Multi-Layer Palladium Diselenide as a Contact Material for Two-Dimensional Tungsten Diselenide Field-Effect Transistors

. 2024 Mar 06 ; 14 (5) : . [epub] 20240306

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38470809

Grantová podpora
Y 1298 Austrian Science Fund FWF - Austria
POL_2D_PHYSICS (101075821) European Research Council - International

Tungsten diselenide (WSe2) has emerged as a promising ambipolar semiconductor material for field-effect transistors (FETs) due to its unique electronic properties, including a sizeable band gap, high carrier mobility, and remarkable on-off ratio. However, engineering the contacts to WSe2 remains an issue, and high contact barriers prevent the utilization of the full performance in electronic applications. Furthermore, it could be possible to tune the contacts to WSe2 for effective electron or hole injection and consequently pin the threshold voltage to either conduction or valence band. This would be the way to achieve complementary metal-oxide-semiconductor devices without doping of the channel material.This study investigates the behaviour of two-dimensional WSe2 field-effect transistors with multi-layer palladium diselenide (PdSe2) as a contact material. We demonstrate that PdSe2 contacts favour hole injection while preserving the ambipolar nature of the channel material. This consequently yields high-performance p-type WSe2 devices with PdSe2 van der Waals contacts. Further, we explore the tunability of the contact interface by selective laser alteration of the WSe2 under the contacts, enabling pinning of the threshold voltage to the valence band of WSe2, yielding pure p-type operation of the devices.

Zobrazit více v PubMed

Cao W., Bu H., Vinet M., Cao M., Takagi S., Hwang S., Ghani T., Banerjee K. The future transistors. Nature. 2023;620:501–515. doi: 10.1038/s41586-023-06145-x. PubMed DOI

Zhu K., Wen C., Aljarb A.A., Xue F., Xu X., Tung V., Zhang X., Alshareef H.N., Lanza M. The development of integrated circuits based on two-dimensional materials. Nat. Electron. 2021;11:775–785. doi: 10.1038/s41928-021-00672-z. DOI

Ahmad W., Gong Y., Abbas G., Khan K., Khan M., Ali G., Shuja A., Tareen A.K., Khan Q., Li D. Evolution of low-dimensional material-based field-effect transistors. Nanoscale. 2021;10:5162–5186. doi: 10.1039/D0NR07548E. PubMed DOI

Rawat A., Gupta A.K., Rawat B. Performance projection of 2D material-based CMO inverters for sub-10-nm channel length. IEEE Trans. Electron. Devices. 2021;68:3622–3629. doi: 10.1109/TED.2021.3072880. DOI

Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., Banerjee S.K., Colombo L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014;9:768–779. doi: 10.1038/nnano.2014.207. PubMed DOI

Li J., Chen X., Zhang D.W., Zhou P. Van-der-Waals heterostructure based field effect transistor application. Crystals. 2017;8:8. doi: 10.3390/cryst8010008. DOI

Illarionov Y.Y., Knobloch T., Jech M., Lanza M., Akinwande D., Vexler M.I., Mueller T., Lemme M.C., Fiori G., Schwierz F., et al. Insulators for 2D nanoelectronics: The gap to bridge. Nat. Commun. 2020;118:3385. doi: 10.1038/s41467-020-16640-8. PubMed DOI PMC

Arora A., Ganapathi K.L., Dixit T., Miryala M., Masato M., Rao M.S.R., Krishnan A. Thickness-Dependent Nonlinear Electrical Conductivity of Few-Layer Muscovite Mica. Phys. Rev. Appl. 2022;17:064042. doi: 10.1103/PhysRevApplied.17.064042. DOI

Zhou J., Lin J., Huang X., Zhou Y., Chen Y., Xia J., Wang H., Xie Y., Yu H., Lei J., et al. A library of atomically thin metal chalcogenides. Nature. 2018;556:355–359. doi: 10.1038/s41586-018-0008-3. PubMed DOI

Di Bartolomeo A. Emerging 2D materials and their van der Waals heterostructures. Nanomaterials. 2020;10:579. doi: 10.3390/nano10030579. PubMed DOI PMC

Cheng Q., Pang J., Sun D., Wang J., Zhang S., Liu F., Chen Y., Yang R., Liang N., Lu X., et al. WSe2 2D p-type semiconductor-based electronic devices for information technology: Design, preparation, and applications. InfoMat. 2020;102:656–697. doi: 10.1002/inf2.12093. DOI

