Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34138389
PubMed Central
PMC8203759
DOI
10.1007/s40820-021-00660-0
PII: 10.1007/s40820-021-00660-0
Knihovny.cz E-zdroje
- Klíčová slova
- Field-effect transistors, Palladium diselenide, Photodetectors, Sensors, Synthesis, nTMDC,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The rapid development of two-dimensional (2D) transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties. In particular, palladium diselenide (PdSe2) with a novel pentagonal structure and unique physical characteristics have recently attracted extensive research interest. Consequently, tremendous research progress has been achieved regarding the physics, chemistry, and electronics of PdSe2. Accordingly, in this review, we recapitulate and summarize the most recent research on PdSe2, including its structure, properties, synthesis, and applications. First, a mechanical exfoliation method to obtain PdSe2 nanosheets is introduced, and large-area synthesis strategies are explained with respect to chemical vapor deposition and metal selenization. Next, the electronic and optoelectronic properties of PdSe2 and related heterostructures, such as field-effect transistors, photodetectors, sensors, and thermoelectric devices, are discussed. Subsequently, the integration of systems into infrared image sensors on the basis of PdSe2 van der Waals heterostructures is explored. Finally, future opportunities are highlighted to serve as a general guide for physicists, chemists, materials scientists, and engineers. Therefore, this comprehensive review may shed light on the research conducted by the 2D material community.
Center for Advancing Electronics Dresden Technische Universität Dresden 01069 Dresden Germany
Dresden Center for Intelligent Materials Technische Universität Dresden 01062 Dresden Germany
Institute for Complex Materials IFW Dresden 20 Helmholtz Strasse 01069 Dresden Germany
Zobrazit více v PubMed
Saito Y, Ge J, Watanabe K, Taniguchi T, Young AF. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 2020;16(9):926–930. doi: 10.1038/s41567-020-0928-3. DOI
Jin C, Kim J, Utama MIB, Regan EC, Kleemann H, et al. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science. 2018;360(6391):893–896. doi: 10.1126/science.aao3503. PubMed DOI
Pang Y, Yang Z, Yang Y, Ren TL. Wearable electronics based on 2D materials for human physiological information detection. Small. 2020;16(15):1901124. doi: 10.1002/smll.201901124. PubMed DOI
Agrawal AV, Kumar N, Kumar M. Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 2021;13(1):38. doi: 10.1007/s40820-020-00558-3. PubMed DOI PMC
Holden NE, Coplen TB, Böhlke JK, Tarbox LV, Benefield J, et al. IUPAC periodic table of the elements and isotopes (IPTEI) for the education community (IUPAC Technical Report) Pure Appl. Chem. 2018;90(12):1833–2092. doi: 10.1515/pac-2015-0703. DOI
Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016;10(4):216–226. doi: 10.1038/nphoton.2015.282. DOI
Zeng L, Lin S, Lou Z, Yuan H, Long H, et al. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018;10(4):352–362. doi: 10.1038/s41427-018-0035-4. DOI
Kempt R, Kuc A, Heine T. Two-dimensional noble-metal chalcogenides and phosphochalcogenides. Angew. Chem. Int. Ed. 2020;59(24):9242–9254. doi: 10.1002/anie.201914886. PubMed DOI PMC
Ahmad S. Strain dependent tuning electronic properties of noble metal di chalcogenides PdX2 (X = S, Se) mono-layer. Mater. Chem. Phys. 2017;198(1):162–166. doi: 10.1016/j.matchemphys.2017.05.060. DOI
Zeng L, Wu D, Jie J, Ren X, Hu X, et al. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 microm. Adv. Mater. 2020;32(52):2004412. doi: 10.1002/adma.202004412. PubMed DOI
Zhao Y, Qiao J, Yu Z, Yu P, Xu K, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017;29(5):1604230. doi: 10.1002/adma.201604230. PubMed DOI
Yang H, Li Y, Yang Z, Shi X, Lin Z, et al. First-principles calculations of the electronic properties of two-dimensional pentagonal structure XS2 (X=Ni, Pd, Pt) Vacuum. 2020;174(1):109176. doi: 10.1016/j.vacuum.2020.109176. DOI
Saraf D, Chakraborty S, Kshirsagar A, Ahuja R. In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping. Nano Energy. 2018;49(4):283–289. doi: 10.1016/j.nanoen.2018.04.019. DOI
Ghorbani-Asl M, Kuc A, Miro P, Heine T. A single-material logical junction based on 2D Crystal PdS2. Adv. Mater. 2016;28(5):853–856. doi: 10.1002/adma.201504274. PubMed DOI
Oyedele AD, Yang S, Liang L, Puretzky AA, Wang K, et al. PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017;139(40):14090–14097. doi: 10.1021/jacs.7b04865. PubMed DOI
Gu Y, Cai H, Dong J, Yu Y, Hoffman AN, et al. Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater. 2020;32(19):1906238. doi: 10.1002/adma.201906238. PubMed DOI
