• This record comes from PubMed

Site selective C-H functionalization of Mitragyna alkaloids reveals a molecular switch for tuning opioid receptor signaling efficacy

. 2021 Jun 22 ; 12 (1) : 3858. [epub] 20210622

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
R01 DA046487 NIDA NIH HHS - United States
P30 CA008748 NCI NIH HHS - United States
R21 DA045884 NIDA NIH HHS - United States
R21 AA026949 NIAAA NIH HHS - United States
R21 DA034106 NIDA NIH HHS - United States
R33 DA045884 NIDA NIH HHS - United States

Links

PubMed 34158473
PubMed Central PMC8219695
DOI 10.1038/s41467-021-23736-2
PII: 10.1038/s41467-021-23736-2
Knihovny.cz E-resources

Mitragynine (MG) is the most abundant alkaloid component of the psychoactive plant material "kratom", which according to numerous anecdotal reports shows efficacy in self-medication for pain syndromes, depression, anxiety, and substance use disorders. We have developed a synthetic method for selective functionalization of the unexplored C11 position of the MG scaffold (C6 position in indole numbering) via the use of an indole-ethylene glycol adduct and subsequent iridium-catalyzed borylation. Through this work we discover that C11 represents a key locant for fine-tuning opioid receptor signaling efficacy. 7-Hydroxymitragynine (7OH), the parent compound with low efficacy on par with buprenorphine, is transformed to an even lower efficacy agonist by introducing a fluorine substituent in this position (11-F-7OH), as demonstrated in vitro at both mouse and human mu opioid receptors (mMOR/hMOR) and in vivo in mouse analgesia tests. Low efficacy opioid agonists are of high interest as candidates for generating safer opioid medications with mitigated adverse effects.

See more in PubMed

Gassaway MM, Rives M-L, Kruegel AC, Javitch JA, Sames D. The atypical antidepressant and neurorestorative agent tianeptine is a μ-opioid receptor agonist. Transl. Psychiatry. 2014;4:e411–e411. doi: 10.1038/tp.2014.30. PubMed DOI PMC

Kruegel AC, Rakshit S, Li X, Sames D. Constructing Iboga alkaloids via C–H bond functionalization: examination of the direct and catalytic union of heteroarenes and isoquinuclidine alkenes. J. Org. Chem. 2015;80:2062–2071. doi: 10.1021/jo5018102. PubMed DOI

Gassaway MM, et al. Deconstructing the Iboga alkaloid skeleton: potentiation of FGF2-induced glial cell line-derived neurotrophic factor release by a novel compound. ACS Chem. Biol. 2016;11:77–87. doi: 10.1021/acschembio.5b00678. PubMed DOI

Marton S, et al. Ibogaine administration modifies GDNF and BDNF expression in brain regions involved in mesocorticolimbic and nigral dopaminergic circuits. Front. Pharmacol. 2019;10:193. doi: 10.3389/fphar.2019.00193. PubMed DOI PMC

Adkins JE, Boyer EW, McCurdy CR. Mitragyna speciosa, a psychoactive tree from Southeast Asia with opioid activity. Curr. Top. Med. Chem. 2011;11:1165–1175. doi: 10.2174/156802611795371305. PubMed DOI

Kruegel AC, Grundmann O. The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology. 2018;134:108–120. doi: 10.1016/j.neuropharm.2017.08.026. PubMed DOI

Swogger MT, et al. Experiences of kratom users: a qualitative analysis. J. Psychoactive Drugs. 2015;47:360–367. doi: 10.1080/02791072.2015.1096434. PubMed DOI

DEA 3 Factor Analysis for mitragynine and 7-hydroxymitragynine https://www.regulations.gov/document?D=DEA-2016-0015-0004 (August 2016).

Swogger MT, Walsh Z. Kratom use and mental health: a systematic review. Drug Alcohol Depend. 2018;183:134–140. doi: 10.1016/j.drugalcdep.2017.10.012. PubMed DOI

Fluyau D, Revadigar N. Biochemical benefits, diagnosis, and clinical risks evaluation of kratom. Front. Psychiatry. 2017;8:62. doi: 10.3389/fpsyt.2017.00062. PubMed DOI PMC

Chakraborty S, Majumdar S. Natural products for the treatment of pain: chemistry and pharmacology of salvinorin A, mitragynine, and collybolide. Biochemistry. 2021;60:1381–1400. doi: 10.1021/acs.biochem.0c00629. PubMed DOI PMC

Wilson LL, et al. Kratom alkaloids, natural and semi-synthetic, show less physical dependence and ameliorate opioid withdrawal. Cell Mol. Neurobiol. 2021;41:1131–1143. doi: 10.1007/s10571-020-01034-7. PubMed DOI PMC

Takayama H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chem. Pharm. Bull. 2004;52:916–928. doi: 10.1248/cpb.52.916. PubMed DOI

Takayama H, et al. New procedure to mask the 2,3-π bond of the indole nucleus and its application to the preparation of potent opioid receptor agonists with a corynanthe skeleton. Org. Lett. 2006;8:5705–5708. doi: 10.1021/ol062173k. PubMed DOI

