, Sun HY, Peng F, et al. Two-dimensional WS2 nanosheet based passively Q-switched Nd:GdLaNbO4 laser. Opt. Laser Technnol. 2019;115(1):104–108. doi: 10.1016/j.optlastec.2019.02.015. DOI

Cheng PK, Tang CY, Ahmed S, Qiao J, Zeng LH, et al. Utilization of group 10 2D TMDs-PdSe2 as a nonlinear optical material for obtaining switchable laser pulse generation modes. Nanotechnology. 2021;32(5):055201. doi: 10.1088/1361-6528/abc1a2. PubMed DOI

Pang J, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 2018;8(8):1702093. doi: 10.1002/aenm.201702093. DOI

Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, et al. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019;48(1):72–133. doi: 10.1039/c8cs00324f. PubMed DOI

Olszowska K, Pang J, Wrobel PS, Zhao L, Ta HQ, et al. Three-dimensional nanostructured graphene: synthesis and energy, environmental and biomedical applications. Synth. Met. 2017;234(1):53–85. doi: 10.1016/j.synthmet.2017.10.014. DOI

Zhou J, Chen H, Zhang X, Chi K, Cai Y, et al. Substrate dependence on (Sb4Se6)n ribbon orientations of antimony selenide thin films: morphology, carrier transport and photovoltaic performance. J. Alloys Compd. 2021;862(1):158703. doi: 10.1016/j.jallcom.2021.158703. DOI

Shu F, Wang M, Pang J, Yu P. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil. Front. Chem. Sci. Eng. 2019;13(2):393–399. doi: 10.1007/s11705-018-1754-3. DOI

Wang K, Pang J, Li L, Zhou S, Li Y, et al. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Front. Chem. Sci. Eng. 2018;12(3):376–382. doi: 10.1007/s11705-018-1705-z. DOI

Yin Y, Pang J, Wang J, Lu X, Hao Q, et al. Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection. ACS Appl. Mater. Interfaces. 2019;11(17):15891–15897. doi: 10.1021/acsami.9b00733. PubMed DOI

Liang F-X, Wang J-Z, Zhang Z-X, Wang Y-Y, Gao Y, et al. Broadband, ultrafast, self-driven photodetector based on Cs-doped FAPbI3 perovskite thin film. Adv. Opt. Mater. 2017;5(22):1700654. doi: 10.1002/adom.201700654. DOI

Long M, Gao A, Wang P, Xia H, Ott C, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017;3(6):e1700589. doi: 10.1126/sciadv.1700589. PubMed DOI PMC

Yu X, Yu P, Wu D, Singh B, Zeng Q, et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 2018;9(1):1545. doi: 10.1038/s41467-018-03935-0. PubMed DOI PMC

Hsu AL, Herring PK, Gabor NM, Ha S, Shin YC, et al. Graphene-based thermopile for thermal imaging applications. Nano Lett. 2015;15(11):7211–7216. doi: 10.1021/acs.nanolett.5b01755. PubMed DOI

Piotrowski J, Rogalski A. Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 2004;46(1–2):115–131. doi: 10.1016/j.infrared.2004.03.016. DOI

Cao Y, Zhu X, Chen H, Zhang X, Zhouc J, et al. Towards high efficiency inverted Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells. 2019;200(1):109945. doi: 10.1016/j.solmat.2019.109945. DOI

Cao Y, Zhu X, Jiang J, Liu C, Zhou J, et al. Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. Sol. Energy Mater. Sol. Cells. 2020;206(1):110279. doi: 10.1016/j.solmat.2019.110279. DOI

Jiang J, Meng F, Cheng Q, Wang A, Chen Y, et al. Low lattice mismatch InSe–Se vertical van der Waals heterostructure for high-performance transistors via strong fermi-level depinning. Small Methods. 2020;4(8):2000238. doi: 10.1002/smtd.202000238. DOI

Jiang J, Meng F, Cheng Q, Wang A, Chen Y, et al. Low lattice mismatch InSe–Se vertical van der Waals heterostructure for high-performance transistors via strong fermi-level depinning (Small Methods 8/2020) Small Methods. 2020;4(8):2070032. doi: 10.1002/smtd.202070032. DOI

Wu C-C, Jariwala D, Sangwan VK, Marks TJ, Hersam MC, et al. Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. J. Phys. Chem. Lett. 2013;4(15):2508–2513. doi: 10.1021/jz401199x. DOI

Xue F, Chen L, Chen J, Liu J, Wang L, et al. p-Type MoS2 and n-type ZnO diode and its performance enhancement by the piezophototronic effect. Adv. Mater. 2016;28(17):3391–3398. doi: 10.1002/adma.201506472. PubMed DOI