Kumar R., Goel N., Hojamberdiev M., Kumar M. Transition metal dichalcogenides-based flexible gas sensors. Sens. Actuator A Phys. 2020;303:111875. doi: 10.1016/j.sna.2020.111875. DOI

Sumesh C.K., Peter S.C. Two-dimensional semiconductor transition metal based chalcogenide based heterostructures for water splitting applications. Dalton Trans. 2019;48:12772–12802. doi: 10.1039/C9DT01581G. PubMed DOI

Maniyar A., Choudhary S. Visible region absorption in TMDs/phosphorene heterostructures for use in solar energy conversion applications. RSC Adv. 2020;10:31730–31739. doi: 10.1039/D0RA05810F. PubMed DOI PMC

Wang C., Yang F., Gao Y. The highly-efficient light-emitting diodes based on transition metal dichalcogenides: From architecture to performance. Nanoscale Adv. 2020;2:4323–4340. doi: 10.1039/D0NA00501K. PubMed DOI PMC

Aslam M.A., Tran T.H., Supina A., Siri O., Meunier V., Watanabe K., Taniguchi T., Kralj M., Teichert C., Sheremet E., et al. Single-crystalline nanoribbon network field effect transistors from arbitrary two-dimensional materials. npj 2D Mater. Appl. 2022;6:76. doi: 10.1038/s41699-022-00356-y. DOI

Murastov G., Aslam M.A., Tran T.H., Lassnig A., Watanabe K., Taniguchi T., Wurster S., Nachtnebel M., Teichert C., Sheremet E., et al. Photoinduced edge-specific nanoparticle decoration of two-dimensional tungsten diselenide nanoribbons. Commun. Chem. 2023;6:166. doi: 10.1038/s42004-023-00975-6. PubMed DOI PMC

Pudasaini P.R., Oyedele A., Zhang C., Stanford M.G., Cross N., Wong A.T., Hoffman A.N., Xiao K., Duscher G., Mandrus D.G., et al. High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Res. 2018;11:722–730. doi: 10.1007/s12274-017-1681-5. DOI

Nan H., Zhou R., Gu X., Xiao S., Ostrikov K.K. Recent advances in plasma modification of 2D transition metal dichalcogenides. Nanoscale. 2019;11:19202–19213. doi: 10.1039/C9NR05522C. PubMed DOI

Kozhakhmetov A., Stolz S., Tan A.M.Z., Pendurthi R., Bachu S., Turker F., Alem N., Kachian J., Das S., Hennig R.G., et al. Controllable p-type doping of 2D WSe2 via vanadium substitution. Adv. Funct. Mater. 2021;31:2105252. doi: 10.1002/adfm.202105252. DOI

Grützmacher S., Heyl M., Nardi M.V., Koch N., List-Kratochvil E.J.W., Ligorio G. Local Manipulation of the Energy Levels of 2D TMDCs on the Microscale Level via Microprinted Self-Assembled Monolayers. Adv. Mater. Interf. 2023;10:2300276. doi: 10.1002/admi.202300276. DOI

Pang Y.-D., Wu E.-X., Xu Z.-H., Hu X.-D., Wu S., Xu L.-Y., Liu J. Effect of electrical contact on performance of WSe2 field effect transistors. Chin. Phys. B. 2021;30:068501. doi: 10.1088/1674-1056/abd752. DOI

Liu Y., Duan X., Shin H.-J., Park S., Huang Y., Duan X. Promises and prospects of two-dimensional transistors. Chin. Phys. B. 2021;519:43–53. doi: 10.1038/s41586-021-03339-z. PubMed DOI

Liao W., Zhao S., Li F., Wang C., Ge Y., Wang H., Wang S., Zhang H. Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: Recent advances and challenges. Nanoscale Horiz. 2020;5:787–807. doi: 10.1039/C9NH00743A. PubMed DOI

Rai A., Movva H.C.P., Roy A., Taneja D., Chowdhury S., Banerjee S.K. Progress in contact, doping and mobility engineering of MoS2: An atomically thin 2D semiconductor. Crystals. 2018;8:316. doi: 10.3390/cryst8080316. DOI

Poljak M., Matić M. Metallization-induced quantum limits of contact resistance in graphene nanoribbons with one-dimensional contacts. Materials. 2021;14:3670. doi: 10.3390/ma14133670. PubMed DOI PMC

Jain A., Szabó Á., Parzefall M., Bonvin E., Taniguchi T., Watanabe K., Bharadwaj P., Luisier M., Novotny L. One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 2019;19:6914–6923. doi: 10.1021/acs.nanolett.9b02166. PubMed DOI