Kruegel AC, et al. Synthetic and receptor signaling explorations of the Mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J. Am. Chem. Soc. 2016;138:6754–6764. doi: 10.1021/jacs.6b00360. PubMed DOI PMC

Váradi A, et al. Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with Mu agonism and delta antagonism, which do not recruit β-arrestin-2. J. Med. Chem. 2016;59:8381–8397. doi: 10.1021/acs.jmedchem.6b00748. PubMed DOI PMC

Kruegel AC, et al. 7-Hydroxymitragynine is an active metabolite of Mitragynine and a key mediator of its analgesic effects. ACS Cent. Sci. 2019;5:992–1001. doi: 10.1021/acscentsci.9b00141. PubMed DOI PMC

Macko E, Weisbach JA, Douglas B. Some observations on the pharmacology of mitragynine. Arch. Int. Pharmacodyn. Ther. 1972;198:145–161. PubMed

Hemby SE, McIntosh S, Leon F, Cutler SJ, McCurdy CR. Abuse liability and therapeutic potential of the Mitragyna speciosa (kratom) alkaloids mitragynine and 7-hydroxymitragynine: kratom abuse liability. Addict. Biol. 2019;24:874–885. doi: 10.1111/adb.12639. PubMed DOI

Yue K, Kopajtic TA, Katz JL. Abuse liability of mitragynine assessed with a self-administration procedure in rats. Psychopharmacology. 2018;235:2823–2829. doi: 10.1007/s00213-018-4974-9. PubMed DOI

Volkow ND, Collins FS. The role of science in addressing the opioid crisis. N. Engl. J. Med. 2017;377:391–394. doi: 10.1056/NEJMsr1706626. PubMed DOI

Majumdar S, Devi LA. Strategy for making safer opioids bolstered. Nature. 2018;553:286–288. doi: 10.1038/d41586-018-00045-1. PubMed DOI

Samuels BA, et al. The behavioral effects of the antidepressant tianeptine require the Mu-opioid receptor. Neuropsychopharmacology. 2017;42:2052–2063. doi: 10.1038/npp.2017.60. PubMed DOI PMC

Takayama H, et al. The first total synthesis of (−)-mitragynine, an analgesic indole alkaloid in Mitragyna speciosa. Tetrahedron Lett. 1995;36:9337–9340. doi: 10.1016/0040-4039(95)02022-H. DOI

Ma J, Yin W, Zhou H, Liao X, Cook JM. General approach to the total synthesis of 9-methoxy-substituted indole alkaloids: synthesis of mitragynine, as well as 9-methoxygeissoschizol and 9-methoxy-Nb-methylgeissoschizol. J. Org. Chem. 2009;74:264–273. doi: 10.1021/jo801839t. PubMed DOI PMC

Kerschgens IP, et al. Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea-catalysed Pictet–Spengler reaction. Chem. Commun. 2012;48:12243. doi: 10.1039/c2cc37023a. PubMed DOI

Kim J, Schneekloth JS, Sorensen EJ. A chemical synthesis of 11-methoxy mitragynine pseudoindoxyl featuring the interrupted Ugi reaction. Chem. Sci. 2012;3:2849. doi: 10.1039/c2sc20669b. PubMed DOI PMC

Sun X, Ma D. Organocatalytic approach for the syntheses of corynantheidol, dihydrocorynantheol, protoemetinol, protoemetine, and mitragynine. Chem. Asian J. 2011;6:2158–2165. doi: 10.1002/asia.201100219. PubMed DOI

Matsumoto K, et al. Orally active opioid / dual agonist MGM-16, a derivative of the indole alkaloid Mitragynine, exhibits potent antiallodynic effect on neuropathic pain in mice. J. Pharmacol. Exp. Ther. 2014;348:383–392. doi: 10.1124/jpet.113.208108. PubMed DOI PMC

Godula K. C–H bond functionalization in complex organic synthesis. Science. 2006;312:67–72. doi: 10.1126/science.1114731. PubMed DOI

Pastine SJ, Gribkov DV, Sames D. sp3 C−H bond arylation directed by amidine protecting group: α-arylation of pyrrolidines and piperidines. J. Am. Chem. Soc. 2006;128:14220–14221. doi: 10.1021/ja064481j. PubMed DOI

Guo P, Joo JM, Rakshit S, Sames D. C–H arylation of pyridines: high regioselectivity as a consequence of the electronic character of C–H bonds and heteroarene ring. J. Am. Chem. Soc. 2011;133:16338–16341. doi: 10.1021/ja206022p. PubMed DOI PMC

Genovino J, Sames D, Hamann LG, Touré BB. Accessing drug metabolites via transition-metal catalyzed C−H oxidation: the liver as synthetic inspiration. Angew. Chem. Int. Ed. 2016;55:14218–14238. doi: 10.1002/anie.201602644. PubMed DOI

Lane BS, Brown MA, Sames D. Direct palladium-catalyzed C-2 and C-3 arylation of indoles: a mechanistic rationale for regioselectivity. J. Am. Chem. Soc. 2005;127:8050–8057. doi: 10.1021/ja043273t. PubMed DOI