Chow WL, Yu P, Liu F, Hong J, Wang X, et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 2017;29(21):1602969. doi: 10.1002/adma.201602969. PubMed DOI
Puretzky AA, Oyedele AD, Xiao K, Haglund AV, Sumpter BG, et al. Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2D Mater. 2018;5(3):35016. doi: 10.1088/2053-1583/aabe4d. DOI
Liang Q, Wang Q, Zhang Q, Wei J, Lim SX, et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019;31(24):1807609. doi: 10.1002/adma.201807609. PubMed DOI
Yang H, Kim SW, Chhowalla M, Lee YH. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 2017;13(10):931–937. doi: 10.1038/nphys4188. DOI
Wu D, Guo J, Du J, Xia C, Zeng L, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano. 2019;13(9):9907–9917. doi: 10.1021/acsnano.9b03994. PubMed DOI
Tai KL, Chen J, Wen Y, Park H, Zhang Q, et al. Phase variations and layer epitaxy of 2D PdSe2 GRown on 2D monolayers by direct selenization of molecular Pd precursors. ACS Nano. 2020;14(9):11677–11690. doi: 10.1021/acsnano.0c04230. PubMed DOI
Jakhar M, Singh J, Kumar A, Tankeshwar K. Pressure and electric field tuning of Schottky contacts in PdSe2/ZT-MoSe2 van der Waals heterostructure. Nanotechnology. 2020;31(14):145710. doi: 10.1088/1361-6528/ab5de1. PubMed DOI
Afzal AM, Iqbal MZ, Mumtaz S, Akhtar I. Multifunctional and high-performance GeSe/PdSe2 heterostructure device with a fast photoresponse. J. Mater. Chem. C. 2020;8(14):4743–4753. doi: 10.1039/d0tc00004c. DOI
Wu D, Jia C, Shi F, Zeng L, Lin P, et al. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A. 2020;8(7):3632–3642. doi: 10.1039/c9ta13611h. DOI
Zeng LH, Chen QM, Zhang ZX, Wu D, Yuan H, et al. Multilayered PdSe2/perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 2019;6(19):1901134. doi: 10.1002/advs.201901134. PubMed DOI PMC
Sun J, Shi H, Siegrist T, Singh DJ. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 2015;107(15):153902. doi: 10.1063/1.4933302. DOI
Grønvold F, Røst E. The crystal structure of PdSe2 and PdS2. Acta Crystallogr. 1957;10(4):329–331. doi: 10.1107/s0365110x57000948. DOI
Zhong J, Yu J, Cao L, Zeng C, Ding J, et al. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020;13(6):1780–1786. doi: 10.1007/s12274-020-2804-y. DOI
Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, et al. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016;28(12):2399–2407. doi: 10.1002/adma.201504572. PubMed DOI
Kuklin AV, Ågren H. Quasiparticle electronic structure and optical spectra of single-layer and bilayer PdSe2: Proximity and defect-induced band gap renormalization. Phys. Rev. B. 2019;99(24):2469–9950. doi: 10.1103/PhysRevB.99.245114. DOI
Zhao X, Zhao Q, Zhao B, Dai X, Wei S, et al. Electronic and optical properties of PdSe2 from monolayer to trilayer. Superlattices Microstr. 2020;142(4):106514. doi: 10.1016/j.spmi.2020.106514. DOI
Lei W, Cai B, Zhou H, Heymann G, Tang X, et al. Ferroelastic lattice rotation and band-gap engineering in quasi 2D layered-structure PdSe2 under uniaxial stress. Nanoscale. 2019;11(25):12317–12325. doi: 10.1039/c9nr03101d. PubMed DOI
Zhao X, Qiu B, Hu G, Yue W, Ren J, et al. Spin polarization properties of pentagonal PdSe(2) induced by 3D transition-metal doping: first-principles calculations. Materials. 2018;11(11):2339. doi: 10.3390/ma11112339. PubMed DOI PMC
Zhang S-H, Liu B-G. Hole-doping-induced half-metallic ferromagnetism in a highly-air-stable PdSe2 monolayer under uniaxial stress. J. Mater. Chem. C. 2018;6(25):6792–6798. doi: 10.1039/c8tc01450g. DOI
Deng S, Li L, Zhang Y. Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices. ACS Appl. Nano Mater. 2018;1(4):1932–1939. doi: 10.1021/acsanm.8b00363. DOI
Liu G, Zeng QM, Zhu PF, Quhe RG, Lu PF. Negative Poisson's ratio in monolayer PdSe2. Comput. Mater. Sci. 2019;160(1):309–314. doi: 10.1016/j.commatsci.2019.01.024. DOI
ElGhazali MA, Naumov PG, Mirhosseini H, Suss V, Muchler L, et al. Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2. Phys. Rev. B. 2017;96(6):060509. doi: 10.1103/PhysRevB.96.060509. DOI
Yu J, Kuang X, Gao Y, Wang Y, Chen K, et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 2020;20(2):1172–1182. doi: 10.1021/acs.nanolett.9b04598. PubMed DOI
Lei W, Zhang S, Heymann G, Tang X, Wen J, et al. A new 2D high-pressure phase of PdSe2 with high-mobility transport anisotropy for photovoltaic applications. J. Mater. Chem. C. 2019;7(7):2096–2105. doi: 10.1039/c8tc06050a. DOI
Walmsley TS, Andrews K, Wang T, Haglund A, Rijal U, et al. Near-infrared optical transitions in PdSe2 phototransistors. Nanoscale. 2019;11(30):14410–14416. doi: 10.1039/c9nr03505b. PubMed DOI
Sun M, Chou JP, Shi L, Gao J, Hu A, et al. Few-Layer PdSe2 sheets: promising thermoelectric materials driven by high valley convergence. ACS Omega. 2018;3(6):5971–5979. doi: 10.1021/acsomega.8b00485. PubMed DOI PMC