Cheng Z., Yu Y., Singh S., Price K., Noyce S.G., Lin Y.-C., Cao L., Franklin A.D. Immunity to contact scaling in MoS2transistors using in situ edge contacts. Nano Lett. 2019;19:5077–5085. doi: 10.1021/acs.nanolett.9b01355. PubMed DOI

Das S., Chen H.-Y., Penumatcha A.V., Appenzeller J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013;13:100–105. doi: 10.1021/nl303583v. PubMed DOI

English C.D., Shine G., Dorgan V.E., Saraswat K.C., Pop E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016;16:3824–3830. doi: 10.1021/acs.nanolett.6b01309. PubMed DOI

Kwon G., Choi Y., Lee H., Kim H., Jeong J., Jeong K., Baik M., Kwon H., Ahn J., Lee E., et al. Interaction-and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 2022;5:241–247. doi: 10.1038/s41928-022-00746-6. DOI

Matković A., Petritz A., Schider G., Krammer M., Kratzer M., Karner-Petritz E., Fian A., Gold H., Gärtner M., Terfort A., et al. Interfacial band engineering of MoS2/gold interfaces using pyrimidine-containing self-assembled monolayers: Toward contact-resistance-free bottom-contacts. Adv. Electron. Matter. 2020;6:2000110. doi: 10.1002/aelm.202000110. DOI

Liu Y., Guo J., Zhu E., Liao L., Lee S.-J., Ding M., Shakir I., Gambin V., Huang Y., Duan X. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature. 2018;557:696–700. doi: 10.1038/s41586-018-0129-8. PubMed DOI

Liu G., Tian Z., Yang Z., Xue Z., Zhang M., Hu X., Wang Y., Yang Y., Chu P.K., Mei Y., et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat. Electron. 2022;5:275–280. doi: 10.1038/s41928-022-00764-4. DOI

Poljak M., Matić M., Župančić T., Zeljko A. Lower limits of contact resistance in phosphorene nanodevices with edge contacts. Nanomaterials. 2022;12:656. doi: 10.3390/nano12040656. PubMed DOI PMC

Poljak M., Matić M. Optimum Contact Configurations for Quasi-One-Dimensional Phosphorene Nanodevices. Nanomaterials. 2023;13:1759. doi: 10.3390/nano13111759. PubMed DOI PMC

Shen, Su P.C., Lin C., Chou Y., Cheng A.S., Park C.C., Chiu J.H., Lu M.H., Tang A.Y., Tavakoli H.L., et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature. 2021;593:211–217. doi: 10.1038/s41586-021-03472-9. PubMed DOI

Mootheri V., Arutchelvan G., Banerjee S., Sutar S., Leonhardt A., Boulon M., Huyghebaert C., Houssa M., Asselberghs I., Radu I., et al. Graphene based Van der Waals contacts on MoS2 field effect transistors. 2D Mater. 2020;8:015003. doi: 10.1088/2053-1583/abb959. DOI

Ryu H., Kim D., Kwon J., Park S.K., Lee W., Seo H., Watanabe K., Taniguchi T., Kim S., van der Zande A.M., et al. Fluorinated Graphene Contacts and Passivation Layer for MoS2 Field Effect Transistors. Adv. Electron. Matter. 2022;8:2101370. doi: 10.1002/aelm.202101370. DOI

Li Z., Wang Y., Jiang J., Liang Y., Zhong B., Zhang H., Yu K., Kan G., Zou M. Temperature-dependent Raman spectroscopy studies of 1–5-layer WSe2. Nano Res. 2020;13:591–595. doi: 10.1007/s12274-020-2669-0. DOI

Liu, Tan Y., Chou C., Nayak H., Wu A., Ghosh D., Chang R., Hao H.Y., Wang Y., Kim X., et al. Thermal oxidation of WSe2 nanosheets adhered on SiO2/Si substrates. Nano Lett. 2015;15:4979–4984. doi: 10.1021/acs.nanolett.5b02069. PubMed DOI

Illarionov Y.Y., Waltl M., Rzepa G., Knobloch T., Kim J.-S., Akinwande D., Grasser T. Highly-stable black phosphorus field-effect transistors with low density of oxide traps. npj 2D Mater. Appl. 2017;1:23. doi: 10.1038/s41699-017-0025-3. DOI