Li D, Chen M, Sun Z, Yu P, Liu Z, et al. Two-dimensional non-volatile programmable p–n junctions. Nat. Nanotechnol. 2017;12(9):901–906. doi: 10.1038/nnano.2017.104. PubMed DOI

Zhang X, Grajal J, Vazquez-Roy JL, Radhakrishna U, Wang X, et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature. 2019;566(7744):368–372. doi: 10.1038/s41586-019-0892-1. PubMed DOI

Afzal AM, Dastgeer G, Iqbal MZ, Gautam P, Faisal MM. High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces. 2020;12(17):19625–19634. doi: 10.1021/acsami.9b22898. PubMed DOI

Leñero-Bardallo JA, Carmona-Galán R, Rodríguez-Vázquez A. Applications of event-based image sensors—review and analysis. Int. J. Circ. Theor. Appl. 2018;46(9):1620–1630. doi: 10.1002/cta.2546. DOI

Liang FX, Zhao XY, Jiang JJ, Hu JG, Xie WQ, et al. Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2 /pyramid Si heterojunction. Small. 2019;15(44):1903831. doi: 10.1002/smll.201903831. PubMed DOI

Ibrahim I, Kalbacova J, Engemaier V, Pang JB, Rodriguez RD, et al. Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem. Mater. 2015;27(17):5964–5973. doi: 10.1021/acs.chemmater.5b02037. DOI

Pang J, Mendes RG, Wrobel PS, Wlodarski MD, Ta HQ, et al. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano. 2017;11(2):1946–1956. doi: 10.1021/acsnano.6b08069. PubMed DOI

Pang J, Bachmatiuk A, Ibrahim I, Fu L, Placha D, et al. CVD growth of 1D and 2D sp2 carbon nanomaterials. J. Mater. Sci. 2015;51(2):640–667. doi: 10.1007/s10853-015-9440-z. DOI

Soni A, Zhao L, Ta HQ, Shi Q, Pang J, et al. Facile graphitization of silicon nano-particles with ethanol based chemical vapor deposition. Nano-Struct. Nano-Objects. 2018;16(1):38–44. doi: 10.1016/j.nanoso.2018.04.001. DOI

Sun B, Pang J, Cheng Q, Zhang S, Zhang C, et al. Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications. Adv. Mater. Technol. 2021;1:2000744. doi: 10.1002/admt.202000744. DOI

Martynkova GS, Becerik F, Placha D, Pang J, Akbulut H, et al. Effect of milling and annealing on carbon-silver system. J. Nanosci. Nanotechnol. 2019;19(5):2770–2774. doi: 10.1166/jnn.2019.15869. PubMed DOI

Rummeli MH, Gorantla S, Bachmatiuk A, Phieler J, Geissler N, et al. On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem. Mater. 2013;25(24):4861–4866. doi: 10.1021/cm401669k. DOI

Pang JB, Bachmatiuk A, Fu L, Yan CL, Zeng MQ, et al. Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition. J. Phys. Chem. C. 2015;119(23):13363–13368. doi: 10.1021/acs.jpcc.5b03911. DOI

Pang JB, Bachmatiuk A, Fu L, Mendes RG, Libera M, et al. Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Adv. 2015;5(75):60884–60891. doi: 10.1039/c5ra09405d. DOI

Santhosh NM, Filipič G, Kovacevic E, Jagodar A, Berndt J, et al. N-graphene nanowalls via plasma nitrogen incorporation and substitution: the experimental evidence. Nano-Micro Lett. 2020;12(1):53. doi: 10.1007/s40820-020-0395-5. PubMed DOI PMC

Mendes RG, Pang J, Bachmatiuk A, Ta HQ, Zhao L, et al. Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano. 2019;13(2):978–995. doi: 10.1021/acsnano.8b08079. PubMed DOI

Zhang D, Liu T, Cheng J, Cao Q, Zheng G, et al. Lightweight and high-performance microwave absorber based on 2D WS2–RGO heterostructures. Nano-Micro Lett. 2019;11(1):38. doi: 10.1007/s40820-019-0270-4. PubMed DOI PMC

K. Persson, Materials Data on PdSe2 (SG:61) by Materials Project. 10.17188/1199960

Feng L-Y, Villaos RAB, Huang Z-Q, Hsu C-H, Chuang F-C. Layer-dependent band engineering of Pd dichalcogenides: a first-principles study. New J. Phys. 2020;22(5):053010. doi: 10.1088/1367-2630/ab7d7a. DOI