Cai Y, Zhang G, Zhang YW. Polarity-reversed robust carrier mobility in monolayer MoS(2) nanoribbons. J. Am. Chem. Soc. 2014;136(17):6269–6275. doi: 10.1021/ja4109787. PubMed DOI
Ge X-J, Qin D, Yao K-L, Lü J-T. First-principles study of thermoelectric transport properties of monolayer gallium chalcogenides. J. Phys. D-Appl. Phys. 2017;50(40):405301. doi: 10.1088/1361-6463/aa85b4. DOI
Nguyen GD, Liang L, Zou Q, Fu M, Oyedele AD, et al. 3D imaging and manipulation of subsurface selenium vacancies in PdSe2. Phys. Rev. Lett. 2018;121(8):086101. doi: 10.1103/PhysRevLett.121.086101. PubMed DOI
Lin J, Zuluaga S, Yu P, Liu Z, Pantelides ST, et al. Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 2017;119(1):016101. doi: 10.1103/PhysRevLett.119.016101. PubMed DOI
Chen J, Ryu GH, Sinha S, Warner JH. Atomic structure and dynamics of defects and grain boundaries in 2D Pd2Se3 Monolayers. ACS Nano. 2019;13(7):8256–8264. doi: 10.1021/acsnano.9b03645. PubMed DOI
Zuluaga S, Lin J, Suenaga K, Pantelides ST. Two-dimensional PdSe2-Pd2Se3 junctions can serve as nanowires. 2D Mater. 2018;5(3):035025. doi: 10.1088/2053-1583/aac34c. DOI
Ryu GH, Zhu T, Chen J, Sinha S, Shautsova V. Striated 2D lattice with sub-nm 1D etch channels by controlled thermally induced phase transformations of PdSe2. Adv. Mater. 2019;31(46):1904251. doi: 10.1002/adma.201904251. PubMed DOI
Shautsova V, Sinha S, Hou L, Zhang Q, Tweedie M, et al. Direct laser patterning and phase transformation of 2D PdSe2 films for on-demand device fabrication. ACS Nano. 2019;13(12):14162–14171. doi: 10.1021/acsnano.9b06892. PubMed DOI
Takabatake T, Ishikawa M, Jorda JL. Superconductivity and phase relations in the Pd-Se system. J. Less Common Met. 1987;134(1):79–89. doi: 10.1016/0022-5088(87)90444-9. DOI
Oyedele AD, Yang S, Feng T, Haglund AV, Gu Y, et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 2019;141(22):8928–8936. doi: 10.1021/jacs.9b02593. PubMed DOI
Wang D, Luo F, Lu M, Xie X, Huang L, et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts. Small. 2019;15(40):1804404. doi: 10.1002/smll.201804404. PubMed DOI
Long M, Wang Y, Wang P, Zhou X, Xia H, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano. 2019;13(2):2511–2519. doi: 10.1021/acsnano.8b09476. PubMed DOI
Velicky M, Donnelly GE, Hendren WR, McFarland S, Scullion D, et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano. 2018;12(10):10463–10472. doi: 10.1021/acsnano.8b06101. PubMed DOI
Heyl M, Burmeister D, Schultz T, Pallasch S, Ligorio G, et al. Thermally activated gold-mediated transition metal dichalcogenide exfoliation and a unique gold-mediated transfer. Phys. Status Solidi (RRL) 2020;14(11):2000408. doi: 10.1002/pssr.202000408. DOI
Desai SB, Madhvapathy SR, Amani M, Kiriya D, Hettick M, et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 2016;28(21):4053–4058. doi: 10.1002/adma.201506171. PubMed DOI
Huang Y, Pan YH, Yang R, Bao LH, Meng L, et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020;11(1):2453. doi: 10.1038/s41467-020-16266-w. PubMed DOI PMC
Zhao D, Xie S, Wang Y, Zhu H, Chen L, et al. Synthesis of large-scale few-layer PtS2 films by chemical vapor deposition. AIP Adv. 2019;9(2):025225. doi: 10.1063/1.5086447. DOI
Jia L, Wu J, Yang T, Jia B, Moss DJ. Large third-order optical kerr nonlinearity in nanometer-thick PdSe2 2D dichalcogenide films: implications for nonlinear photonic devices. ACS Appl. Nano Mater. 2020;3(7):6876–6883. doi: 10.1021/acsanm.0c01239. DOI
Zhou J, Lin J, Huang X, Zhou Y, Chen Y, et al. A library of atomically thin metal chalcogenides. Nature. 2018;556(7701):355–359. doi: 10.1038/s41586-018-0008-3. PubMed DOI
Zeng LH, Wu D, Lin SH, Xie C, Yuan HY, et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019;29(1):1806878. doi: 10.1002/adfm.201806878. DOI
Lu LS, Chen GH, Cheng HY, Chuu CP, Lu KC, et al. Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano. 2020;14(4):4963–4972. doi: 10.1021/acsnano.0c01139. PubMed DOI
Nguyen GD, Oyedele AD, Haglund A, Ko W, Liang L, et al. Atomically precise PdSe2 pentagonal nanoribbons. ACS Nano. 2020;14(2):1951–1957. doi: 10.1021/acsnano.9b08390. PubMed DOI
Zeng LH, Lin SH, Li ZJ, Zhang ZX, Zhang TF, et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018;28(16):1705970. doi: 10.1002/adfm.201705970. DOI
Hoffman AN, Gu Y, Tokash J, Woodward J, Xiao K, et al. Layer-by-layer thinning of pdse2 flakes via plasma induced oxidation and sublimation. ACS Appl. Mater. Interfaces. 2020;12(6):7345–7350. doi: 10.1021/acsami.9b21287. PubMed DOI
Q. Liang, Q. Zhang, J. Gou, T. Song, Arramel et al., Performance improvement by ozone treatment of 2D PdSe2. ACS Nano 14(5), 5668–5677 (2020). 10.1021/acsnano.0c00180 PubMed
Di Bartolomeo A, Urban F, Pelella A, Grillo A, Passacantando M, et al. Electron irradiation of multilayer PdSe2 field effect transistors. Nanotechnology. 2020;31(37):375204. doi: 10.1088/1361-6528/ab9472. PubMed DOI
