OpiumPlex is a novel microsatellite system for profiling opium poppy (Papaver somniferum L.)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34140548
PubMed Central
PMC8211840
DOI
10.1038/s41598-021-91962-1
PII: 10.1038/s41598-021-91962-1
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- analýza hlavních komponent MeSH
- chromozomy rostlin genetika MeSH
- fylogeneze MeSH
- genetické markery MeSH
- mikrosatelitní repetice genetika MeSH
- Papaver genetika MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genetické markery MeSH
Opium poppy (Papaver somniferum L.) is a versatile plant exploited by the pharmaceutical and food industries. Unfortunately, it is also infamously known as a source of highly addictive narcotics, primarily heroin. Drug abuse has devastating consequences for users and also has many direct or indirect negative impacts on human society as a whole. Therefore, developing a molecular genetic tool for the individualization of opium poppy, raw opium or heroin samples could help in the fight against the drug trade by retrieving more information about the source of narcotics and linking isolated criminal cases. Bioinformatic analysis provided insight into the distribution, density and other characteristics of roughly 150 thousand microsatellite loci within the poppy genome and indicated underrepresentation of microsatellites with the desired attributes. Despite this fact, 27 polymorphic STR markers, divided into three multiplexed assays, were developed in this work. Internal validation confirmed species-specific amplification, showed that the optimal amount of DNA is within the range of 0.625-1.25 ng per reaction, and indicate relatively well balanced assays according to the metrics used. Moreover, the stutter ratio (mean + 3 SD 2.28-15.59%) and allele-specific stutters were described. The analysis of 187 individual samples led to the identification of 158 alleles in total, with a mean of 5.85 alleles and a range of 3-14 alleles per locus. Most of the alleles (151) were sequenced by the Sanger method, which enabled us to propose standardized nomenclature and create three allelic ladders. The OpiumPlex system discriminates most of the varieties from each other and pharmaceutical varieties from the others (culinary, dual and ornamental).
Zobrazit více v PubMed
Merlin MD. Archaeological evidence for the tradition of psychoactive plant use in the old world. Econ. Bot. 2003;57:295–323. doi: 10.1663/0013-0001(2003)057[0295:AEFTTO]2.0.CO;2. DOI
Stranska I, Skalicky M, Novak J, Matyasova E, Hejnak V. Analysis of selected poppy (Papaver somniferum L.) cultivars: pharmaceutically important alkaloids. Ind. Crops Prod. 2013;41:120–126. doi: 10.1016/j.indcrop.2012.04.018. DOI
Verma N, Jena SN, Shukla S, Yadav K. Genetic diversity, population structure and marker trait associations for alkaloid content and licit opium yield in India-wide collection of poppy (Papaver somniferum L.) Plant Gene. 2016;7:26–41. doi: 10.1016/j.plgene.2016.08.001. DOI
Kabera JN, Semana E, Mussa AR, He X. Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol. 2014;2:377–392.
Winzer T, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science. 2012;336:1704–1708. doi: 10.1126/science.1220757. PubMed DOI
United Nations Office on Drugs and Crime. World Drug Report 2019 (2019).
Odell LR, Skopec J, McCluskey A. Isolation and identification of unique marker compounds from the Tasmanian poppy Papaver somniferum N. Forensic Sci. Int. 2008;175:202–208. doi: 10.1016/j.forsciint.2007.07.002. PubMed DOI
Balayssac S, et al. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR. Forensic Sci. Int. 2014;234:29–38. doi: 10.1016/j.forsciint.2013.10.025. PubMed DOI
Collins M. Illicit drug profiling: the Australian experience—revisited. Aust. J. Forensic Sci. 2017;49:591–604. doi: 10.1080/00450618.2017.1348009. DOI
Mák (Powerprint, 2010).