K. Persson, Materials Data on PdS2 (SG:61) by Materials Project. 10.17188/1189716

K. Persson. Materials Data on Te2Pd (SG:164) by Materials Project. 10.17188/1307608

Anemone G, Casado Aguilar P, Garnica M, Calleja F, Al Taleb A, et al. Electron–phonon coupling in superconducting 1T-PdTe2. NPJ 2D Mater. Appl. 2021;5(1):25. doi: 10.1038/s41699-021-00204-5. DOI

Madhu RN. Singh, Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell. Int. J. Hydrogen Energy. 2011;36(16):10006–10012. doi: 10.1016/j.ijhydene.2011.05.069. DOI

Qin D, Yan P, Ding G, Ge X, Song H, et al. Monolayer PdSe2: a promising two-dimensional thermoelectric material. Sci. Rep. 2018;8(1):2764. doi: 10.1038/s41598-018-20918-9. PubMed DOI PMC

Zhang G, Amani M, Chaturvedi A, Tan C, Bullock J, et al. Optical and electrical properties of two-dimensional palladium diselenide. Appl. Phys. Lett. 2019;114(25):253102. doi: 10.1063/1.5097825. DOI

Hoffman AN, Gu Y, Liang L, Fowlkes JD, Xiao K, et al. Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. NPJ 2D Mater. Appl. 2019;3(1):50. doi: 10.1038/s41699-019-0132-4. DOI

Fang H, Hu W. Photogating in low dimensional photodetectors. Adv. Sci. 2017;4(12):1700323. doi: 10.1002/advs.201700323. PubMed DOI PMC

Miro P, Ghorbani-Asl M, Heine T. Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. Angew. Chem. Int. Ed. 2014;53(11):3015–3018. doi: 10.1002/anie.201309280. PubMed DOI

Li L, Wang W, Chai Y, Li H, Tian M, et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater. 2017;27(27):1701011. doi: 10.1002/adfm.201701011. DOI

Xu H, Huang HP, Fei H, Feng J, Fuh HR, et al. Strategy for fabricating wafer-scale platinum disulfide. ACS Appl. Mater. Interfaces. 2019;11(8):8202–8209. doi: 10.1021/acsami.8b19218. PubMed DOI

Zhang E, Jin Y, Yuan X, Wang W, Zhang C, et al. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015;25(26):4076–4082. doi: 10.1002/adfm.201500969. DOI

Shim J, Oh A, Kang DH, Oh S, Jang SK, et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016;28(32):6985–6992. doi: 10.1002/adma.201601002. PubMed DOI

Zhang E, Wang P, Li Z, Wang H, Song C, et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano. 2016;10(8):8067–8077. doi: 10.1021/acsnano.6b04165. PubMed DOI

Hafeez M, Gan L, Li H, Ma Y, Zhai T. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 2016;28(37):8296–8301. doi: 10.1002/adma.201601977. PubMed DOI

Feng W, Wu J-B, Li X, Zheng W, Zhou X, et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C. 2015;3(27):7022–7028. doi: 10.1039/c5tc01208b. DOI

Dai M, Chen H, Feng R, Feng W, Hu Y, et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano. 2018;12(8):8739–8747. doi: 10.1021/acsnano.8b04931. PubMed DOI

Ye J, Soeda S, Nakamura Y, Nittono O. Crystal structures and phase transformation in In2Se3 compound semiconductor. Jpn. J. Appl. Phys. 1998;37:4264–4271. doi: 10.1143/jjap.37.4264. DOI

Feng W, Gao F, Hu Y, Dai M, Liu H, et al. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets. ACS Appl. Mater. Interfaces. 2018;10(33):27584–27588. doi: 10.1021/acsami.8b10194. PubMed DOI

Jacobs-Gedrim RB, Shanmugam M, Jain N, Durcan CA, Murphy MT, et al. Extraordinary photoresponse in two-dimensional In(2)Se(3) nanosheets. ACS Nano. 2014;8(1):514–521. doi: 10.1021/nn405037s. PubMed DOI

Amani M, Regan E, Bullock J, Ahn GH, Javey A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano. 2017;11(11):11724–11731. doi: 10.1021/acsnano.7b07028. PubMed DOI

Zheng D, Fang H, Long M, Wu F, Wang P, et al. High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition. ACS Nano. 2018;12(7):7239–7245. doi: 10.1021/acsnano.8b03291. PubMed DOI

Su G, Hadjiev VG, Loya PE, Zhang J, Lei S, et al. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015;15(1):506–513. doi: 10.1021/nl503857r. PubMed DOI

Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009;4(12):839–843. doi: 10.1038/nnano.2009.292. PubMed DOI

Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH, et al. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 2010;10(9):3464–3466. doi: 10.1021/nl101559n. PubMed DOI

Polat EO, Mercier G, Nikitskiy I, Puma E, Galan T, et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019;5(9):eaaw7846. doi: 10.1126/sciadv.aaw7846. PubMed DOI PMC

Yu X, Dong Z, Liu Y, Liu T, Tao J, et al. A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2. Nanoscale. 2016;8(1):327–332. doi: 10.1039/c5nr06869j. PubMed DOI

Zeng L, Tao L, Tang C, Zhou B, Long H, et al. High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci. Rep. 2016;6(1):20343. doi: 10.1038/srep20343. PubMed DOI PMC

Jiang J, Zhang Q, Wang A, Zhang Y, Meng F, Zhang C, Feng X, Feng Y, Gu L, Liu H, Han L. A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment. Small. 2019;15(36):1901791. doi: 10.1002/smll.201901791. PubMed DOI

Wang Q, Zhang Q, Zhao X, Zheng YJ, Wang J, et al. High-energy gain upconversion in monolayer tungsten disulfide photodetectors. Nano Lett. 2019;19(8):5595–5603. doi: 10.1021/acs.nanolett.9b02136. PubMed DOI

Zhang W, Chiu MH, Chen CH, Chen W, Li LJ, et al. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano. 2014;8(8):8653–8661. doi: 10.1021/nn503521c. PubMed DOI

Zhou H, Wang C, Shaw JC, Cheng R, Chen Y, et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015;15(1):709–713. doi: 10.1021/nl504256y. PubMed DOI PMC

Chen J, Wang Q, Sheng Y, Cao G, Yang P, et al. High-performance WSe2 photodetector based on a laser-induced p–n junction. ACS Appl. Mater. Interfaces. 2019;11(46):43330–43336. doi: 10.1021/acsami.9b13948. PubMed DOI

Lee HS, Min SW, Chang YG, Park MK, Nam T, et al. MoS(2) nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012;12(7):3695–3700. doi: 10.1021/nl301485q. PubMed DOI

Zhou YH, An HN, Gao C, Zheng ZQ, Wang B. UV–Vis-NIR photodetector based on monolayer MoS2. Mater. Lett. 2019;237(1):298–302. doi: 10.1016/j.matlet.2018.11.112. DOI

Wang W, Klots A, Prasai D, Yang Y, Bolotin KI, et al. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015;15(11):7440–7444. doi: 10.1021/acs.nanolett.5b02866. PubMed DOI

Jung C, Kim SM, Moon H, Han G, Kwon J, et al. Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 2015;5(1):15313. doi: 10.1038/srep15313. PubMed DOI PMC

Coehoorn R, Haas C, de Groot RA. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B. 1987;35(12):6203–6206. doi: 10.1103/physrevb.35.6203. PubMed DOI

Ko PJ, Abderrahmane A, Kim NH, Sandhu A. High-performance near-infrared photodetector based on nano-layered MoSe2. Semicond. Sci. Technol. 2017;32(6):065015. doi: 10.1088/1361-6641/aa6819. DOI

Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B. 2014;89(23):235319. doi: 10.1103/PhysRevB.89.235319. DOI

Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016;16(7):4648–4655. doi: 10.1021/acs.nanolett.6b01977. PubMed DOI

Qiao J, Kong X, Hu ZX, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014;5(1):4475. doi: 10.1038/ncomms5475. PubMed DOI PMC

Wang J, Rousseau A, Eizner E, Phaneuf-L’Heureux A-L, Schue L, et al. Spectral responsivity and photoconductive gain in thin film black phosphorus photodetectors. ACS Photon. 2019;6(12):3092–3099. doi: 10.1021/acsphotonics.9b00951. DOI

Zhou X, Hu X, Jin B, Yu J, Liu K, et al. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Adv. Sci. 2018;5(8):1800478. doi: 10.1002/advs.201800478. PubMed DOI PMC

Jia C, Wu D, Wu EP, Guo JW, Zhao ZH, et al. A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity. J. Mater. Chem. C. 2019;7(13):3817–3821. doi: 10.1039/c8tc06398b. DOI

Chai R, Chen Y, Zhong M, Yang H, Yan F, et al. Non-layered ZnSb nanoplates for room temperature infrared polarized photodetectors. J. Mater. Chem. C. 2020;8(19):6388–6395. doi: 10.1039/d0tc00755b. DOI

Deng S, Tao ML, Mei J, Li M, Zhang Y, et al. Optical and piezoelectric properties of strained orthorhombic PdS2. IEEE Trans. Nanotechnol. 2019;18(1):358–364. doi: 10.1109/Tnano.2019.2908221. DOI