Hassan A, Guo Y, Wang Q. Performance of the pentagonal PdSe2 sheet as a channel material in contact with metal surfaces and graphene. ACS Appl. Electron. Mater. 2020;2(8):2535–2542. doi: 10.1021/acsaelm.0c00438. DOI
Di Bartolomeo A, Pelella A, Liu X, Miao F, Passacantando M, et al. Pressure-tunable ambipolar conduction and hysteresis in thin palladium diselenide field effect transistors. Adv. Funct. Mater. 2019;29(29):1902483. doi: 10.1002/adfm.201902483. DOI
Gao J, Gao Y, Han Y, Pang J, Wang C, et al. Ultrasensitive label-free MiRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Appl. Electron. Mater. 2020;2(4):1090–1098. doi: 10.1021/acsaelm.0c00095. DOI
Tankut A, Karaman M, Yildiz I, Canli S, Turan R. Effect of Al vacuum annealing prior to a-Si deposition on aluminum-induced crystallization. Phys. Status Solidi A Appl. Mater. Sci. 2015;212(12):2702–2707. doi: 10.1002/pssa.201532857. DOI
Takenobu T, Kanbara T, Akima N, Takahashi T, Shiraishi M, et al. Control of carrier density by a solution method in carbon-nanotube devices. Adv. Mater. 2005;17(20):2430–2434. doi: 10.1002/adma.200500759. DOI
Giubileo F, Grillo A, Iemmo L, Luongo G, Urban F, et al. Environmental effects on transport properties of PdSe2 field effect transistors. Mater. Today Proc. 2020;20(1):50–53. doi: 10.1016/j.matpr.2019.08.226. DOI
Xia GT, Huang YN, Li FJ, Wang LC, Pang JB, et al. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Front. Chem. Sci. Eng. 2020;14(6):1039–1051. doi: 10.1007/s11705-019-1901-5. DOI
Chen D, Liu Z, Li Y, Sun D, Liu X, et al. Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-skin with four-dimensional resolution and application for detecting motion direction and airflow rate. ACS Appl. Mater. Interfaces. 2020;12(27):30896–30904. doi: 10.1021/acsami.0c02640. PubMed DOI
Zhou Y, Wang Y, Wang K, Kang L, Peng F, et al. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Appl. Energy. 2020;260(1):114169. doi: 10.1016/j.apenergy.2019.114169. DOI
Shang X, Li S, Wang K, Teng X, Wang X, et al. MnSe2/Se composite nanobelts as an improved performance anode for lithium storage. Int. J. Electrochem. Sci. 2019;14(1):6000–6008. doi: 10.20964/2019.07.37. DOI
Bu C, Li F, Yin K, Pang J, Wang L, et al. Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Appl. Electron. Mater. 2020;2(4):863–878. doi: 10.1021/acsaelm.0c00022. DOI
Dhanabalan SC, Ponraj JS, Zhang H, Bao Q. Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale. 2016;8(12):6410–6434. doi: 10.1039/c5nr09111j. PubMed DOI
Di Bartolomeo A, Pelella A, Urban F, Grillo A, Iemmo L, et al. Field emission in ultrathin PdSe2 back-gated transistors. Adv. Electron. Mater. 2020;6(7):2000094. doi: 10.1002/aelm.202000094. DOI
Zhuo R, Zeng L, Yuan H, Wu D, Wang Y, et al. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2018;12(1):183–189. doi: 10.1007/s12274-018-2200-z. DOI
Buscema M, Groenendijk DJ, Blanter SI, Steele GA, van der Zant HS, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014;14(6):3347–3352. doi: 10.1021/nl5008085. PubMed DOI
Wan X, Xu Y, Guo H, Shehzad K, Ali A, et al. A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? NPJ 2D Mater. Appl. 2017;1(1):2397–7132. doi: 10.1038/s41699-017-0008-4. DOI
Zhuo R, Wang Y, Wu D, Lou Z, Shi Z, et al. High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p–n heterojunction. J. Mater. Chem. C. 2018;6(2):299–303. doi: 10.1039/c7tc04754a. DOI
Mukhokosi EP, Krupanidhi SB, Nanda KK. Band gap engineering of hexagonal SnSe2 nanostructured thin films for infra-red photodetection. Sci. Rep. 2017;7(1):15215. doi: 10.1038/s41598-017-15519-x. PubMed DOI PMC
Luo LB, Wang D, Xie C, Hu JG, Zhao XY, et al. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 2019;29(22):1900849. doi: 10.1002/adfm.201900849. DOI
Yang Y, Liu SC, Wang X, Li Z, Zhang Y, et al. Polarization-sensitive ultraviolet photodetection of anisotropic 2D GeS2. Adv. Funct. Mater. 2019;29(16):1900411. doi: 10.1002/adfm.201900411. DOI
Chu F, Chen M, Wang Y, Xie Y, Liu B, et al. A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. J. Mater. Chem. C. 2018;6(10):2509–2514. doi: 10.1039/c7tc05488b. DOI
Venuthurumilli PK, Ye PD, Xu X. Plasmonic Resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano. 2018;12(5):4861–4867. doi: 10.1021/acsnano.8b01660. PubMed DOI
Yang Y, Liu SC, Yang W, Li Z, Wang Y, et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 2018;140(11):4150–4156. doi: 10.1021/jacs.8b01234. PubMed DOI
Bullock J, Amani M, Cho J, Chen Y-Z, Ahn GH, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photon. 2018;12(10):601–607. doi: 10.1038/s41566-018-0239-8. DOI
Du J, Zhang M, Guo Z, Chen J, Zhu X, et al. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 2017;7(1):42357. doi: 10.1038/srep42357. PubMed DOI PMC