Wang J.-B., Ren Z., Hou Y., Yan X.-L., Liu P.-Z., Zhang H., Zhang H.-X., Guo J.-J. A review of graphene synthesis at low temperatures by CVD methods. New Carbon Mater. 2020;35:193–208. doi: 10.1016/S1872-5805(20)60484-X. DOI

Liu W., Kang J., Sarkar D., Khatami Y., Jena D., Banerjee K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013;13:1983–1990. doi: 10.1021/nl304777e. PubMed DOI

Zhang L., Zhang Y., Sun X., Jia K., Zhang Q., Wu Z., Yin H. High-performance multilayer WSe2 p-type field effect transistors with Pd contacts for circuit applications. J. Mater. Sci. Mater. Electron. 2021;32:17427–17435. doi: 10.1007/s10854-021-06274-x. DOI

Oyedele A.D., Yang S., Feng T., Haglund A.V., Gu Y., Puretzky A.A., Briggs D., Rouleau C.M., Chisholm M.F., Unocic R.R., et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 2019;141:8928–8936. doi: 10.1021/jacs.9b02593. PubMed DOI

Seo J.-E., Park E., Das T., Kwak J.Y., Chang J. Demonstration of PdSe2 CMOS Using Same Metal Contact in PdSe2 n-/p-MOSFETs through Thickness-Dependent Phase Transition. Adv. Electron. Mater. 2022;8:2200485. doi: 10.1002/aelm.202200485. DOI

Long M., Wang Y., Wang P., Zhou X., Xia H., Luo C., Huang S., Zhang G., Yan H., Fan Z., et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. Adv. Electron. Mater. 2019;13:2511–2519. doi: 10.1021/acsnano.8b09476. PubMed DOI

Gu Y., Cai H., Dong J., Yu Y., Hoffman A.N., Liu C., Oyedele A.D., Lin Y.C., Ge Z., Puretzky A.A., et al. Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater. 2020;32:1906238. doi: 10.1002/adma.201906238. PubMed DOI

Sun J., Shi H., Siegrist T., Singh D.J. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 2015;107:153902. doi: 10.1063/1.4933302. DOI

Liang Q., Wang Q., Zhang Q., Wei J., Lim S.X., Zhu R., Hu J., Wei W., Lee C., Sow C., et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019;31:1807609. doi: 10.1002/adma.201807609. PubMed DOI

Wang Y., Pang J., Cheng Q., Han L., Li Y., Meng X., Ibarlucea B., Zhao H., Yang F., Liu H., et al. Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano–Micro Lett. 2021;13:143. doi: 10.1007/s40820-021-00660-0. PubMed DOI PMC

Liang Q., Chen Z., Zhang Q., Wee A.T.S. Pentagonal 2D transition metal dichalcogenides: PdSe2 and beyond. Adv. Funct. Mater. 2022;32:2203555. doi: 10.1002/adfm.202203555. DOI

Oyedele A.D., Yang S., Liang L., Puretzky A.A., Wang K., Zhang J., Yu P., Pudasaini P.R., Ghosh A.W., Liu Z., et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017;139:14090–14097. doi: 10.1021/jacs.7b04865. PubMed DOI

Withanage S.S., Khondaker S.I. Low pressure CVD growth of 2D PdSe2 thin film and its application in PdSe2-MoSe2 vertical heterostructure. 2D Mater. 2022;9:025025. doi: 10.1088/2053-1583/ac5d83. DOI

Sata Y., Moriya R., Masubuchi S., Watanabe K., Taniguchi T., Machida T. n-and p-type carrier injections into WSe2 with van der Waals contacts of two-dimensional materials. Jpn. J. Appl. Phys. 2017;56:04CK09. doi: 10.7567/JJAP.56.04CK09. DOI

Laturia A., Van de Put M.L., Vandenberghe W.G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk. npj 2D Mater. Appl. 2018;2:6. doi: 10.1038/s41699-018-0050-x. DOI

Nečas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI

Zhou L., Ge C., Yang H., Sun Y., Zhang J. A high-pressure enhanced coupling effect between graphene electrical contacts and two-dimensional materials thereby improving the performance of their constituent FET devices. J. Mater. Chem. C. 2019;7:15171–15178. doi: 10.1039/C9TC04318G. DOI

Watson A.J., Lu W., Guimarães M.H.D., Stöhr M. Transfer of large-scale two-dimensional semiconductors: Challenges and developments. 2D Mater. 2021;8:032001. doi: 10.1088/2053-1583/abf234. DOI