Benson S, Lennard C, Maynard P, Roux C. Forensic applications of isotope ratio mass spectrometry—a review. Forensic Sci. Int. 2006;157:1–22. doi: 10.1016/j.forsciint.2005.03.012. PubMed DOI
DeBord J, Pourmand A, Jantzi SC, Panicker S, Almirall J. Profiling of heroin and assignment of provenance by 87Sr/86Sr isotope ratio analysis. Inorganica Chim. Acta. 2017;468:294–299. doi: 10.1016/j.ica.2017.07.049. DOI
Marciano MA, Panicker SX, Liddil GD, Lindgren D, Sweder KS. Development of a method to extract opium poppy (Papaver somniferum L.) DNA from heroin. Sci. Rep. 2018;8:2590. doi: 10.1038/s41598-018-20996-9. PubMed DOI PMC
Guo L, et al. The opium poppy genome and morphinan production. Science. 2018;362:343–347. doi: 10.1126/science.aat4096. PubMed DOI
Lee EJ, et al. Exploiting expressed sequence tag databases for the development and characterization of gene-derived simple sequence repeat markers in the opium poppy (Papaver somniferum L.) for forensic applications. J. Forensic Sci. 2011;56:1131–1135. doi: 10.1111/j.1556-4029.2011.01810.x. PubMed DOI
Şelale H, et al. Development of EST-SSR markers for diversity and breeding studies in opium poppy. Plant Breed. 2013;132:344–351. doi: 10.1111/pbr.12059. DOI
Mičianová V, et al. Forensic application of EST-derived STR markers in opium poppy. Biologia. 2017;72:587. doi: 10.1515/biolog-2017-0076. DOI
Vašek J, et al. New EST-SSR markers for individual genotyping of opium poppy cultivars (Papaver somniferum L.) Plants. 2020;9:10. doi: 10.3390/plants9010010. PubMed DOI PMC
Celik I, Gultekin V, Allmer J, Doganlar S, Frary A. Development of genomic simple sequence repeat markers in opium poppy by next-generation sequencing. Mol. Breed. 2014;34:323–334. doi: 10.1007/s11032-014-0036-0. DOI
Young B, Roman MG, LaRue B, Gangitano D, Houston R. Evaluation of 19 short tandem repeat markers for individualization of Papaver somniferum. Sci. Justice. 2020;60:253–262. doi: 10.1016/j.scijus.2019.12.002. PubMed DOI
Labanca F, Ovesnà J, Milella L. Papaver somniferum L. taxonomy, uses and new insight in poppy alkaloid pathways. Phytochem. Rev. 2018;17:853–871. doi: 10.1007/s11101-018-9563-3. DOI
Wang X. GMATA: an integrated software package for genome-scale ssr mining, marker development and viewing. Front. Plant Sci. 2016;7:11. PubMed PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2020.
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI
Untergasser A, et al. Primer3—new capabilities and interfaces. Nucl. Acids Res. 2012;40:e115–e115. doi: 10.1093/nar/gks596. PubMed DOI PMC
Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23:1289–1291. doi: 10.1093/bioinformatics/btm091. PubMed DOI
Vallone PM, Butler JM. AutoDimer: a screening tool for primer-dimer and hairpin structures. Biotechniques. 2004;37:226–231. doi: 10.2144/04372ST03. PubMed DOI
Brownstein MJ, Carpten JD, Smith JR. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques. 1996;20:1004–1010. doi: 10.2144/96206st01. PubMed DOI
Benbouza H, Jacquemin J-M, Baudoin J-P, Mergeai G. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol. Agron. Soc. Environ. 2006;5:374–380.
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999;41:95–98.
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Gill P, et al. Considerations from the European DNA profiling group (EDNAP) concerning STR nomenclature. Forensic Sci. Int. 1997 doi: 10.1016/S0379-0738(97)00111-4. PubMed DOI
Olaisen B, et al. DNA recommendations 1997 of the International Society for Forensic Genetics. Vox Sang. 1998;74:61–63. doi: 10.1046/j.1423-0410.1998.7410061.x. PubMed DOI
Gusmão L, et al. DNA commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis. Forensic Sci. Int. 2006;157:187–197. doi: 10.1016/j.forsciint.2005.04.002. PubMed DOI
Butler JM. Advanced Topics in Forensic DNA Typing: Methodology. Elsevier Academic Press; 2011.
Young B, Faris T, Armogida L. A nomenclature for sequence-based forensic DNA analysis. Forensic Sci. Int. Genet. 2019;42:14–20. doi: 10.1016/j.fsigen.2019.06.001. PubMed DOI
Houston R, Birck M, Hughes-Stamm S, Gangitano D. Developmental and internal validation of a novel 13 loci STR multiplex method for Cannabis sativa DNA profiling. Leg. Med. 2017;26:33–40. doi: 10.1016/j.legalmed.2017.03.001. PubMed DOI
Ludeman MJ, et al. Developmental validation of GlobalFilerTM PCR amplification kit: a 6-dye multiplex assay designed for amplification of casework samples. Int. J. Legal Med. 2018;132:1555–1573. doi: 10.1007/s00414-018-1817-5. PubMed DOI PMC
Debernardi A, et al. One year variability of peak heights, heterozygous balance and inter-locus balance for the DNA positive control of AmpFSTR© Identifiler© STR kit. Forensic Sci. Int. Genet. 2011;5:43–49. doi: 10.1016/j.fsigen.2010.01.020. PubMed DOI
Kelly H, Bright J-A, Curran JM, Buckleton J. Modelling heterozygote balance in forensic DNA profiles. Forensic Sci. Int. Genet. 2012;6:729–734. doi: 10.1016/j.fsigen.2012.08.002. PubMed DOI
Leclair B, Frégeau CJ, Bowen KL, Fourney RM. Systematic analysis of stutter percentages and allele peak height and peak area ratios at heterozygous STR loci for forensic casework and database samples. J. Forensic Sci. 2004;49:13. PubMed
Brookes C, Bright J-A, Harbison S, Buckleton J. Characterising stutter in forensic STR multiplexes. Forensic Sci. Int. Genet. 2012;6:58–63. doi: 10.1016/j.fsigen.2011.02.001. PubMed DOI
Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007;16:1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x. PubMed DOI
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI
Chessel D, Dufour AB, Thioulouse J. The ade4 package—I: one-table methods. R News. 2004;4:6.
Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Soft. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI
Lucas, A. amap: Another Multidimensional Analysis Package (2019).
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI
Linacre A, et al. ISFG: recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations. Forensic Sci. Int. Genet. 2011;5:501–505. doi: 10.1016/j.fsigen.2010.10.017. PubMed DOI
Ott A, Trautschold B, Sandhu D. Using microsatellites to understand the physical distribution of recombination on soybean chromosomes. PLoS ONE. 2011;6:e22306. doi: 10.1371/journal.pone.0022306. PubMed DOI PMC
Henderson IR. Control of meiotic recombination frequency in plant genomes. Curr. Opin. Plant Biol. 2012;15:6. doi: 10.1016/j.pbi.2012.09.002. PubMed DOI
Mieulet D, et al. Unleashing meiotic crossovers in crops. Nat. Plants. 2018;4:1010–1016. doi: 10.1038/s41477-018-0311-x. PubMed DOI
Valverde L, et al. Nomenclature proposal and SNPSTR haplotypes for 7 new Cannabis sativa L. STR loci. Forensic Sci. Int. Genet. 2014;13:185–186. doi: 10.1016/j.fsigen.2014.08.002. PubMed DOI
Eichmann C, Berger B, Parson W. A proposed nomenclature for 15 canine-specific polymorphic STR loci for forensic purposes. Int. J. Legal Med. 2004;118:249–266. doi: 10.1007/s00414-004-0452-5. PubMed DOI
Lavania UC, Srivastava S. Quantitative delineation of karyotype variation in Papaver as a measure of phylogenetic differentiation and origin. Curr. Sci. 1999;77:7.
Guo F. Development of a 24-locus multiplex system to incorporate the core loci in the Combined DNA Index System (CODIS) and the European Standard Set (ESS) Forensic Sci. Int. 2014 doi: 10.1016/j.fsigen.2013.07.007. PubMed DOI
Gill P, Sparkes R, Kimpton C. Development of guidelines to designate alleles using an STR multiplex system. Forensic Sci. Int. 1997;89:185–197. doi: 10.1016/S0379-0738(97)00131-X. PubMed DOI
Ciavaglia S, Linacre A. OzPythonPlex_An optimised forensic STR multiplex assay set for the Australasian carpet python (Morelia spilota) Forensic Sci. Int. Genet. 2018;34:231–248. doi: 10.1016/j.fsigen.2018.03.002. PubMed DOI
Budowle B, Eisenberg AJ, van Daal A. Validity of low copy number typing and applications to forensic science. Croat. Med. J. 2009;50:207–217. doi: 10.3325/cmj.2009.50.207. PubMed DOI PMC
Caragine T, et al. Validation of testing and interpretation protocols for low template DNA samples using AmpFℓSTR® identifiler®. Croat. Med. J. 2009;50:250–267. doi: 10.3325/cmj.2009.50.250. PubMed DOI PMC
Kelly H, Bright J-A, Buckleton JS, Curran JM. Identifying and modelling the drivers of stutter in forensic DNA profiles. Aust. J. Forensic Sci. 2014;46:194–203. doi: 10.1080/00450618.2013.808697. DOI
Butler JM. Advanced Topics in Forensic DNA Typing: Interpretation. Elsevier Academic Press; 2014.
DUS Guidance. https://www.upov.int/resource/en/dus_guidance.html.
Kameníková L. Poppy variety sokol (white-seed type) Czech J. Genet. Plant Breed. 2005;41:79–80. doi: 10.17221/6077-CJGPB. DOI
Kameníková L, Vrbovský V. White-seeded poppy varieties Orel and Racek. Czech J. Genet. Plant Breed. 2009;45:37–38. doi: 10.17221/5/2009-CJGPB. DOI
Li Q, et al. Gene clustering and copy number variation in alkaloid metabolic pathways of opium poppy. Nat. Commun. 2020;11:1190. doi: 10.1038/s41467-020-15040-2. PubMed DOI PMC
Meos A, Saks L, Raal A. Content of alkaloids in ornamental Papaver somniferum L. cultivars growing in Estonia. <bibarticledoi></bibarticledoi>. P. EST. ACAD. SCI. 2017;66(1):34–39. doi: 10.3176/proc.2017.1.04. DOI
Vrbovský V. Poppy variety Orfeus. Czech Journal of Genetics and Plant Breeding. 2009;45(No. 1):35–36. doi: 10.17221/3/2009-CJGPB. DOI
Vrbovský, V. New registered variety of poppy ‘Opex’. In: Collection of conference Prosperující olejniny, 228-229 (2015).
Matyášová, E. Variabilita genových zdrojů máku (Papaver somniferum L.) (Czech University of Life Sciences Prague, 2010).
Central Institute for Supervising and Testing in Agriculture. Recommended List of Plant Varieties 2006-2021. http://eagri.cz/public/web/en/ukzuz/portal/plant-varieties/publications/recommended-list-of-plant-varieties/.