Ma YF, Zhang SC, Din SJ, Liu XX, Yu X, et al. Passively Q-switched Nd:GdLaNbO4 laser based on 2D PdSe2 nanosheet. Opt. Laser Technol. 2020;124(1):105959. doi: 10.1016/j.optlastec.2019.105959. DOI
Ma YF, Peng ZF, Ding SJ, Sun HY, Peng F, et al. Two-dimensional WS2 nanosheet based passively Q-switched Nd:GdLaNbO4 laser. Opt. Laser Technnol. 2019;115(1):104–108. doi: 10.1016/j.optlastec.2019.02.015. DOI
Cheng PK, Tang CY, Ahmed S, Qiao J, Zeng LH, et al. Utilization of group 10 2D TMDs-PdSe2 as a nonlinear optical material for obtaining switchable laser pulse generation modes. Nanotechnology. 2021;32(5):055201. doi: 10.1088/1361-6528/abc1a2. PubMed DOI
Pang J, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 2018;8(8):1702093. doi: 10.1002/aenm.201702093. DOI
Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, et al. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019;48(1):72–133. doi: 10.1039/c8cs00324f. PubMed DOI
Olszowska K, Pang J, Wrobel PS, Zhao L, Ta HQ, et al. Three-dimensional nanostructured graphene: synthesis and energy, environmental and biomedical applications. Synth. Met. 2017;234(1):53–85. doi: 10.1016/j.synthmet.2017.10.014. DOI
Zhou J, Chen H, Zhang X, Chi K, Cai Y, et al. Substrate dependence on (Sb4Se6)n ribbon orientations of antimony selenide thin films: morphology, carrier transport and photovoltaic performance. J. Alloys Compd. 2021;862(1):158703. doi: 10.1016/j.jallcom.2021.158703. DOI
Shu F, Wang M, Pang J, Yu P. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil. Front. Chem. Sci. Eng. 2019;13(2):393–399. doi: 10.1007/s11705-018-1754-3. DOI
Wang K, Pang J, Li L, Zhou S, Li Y, et al. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Front. Chem. Sci. Eng. 2018;12(3):376–382. doi: 10.1007/s11705-018-1705-z. DOI
Yin Y, Pang J, Wang J, Lu X, Hao Q, et al. Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection. ACS Appl. Mater. Interfaces. 2019;11(17):15891–15897. doi: 10.1021/acsami.9b00733. PubMed DOI
Liang F-X, Wang J-Z, Zhang Z-X, Wang Y-Y, Gao Y, et al. Broadband, ultrafast, self-driven photodetector based on Cs-doped FAPbI3 perovskite thin film. Adv. Opt. Mater. 2017;5(22):1700654. doi: 10.1002/adom.201700654. DOI
Long M, Gao A, Wang P, Xia H, Ott C, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017;3(6):e1700589. doi: 10.1126/sciadv.1700589. PubMed DOI PMC
Yu X, Yu P, Wu D, Singh B, Zeng Q, et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 2018;9(1):1545. doi: 10.1038/s41467-018-03935-0. PubMed DOI PMC
Hsu AL, Herring PK, Gabor NM, Ha S, Shin YC, et al. Graphene-based thermopile for thermal imaging applications. Nano Lett. 2015;15(11):7211–7216. doi: 10.1021/acs.nanolett.5b01755. PubMed DOI
Piotrowski J, Rogalski A. Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 2004;46(1–2):115–131. doi: 10.1016/j.infrared.2004.03.016. DOI
Cao Y, Zhu X, Chen H, Zhang X, Zhouc J, et al. Towards high efficiency inverted Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells. 2019;200(1):109945. doi: 10.1016/j.solmat.2019.109945. DOI
Cao Y, Zhu X, Jiang J, Liu C, Zhou J, et al. Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. Sol. Energy Mater. Sol. Cells. 2020;206(1):110279. doi: 10.1016/j.solmat.2019.110279. DOI
Jiang J, Meng F, Cheng Q, Wang A, Chen Y, et al. Low lattice mismatch InSe–Se vertical van der Waals heterostructure for high-performance transistors via strong fermi-level depinning. Small Methods. 2020;4(8):2000238. doi: 10.1002/smtd.202000238. DOI
Jiang J, Meng F, Cheng Q, Wang A, Chen Y, et al. Low lattice mismatch InSe–Se vertical van der Waals heterostructure for high-performance transistors via strong fermi-level depinning (Small Methods 8/2020) Small Methods. 2020;4(8):2070032. doi: 10.1002/smtd.202070032. DOI
Wu C-C, Jariwala D, Sangwan VK, Marks TJ, Hersam MC, et al. Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. J. Phys. Chem. Lett. 2013;4(15):2508–2513. doi: 10.1021/jz401199x. DOI
Xue F, Chen L, Chen J, Liu J, Wang L, et al. p-Type MoS2 and n-type ZnO diode and its performance enhancement by the piezophototronic effect. Adv. Mater. 2016;28(17):3391–3398. doi: 10.1002/adma.201506472. PubMed DOI
Li D, Chen M, Sun Z, Yu P, Liu Z, et al. Two-dimensional non-volatile programmable p–n junctions. Nat. Nanotechnol. 2017;12(9):901–906. doi: 10.1038/nnano.2017.104. PubMed DOI
Zhang X, Grajal J, Vazquez-Roy JL, Radhakrishna U, Wang X, et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature. 2019;566(7744):368–372. doi: 10.1038/s41586-019-0892-1. PubMed DOI
Afzal AM, Dastgeer G, Iqbal MZ, Gautam P, Faisal MM. High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces. 2020;12(17):19625–19634. doi: 10.1021/acsami.9b22898. PubMed DOI