Pan Y., Rahaman M., He L., Milekhin I., Manoharan G., Aslam M.A., Blaudeck T., Willert A., Matković A., Madeira T.I., et al. Exciton tuning in monolayer WSe2 via substrate induced electron doping. Nanoscale Adv. 2022;4:5102–5108. doi: 10.1039/D2NA00495J. PubMed DOI PMC

Allain A., Kang J., Banerjee K., Kis A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015;14:1195–1205. doi: 10.1038/nmat4452. PubMed DOI

Wang Y., Chhowalla M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 2022;4:101–112. doi: 10.1038/s42254-021-00389-0. PubMed DOI

Lee K., Ngo T.D., Lee S., Shin H., Choi M.S., Hone J., Yoo W.J. Effects of Oxygen Plasma Treatment on Fermi-Level Pinning and Tunneling at the Metal–Semiconductor Interface of WSe2 FETs. Adv. Electron. Mater. 2023;9:2200955. doi: 10.1002/aelm.202200955. DOI

Ngo T.D., Choi M.S., Lee M., Ali F., Hassan Y., Ali N., Liu S., Lee C., Hone J., Yoo W.J. Selective Electron Beam Patterning of Oxygen-Doped WSe2 for Seamless Lateral Junction Transistors. Adv. Sci. 2022;9:2202465. doi: 10.1002/advs.202202465. PubMed DOI PMC

Moon I., Lee S., Lee M., Kim C., Seol D., Kim Y., Kim K.H., Yeom G.Y., Teherani J.T., Hone J., et al. The device level modulation of carrier transport in a 2D WSe2 field effect transistor via a plasma treatment. Nanoscale. 2019;11:17368–17375. doi: 10.1039/C9NR05881H. PubMed DOI

Kang W.–M., Lee S.T., Cho I.–T., Park T.H., Shin H., Hwang C.S., Lee C., Hao H.Y., Park B.-G., Lee J.-H., et al. Multi-layer WSe2 field effect transistor with improved carrier-injection contact by using oxygen plasma treatment. Solid-State Electron. 2018;140:2–7.

Li Q., Song J., Besenbacher F., Dong M. Two-dimensional material confined water. Acc. Chem. Res. 2015;48:119–127. doi: 10.1021/ar500306w. PubMed DOI

Jain A., Bharadwaj P., Heeg S., Parzefall M., Taniguchi T., Watanabe K., Novotny L. Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology. 2018;29:265203. doi: 10.1088/1361-6528/aabd90. PubMed DOI

Wang W., Clark N., Hamer M., Carl A., Tovari E., Sullivan-Allsop S., Tillotson E., Gao Y., de Latour H., Selles F., et al. Clean assembly of van der Waals heterostructures using silicon nitride membranes. Nat. Electron. 2023;6:981–990. doi: 10.1038/s41928-023-01075-y. DOI

Purdie D.G., Pugno N.M., Taniguchi T., Watanabe K., Ferrari A.C., Lombardo A. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 2018;9:5387. doi: 10.1038/s41467-018-07558-3. PubMed DOI PMC

Jeon D., Kim H., Gu M., Kim T. Imaging Fermi-level hysteresis in nanoscale bubbles of few-layer MoS2. Commun. Mater. 2023;4:62. doi: 10.1038/s43246-023-00388-x. DOI

Zhang R., Drysdale D., Koutsos V., Cheung R. Controlled layer thinning and p-type doping of WSe2 by vapor XeF2. Adv. Funct. Mater. 2017;27:1702455. doi: 10.1002/adfm.201702455. DOI

Park W., Pak Y., Jang H.Y., Nam J.H., Kim T.H., Oh S., Choi S.M., Kim Y., Cho B. Improvement of the bias stress stability in 2D MoS2 and WS2 transistors with a TiO2 interfacial layer. Nanomaterials. 2019;9:1155. doi: 10.3390/nano9081155. PubMed DOI PMC

Ye M., Zhang D., Yap Y.K. Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics. 2017;6:43. doi: 10.3390/electronics6020043. DOI

Fei W., Trommer J., Lemme M.C., Mikolajick T., Heinzig A. Emerging reconfigurable electronic devices based on two-dimensional materials: A review. InfoMat. 2022;4:e12355. doi: 10.1002/inf2.12355. DOI

Feng C., Wu W., Liu H., Wang J., Wan H., Ma G., Wang H. Emerging Opportunities for 2D Materials in Neuromorphic Computing. Nanomaterials. 2023;13:2720. doi: 10.3390/nano13192720. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...