Deng Y, Luo Z, Conrad NJ, Liu H, Gong Y, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano. 2014;8(8):8292–8299. doi: 10.1021/nn5027388. PubMed DOI

Yan F, Zhao L, Patane A, Hu P, Wei X, et al. Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. Nanotechnology. 2017;28(27):27LT01. doi: 10.1088/1361-6528/aa749e. PubMed DOI

Chen X, Chen H, Wang Z, Shan Y, Zhang DW, et al. Analysis of the relationship between the contact barrier and rectification ratio in a two-dimensional P–N heterojunction. Semicond. Sci. Technol. 2018;33(11):114012. doi: 10.1088/1361-6641/aae3aa. DOI

Murali K, Dandu M, Das S, Majumdar K. Gate-tunable WSe2/SnSe2 backward diode with ultrahigh-reverse rectification ratio. ACS Appl. Mater. Interfaces. 2018;10(6):5657–5664. doi: 10.1021/acsami.7b18242. PubMed DOI

Khan MA, Rathi S, Lim D, Yun SJ, Youn D-H, et al. Gate tunable self-biased diode based on few layered MoS2 and WSe2. Chem. Mater. 2018;30(3):1011–1016. doi: 10.1021/acs.chemmater.7b04865. DOI

Yang Z, Liao L, Gong F, Wang F, Wang Z, et al. WSe2/GeSe heterojunction photodiode with giant gate tunability. Nano Energy. 2018;49(1):103–108. doi: 10.1016/j.nanoen.2018.04.034. DOI

Lan C, Li C, Wang S, He T, Jiao T, et al. Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction. ACS Appl. Mater. Interfaces. 2016;8(28):18375–18382. doi: 10.1021/acsami.6b05109. PubMed DOI

Chu J, Wang F, Yin L, Lei L, Yan C, et al. High-performance ultraviolet photodetector based on a few-layered 2D NiPS3 nanosheet. Adv. Funct. Mater. 2017;27(32):1701342. doi: 10.1002/adfm.201701342. DOI

Ye L, Li H, Chen Z, Xu J. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photon. 2016;3(4):692–699. doi: 10.1021/acsphotonics.6b00079. DOI

Zhang Y, Yu Y, Mi L, Wang H, Zhu Z, et al. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small. 2016;12(8):1062–1071. doi: 10.1002/smll.201502923. PubMed DOI

Liu Q, Cook B, Gong M, Gong Y, Ewing D, et al. Printable transfer-free and wafer-size MoS2/graphene van der Waals heterostructures for high-performance photodetection. ACS Appl. Mater. Interfaces. 2017;9(14):12728–12733. doi: 10.1021/acsami.7b00912. PubMed DOI

Gundimeda A, Krishna S, Aggarwal N, Sharma A, Sharma ND, et al. Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Appl. Phys. Lett. 2017;110(10):103507. doi: 10.1063/1.4978427. DOI

Wang P, Liu S, Luo W, Fang H, Gong F, et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017;29(16):1521–4095. doi: 10.1002/adma.201604439. PubMed DOI

Um DS, Lee Y, Lim S, Park J, Yen WC, et al. InGaAs nanomembrane/si van der waals heterojunction photodiodes with broadband and high photoresponsivity. ACS Appl. Mater. Interfaces. 2016;8(39):26105–26111. doi: 10.1021/acsami.6b06580. PubMed DOI

Zheng W, Lin R, Zhu Y, Zhang Z, Ji X, et al. Vacuum ultraviolet photodetection in two-dimensional oxides. ACS Appl. Mater. Interfaces. 2018;10(24):20696–20702. doi: 10.1021/acsami.8b04866. PubMed DOI

Zeng LH, Wang MZ, Hu H, Nie B, Yu YQ, et al. Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces. 2013;5(19):9362–9366. doi: 10.1021/am4026505. PubMed DOI

Li X, Zhu M, Du M, Lv Z, Zhang L, et al. High detectivity graphene-silicon heterojunction photodetector. Small. 2016;12(5):595–601. doi: 10.1002/smll.201502336. PubMed DOI

Zhang K, Fang X, Wang Y, Wan Y, Song Q, et al. Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces. 2017;9(6):5392–5398. doi: 10.1021/acsami.6b14483. PubMed DOI

Lan Y-S, Chen X-R, Hu C-E, Cheng Y, Chen Q-F. Penta-PdX2 (X = S, Se, Te) monolayers: promising anisotropic thermoelectric materials. J. Mater. Chem. A. 2019;7(18):11134–11142. doi: 10.1039/c9ta02138h. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...