Leñero-Bardallo JA, Carmona-Galán R, Rodríguez-Vázquez A. Applications of event-based image sensors—review and analysis. Int. J. Circ. Theor. Appl. 2018;46(9):1620–1630. doi: 10.1002/cta.2546. DOI
Liang FX, Zhao XY, Jiang JJ, Hu JG, Xie WQ, et al. Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2 /pyramid Si heterojunction. Small. 2019;15(44):1903831. doi: 10.1002/smll.201903831. PubMed DOI
Ibrahim I, Kalbacova J, Engemaier V, Pang JB, Rodriguez RD, et al. Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem. Mater. 2015;27(17):5964–5973. doi: 10.1021/acs.chemmater.5b02037. DOI
Pang J, Mendes RG, Wrobel PS, Wlodarski MD, Ta HQ, et al. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano. 2017;11(2):1946–1956. doi: 10.1021/acsnano.6b08069. PubMed DOI
Pang J, Bachmatiuk A, Ibrahim I, Fu L, Placha D, et al. CVD growth of 1D and 2D sp2 carbon nanomaterials. J. Mater. Sci. 2015;51(2):640–667. doi: 10.1007/s10853-015-9440-z. DOI
Soni A, Zhao L, Ta HQ, Shi Q, Pang J, et al. Facile graphitization of silicon nano-particles with ethanol based chemical vapor deposition. Nano-Struct. Nano-Objects. 2018;16(1):38–44. doi: 10.1016/j.nanoso.2018.04.001. DOI
Sun B, Pang J, Cheng Q, Zhang S, Zhang C, et al. Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications. Adv. Mater. Technol. 2021;1:2000744. doi: 10.1002/admt.202000744. DOI
Martynkova GS, Becerik F, Placha D, Pang J, Akbulut H, et al. Effect of milling and annealing on carbon-silver system. J. Nanosci. Nanotechnol. 2019;19(5):2770–2774. doi: 10.1166/jnn.2019.15869. PubMed DOI
Rummeli MH, Gorantla S, Bachmatiuk A, Phieler J, Geissler N, et al. On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem. Mater. 2013;25(24):4861–4866. doi: 10.1021/cm401669k. DOI
Pang JB, Bachmatiuk A, Fu L, Yan CL, Zeng MQ, et al. Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition. J. Phys. Chem. C. 2015;119(23):13363–13368. doi: 10.1021/acs.jpcc.5b03911. DOI
Pang JB, Bachmatiuk A, Fu L, Mendes RG, Libera M, et al. Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Adv. 2015;5(75):60884–60891. doi: 10.1039/c5ra09405d. DOI
Santhosh NM, Filipič G, Kovacevic E, Jagodar A, Berndt J, et al. N-graphene nanowalls via plasma nitrogen incorporation and substitution: the experimental evidence. Nano-Micro Lett. 2020;12(1):53. doi: 10.1007/s40820-020-0395-5. PubMed DOI PMC
Mendes RG, Pang J, Bachmatiuk A, Ta HQ, Zhao L, et al. Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano. 2019;13(2):978–995. doi: 10.1021/acsnano.8b08079. PubMed DOI
Zhang D, Liu T, Cheng J, Cao Q, Zheng G, et al. Lightweight and high-performance microwave absorber based on 2D WS2–RGO heterostructures. Nano-Micro Lett. 2019;11(1):38. doi: 10.1007/s40820-019-0270-4. PubMed DOI PMC
K. Persson, Materials Data on PdSe2 (SG:61) by Materials Project. 10.17188/1199960
Feng L-Y, Villaos RAB, Huang Z-Q, Hsu C-H, Chuang F-C. Layer-dependent band engineering of Pd dichalcogenides: a first-principles study. New J. Phys. 2020;22(5):053010. doi: 10.1088/1367-2630/ab7d7a. DOI
K. Persson, Materials Data on PdS2 (SG:61) by Materials Project. 10.17188/1189716
K. Persson. Materials Data on Te2Pd (SG:164) by Materials Project. 10.17188/1307608
Anemone G, Casado Aguilar P, Garnica M, Calleja F, Al Taleb A, et al. Electron–phonon coupling in superconducting 1T-PdTe2. NPJ 2D Mater. Appl. 2021;5(1):25. doi: 10.1038/s41699-021-00204-5. DOI
Madhu RN. Singh, Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell. Int. J. Hydrogen Energy. 2011;36(16):10006–10012. doi: 10.1016/j.ijhydene.2011.05.069. DOI
Qin D, Yan P, Ding G, Ge X, Song H, et al. Monolayer PdSe2: a promising two-dimensional thermoelectric material. Sci. Rep. 2018;8(1):2764. doi: 10.1038/s41598-018-20918-9. PubMed DOI PMC
Zhang G, Amani M, Chaturvedi A, Tan C, Bullock J, et al. Optical and electrical properties of two-dimensional palladium diselenide. Appl. Phys. Lett. 2019;114(25):253102. doi: 10.1063/1.5097825. DOI
Hoffman AN, Gu Y, Liang L, Fowlkes JD, Xiao K, et al. Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. NPJ 2D Mater. Appl. 2019;3(1):50. doi: 10.1038/s41699-019-0132-4. DOI
Fang H, Hu W. Photogating in low dimensional photodetectors. Adv. Sci. 2017;4(12):1700323. doi: 10.1002/advs.201700323. PubMed DOI PMC
Miro P, Ghorbani-Asl M, Heine T. Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. Angew. Chem. Int. Ed. 2014;53(11):3015–3018. doi: 10.1002/anie.201309280. PubMed DOI
Li L, Wang W, Chai Y, Li H, Tian M, et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater. 2017;27(27):1701011. doi: 10.1002/adfm.201701011. DOI
Xu H, Huang HP, Fei H, Feng J, Fuh HR, et al. Strategy for fabricating wafer-scale platinum disulfide. ACS Appl. Mater. Interfaces. 2019;11(8):8202–8209. doi: 10.1021/acsami.8b19218. PubMed DOI
Zhang E, Jin Y, Yuan X, Wang W, Zhang C, et al. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015;25(26):4076–4082. doi: 10.1002/adfm.201500969. DOI
Shim J, Oh A, Kang DH, Oh S, Jang SK, et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016;28(32):6985–6992. doi: 10.1002/adma.201601002. PubMed DOI
Zhang E, Wang P, Li Z, Wang H, Song C, et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano. 2016;10(8):8067–8077. doi: 10.1021/acsnano.6b04165. PubMed DOI
Hafeez M, Gan L, Li H, Ma Y, Zhai T. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 2016;28(37):8296–8301. doi: 10.1002/adma.201601977. PubMed DOI
Feng W, Wu J-B, Li X, Zheng W, Zhou X, et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C. 2015;3(27):7022–7028. doi: 10.1039/c5tc01208b. DOI
Dai M, Chen H, Feng R, Feng W, Hu Y, et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano. 2018;12(8):8739–8747. doi: 10.1021/acsnano.8b04931. PubMed DOI
Ye J, Soeda S, Nakamura Y, Nittono O. Crystal structures and phase transformation in In2Se3 compound semiconductor. Jpn. J. Appl. Phys. 1998;37:4264–4271. doi: 10.1143/jjap.37.4264. DOI
Feng W, Gao F, Hu Y, Dai M, Liu H, et al. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets. ACS Appl. Mater. Interfaces. 2018;10(33):27584–27588. doi: 10.1021/acsami.8b10194. PubMed DOI
Jacobs-Gedrim RB, Shanmugam M, Jain N, Durcan CA, Murphy MT, et al. Extraordinary photoresponse in two-dimensional In(2)Se(3) nanosheets. ACS Nano. 2014;8(1):514–521. doi: 10.1021/nn405037s. PubMed DOI
Amani M, Regan E, Bullock J, Ahn GH, Javey A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano. 2017;11(11):11724–11731. doi: 10.1021/acsnano.7b07028. PubMed DOI
Zheng D, Fang H, Long M, Wu F, Wang P, et al. High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition. ACS Nano. 2018;12(7):7239–7245. doi: 10.1021/acsnano.8b03291. PubMed DOI
Su G, Hadjiev VG, Loya PE, Zhang J, Lei S, et al. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015;15(1):506–513. doi: 10.1021/nl503857r. PubMed DOI
Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009;4(12):839–843. doi: 10.1038/nnano.2009.292. PubMed DOI
Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH, et al. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 2010;10(9):3464–3466. doi: 10.1021/nl101559n. PubMed DOI
Polat EO, Mercier G, Nikitskiy I, Puma E, Galan T, et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019;5(9):eaaw7846. doi: 10.1126/sciadv.aaw7846. PubMed DOI PMC
Yu X, Dong Z, Liu Y, Liu T, Tao J, et al. A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2. Nanoscale. 2016;8(1):327–332. doi: 10.1039/c5nr06869j. PubMed DOI
Zeng L, Tao L, Tang C, Zhou B, Long H, et al. High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci. Rep. 2016;6(1):20343. doi: 10.1038/srep20343. PubMed DOI PMC
Jiang J, Zhang Q, Wang A, Zhang Y, Meng F, Zhang C, Feng X, Feng Y, Gu L, Liu H, Han L. A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment. Small. 2019;15(36):1901791. doi: 10.1002/smll.201901791. PubMed DOI
Wang Q, Zhang Q, Zhao X, Zheng YJ, Wang J, et al. High-energy gain upconversion in monolayer tungsten disulfide photodetectors. Nano Lett. 2019;19(8):5595–5603. doi: 10.1021/acs.nanolett.9b02136. PubMed DOI
Zhang W, Chiu MH, Chen CH, Chen W, Li LJ, et al. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano. 2014;8(8):8653–8661. doi: 10.1021/nn503521c. PubMed DOI
Zhou H, Wang C, Shaw JC, Cheng R, Chen Y, et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015;15(1):709–713. doi: 10.1021/nl504256y. PubMed DOI PMC
Chen J, Wang Q, Sheng Y, Cao G, Yang P, et al. High-performance WSe2 photodetector based on a laser-induced p–n junction. ACS Appl. Mater. Interfaces. 2019;11(46):43330–43336. doi: 10.1021/acsami.9b13948. PubMed DOI
Lee HS, Min SW, Chang YG, Park MK, Nam T, et al. MoS(2) nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012;12(7):3695–3700. doi: 10.1021/nl301485q. PubMed DOI
Zhou YH, An HN, Gao C, Zheng ZQ, Wang B. UV–Vis-NIR photodetector based on monolayer MoS2. Mater. Lett. 2019;237(1):298–302. doi: 10.1016/j.matlet.2018.11.112. DOI
Wang W, Klots A, Prasai D, Yang Y, Bolotin KI, et al. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015;15(11):7440–7444. doi: 10.1021/acs.nanolett.5b02866. PubMed DOI
Jung C, Kim SM, Moon H, Han G, Kwon J, et al. Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 2015;5(1):15313. doi: 10.1038/srep15313. PubMed DOI PMC
Coehoorn R, Haas C, de Groot RA. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B. 1987;35(12):6203–6206. doi: 10.1103/physrevb.35.6203. PubMed DOI
Ko PJ, Abderrahmane A, Kim NH, Sandhu A. High-performance near-infrared photodetector based on nano-layered MoSe2. Semicond. Sci. Technol. 2017;32(6):065015. doi: 10.1088/1361-6641/aa6819. DOI
Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B. 2014;89(23):235319. doi: 10.1103/PhysRevB.89.235319. DOI
Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016;16(7):4648–4655. doi: 10.1021/acs.nanolett.6b01977. PubMed DOI
Qiao J, Kong X, Hu ZX, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014;5(1):4475. doi: 10.1038/ncomms5475. PubMed DOI PMC
Wang J, Rousseau A, Eizner E, Phaneuf-L’Heureux A-L, Schue L, et al. Spectral responsivity and photoconductive gain in thin film black phosphorus photodetectors. ACS Photon. 2019;6(12):3092–3099. doi: 10.1021/acsphotonics.9b00951. DOI
Zhou X, Hu X, Jin B, Yu J, Liu K, et al. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Adv. Sci. 2018;5(8):1800478. doi: 10.1002/advs.201800478. PubMed DOI PMC
Jia C, Wu D, Wu EP, Guo JW, Zhao ZH, et al. A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity. J. Mater. Chem. C. 2019;7(13):3817–3821. doi: 10.1039/c8tc06398b. DOI
Chai R, Chen Y, Zhong M, Yang H, Yan F, et al. Non-layered ZnSb nanoplates for room temperature infrared polarized photodetectors. J. Mater. Chem. C. 2020;8(19):6388–6395. doi: 10.1039/d0tc00755b. DOI
Deng S, Tao ML, Mei J, Li M, Zhang Y, et al. Optical and piezoelectric properties of strained orthorhombic PdS2. IEEE Trans. Nanotechnol. 2019;18(1):358–364. doi: 10.1109/Tnano.2019.2908221. DOI
Deng Y, Luo Z, Conrad NJ, Liu H, Gong Y, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano. 2014;8(8):8292–8299. doi: 10.1021/nn5027388. PubMed DOI
Yan F, Zhao L, Patane A, Hu P, Wei X, et al. Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. Nanotechnology. 2017;28(27):27LT01. doi: 10.1088/1361-6528/aa749e. PubMed DOI
Chen X, Chen H, Wang Z, Shan Y, Zhang DW, et al. Analysis of the relationship between the contact barrier and rectification ratio in a two-dimensional P–N heterojunction. Semicond. Sci. Technol. 2018;33(11):114012. doi: 10.1088/1361-6641/aae3aa. DOI
Murali K, Dandu M, Das S, Majumdar K. Gate-tunable WSe2/SnSe2 backward diode with ultrahigh-reverse rectification ratio. ACS Appl. Mater. Interfaces. 2018;10(6):5657–5664. doi: 10.1021/acsami.7b18242. PubMed DOI
Khan MA, Rathi S, Lim D, Yun SJ, Youn D-H, et al. Gate tunable self-biased diode based on few layered MoS2 and WSe2. Chem. Mater. 2018;30(3):1011–1016. doi: 10.1021/acs.chemmater.7b04865. DOI
Yang Z, Liao L, Gong F, Wang F, Wang Z, et al. WSe2/GeSe heterojunction photodiode with giant gate tunability. Nano Energy. 2018;49(1):103–108. doi: 10.1016/j.nanoen.2018.04.034. DOI
Lan C, Li C, Wang S, He T, Jiao T, et al. Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction. ACS Appl. Mater. Interfaces. 2016;8(28):18375–18382. doi: 10.1021/acsami.6b05109. PubMed DOI
Chu J, Wang F, Yin L, Lei L, Yan C, et al. High-performance ultraviolet photodetector based on a few-layered 2D NiPS3 nanosheet. Adv. Funct. Mater. 2017;27(32):1701342. doi: 10.1002/adfm.201701342. DOI
Ye L, Li H, Chen Z, Xu J. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photon. 2016;3(4):692–699. doi: 10.1021/acsphotonics.6b00079. DOI
Zhang Y, Yu Y, Mi L, Wang H, Zhu Z, et al. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small. 2016;12(8):1062–1071. doi: 10.1002/smll.201502923. PubMed DOI
Liu Q, Cook B, Gong M, Gong Y, Ewing D, et al. Printable transfer-free and wafer-size MoS2/graphene van der Waals heterostructures for high-performance photodetection. ACS Appl. Mater. Interfaces. 2017;9(14):12728–12733. doi: 10.1021/acsami.7b00912. PubMed DOI
Gundimeda A, Krishna S, Aggarwal N, Sharma A, Sharma ND, et al. Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Appl. Phys. Lett. 2017;110(10):103507. doi: 10.1063/1.4978427. DOI
Wang P, Liu S, Luo W, Fang H, Gong F, et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017;29(16):1521–4095. doi: 10.1002/adma.201604439. PubMed DOI
Um DS, Lee Y, Lim S, Park J, Yen WC, et al. InGaAs nanomembrane/si van der waals heterojunction photodiodes with broadband and high photoresponsivity. ACS Appl. Mater. Interfaces. 2016;8(39):26105–26111. doi: 10.1021/acsami.6b06580. PubMed DOI
Zheng W, Lin R, Zhu Y, Zhang Z, Ji X, et al. Vacuum ultraviolet photodetection in two-dimensional oxides. ACS Appl. Mater. Interfaces. 2018;10(24):20696–20702. doi: 10.1021/acsami.8b04866. PubMed DOI
Zeng LH, Wang MZ, Hu H, Nie B, Yu YQ, et al. Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces. 2013;5(19):9362–9366. doi: 10.1021/am4026505. PubMed DOI
Li X, Zhu M, Du M, Lv Z, Zhang L, et al. High detectivity graphene-silicon heterojunction photodetector. Small. 2016;12(5):595–601. doi: 10.1002/smll.201502336. PubMed DOI
Zhang K, Fang X, Wang Y, Wan Y, Song Q, et al. Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces. 2017;9(6):5392–5398. doi: 10.1021/acsami.6b14483. PubMed DOI
Lan Y-S, Chen X-R, Hu C-E, Cheng Y, Chen Q-F. Penta-PdX2 (X = S, Se, Te) monolayers: promising anisotropic thermoelectric materials. J. Mater. Chem. A. 2019;7(18):11134–11142. doi: 10.1039/c9ta02138h. DOI