Goikhman R, Jacques TL, Sames D. C−H bonds as ubiquitous functionality: a general approach to complex arylated pyrazoles via sequential regioselective C-arylation and N-alkylation enabled by SEM-group transposition. J. Am. Chem. Soc. 2009;131:3042–3048. doi: 10.1021/ja8096114. PubMed DOI PMC

Wang X, Lane BS, Sames D. Direct C-arylation of free (NH)-indoles and pyrroles catalyzed by Ar−Rh(III) complexes assembled in situ. J. Am. Chem. Soc. 2005;127:4996–4997. doi: 10.1021/ja050279p. PubMed DOI

He J, Wasa M, Chan KSL, Shao Q, Yu J-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 2017;117:8754–8786. doi: 10.1021/acs.chemrev.6b00622. PubMed DOI PMC

McMurray L, O’Hara F, Gaunt MJ. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 2011;40:1885–1898. doi: 10.1039/c1cs15013h. PubMed DOI

Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 2016;45:546–576. doi: 10.1039/C5CS00628G. PubMed DOI

Yang L, Huang H. Transition-metal-catalyzed direct addition of unactivated C–H bonds to polar unsaturated bonds. Chem. Rev. 2015;115:3468–3517. doi: 10.1021/cr500610p. PubMed DOI

Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 2016;45:2900–2936. doi: 10.1039/C6CS00075D. PubMed DOI

Mukai K, et al. Bioinspired chemical synthesis of monomeric and dimeric stephacidin A congeners. Nat. Chem. 2017;10:38–44. doi: 10.1038/nchem.2862. PubMed DOI PMC

Kerschgens I, Rovira AR, Sarpong R. Total synthesis of (−)-xishacorene B from (R)-carvone using a C–C activation strategy. J. Am. Chem. Soc. 2018;140:9810–9813. doi: 10.1021/jacs.8b05832. PubMed DOI

Roque JB, Kuroda Y, Göttemann LT, Sarpong R. Deconstructive fluorination of cyclic amines by carbon–carbon cleavage. Science. 2018;361:171–174. doi: 10.1126/science.aat6365. PubMed DOI PMC

Liao K, et al. Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature. 2017;551:609–613. doi: 10.1038/nature24641. PubMed DOI

Larsen MA, Hartwig JF. Iridium-catalyzed C–H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism. J. Am. Chem. Soc. 2014;136:4287–4299. doi: 10.1021/ja412563e. PubMed DOI

Preshlock SM, et al. A traceless directing group for C–H borylation. Angew. Chem. Int. Ed. 2013;52:12915–12919. doi: 10.1002/anie.201306511. PubMed DOI PMC

Murphy JM, Liao X, Hartwig JF. Meta halogenation of 1,3-disubstituted arenes via iridium-catalyzed arene borylation. J. Am. Chem. Soc. 2007;129:15434–15435. doi: 10.1021/ja076498n. PubMed DOI

Paul S, et al. Ir-catalyzed functionalization of 2-substituted indoles at the 7-position: nitrogen-directed aromatic borylation. J. Am. Chem. Soc. 2006;128:15552–15553. doi: 10.1021/ja0631652. PubMed DOI

Homer JA, Sperry J. A short synthesis of the endogenous plant metabolite 7-hydroxyoxindole-3-acetic acid (7-OH-OxIAA) using simultaneous C–H borylations. Tetrahedron Lett. 2014;55:5798–5800. doi: 10.1016/j.tetlet.2014.08.104. DOI

Leitch JA, Bhonoah Y, Frost CG. Beyond C2 and C3: transition-metal-catalyzed C–H functionalization of indole. ACS Catal. 2017;7:5618–5627. doi: 10.1021/acscatal.7b01785. DOI

Feng Y, et al. Total synthesis of verruculogen and fumitremorgin A enabled by ligand-controlled C–H borylation. J. Am. Chem. Soc. 2015;137:10160–10163. doi: 10.1021/jacs.5b07154. PubMed DOI PMC

Ikeda M, Tamura Y. 3-Haloindolenines—versatile intermediates in the indole chemistry. Heterocycles. 1980;14:867–888. doi: 10.3987/R-1980-06-0867. DOI

Vadola PA, Sames D. Catalytic coupling of arene C–H bonds and alkynes for the synthesis of coumarins: substrate scope and application to the development of neuroimaging agents. J. Org. Chem. 2012;77:7804–7814. doi: 10.1021/jo3006842. PubMed DOI PMC

Yang Y, Li R, Zhao Y, Zhao D, Shi Z. Cu-catalyzed direct C6-arylation of indoles. J. Am. Chem. Soc. 2016;138:8734–8737. doi: 10.1021/jacs.6b05777. PubMed DOI

Yang G, et al. Pd(II)-catalyzed meta-C–H olefination, arylation, and acetoxylation of indolines using a U-shaped template. J. Am. Chem. Soc. 2014;136:10807–10813. doi: 10.1021/ja505737x. PubMed DOI

Leitch JA, McMullin CL, Mahon MF, Bhonoah Y, Frost CG. Remote C6-selective ruthenium-catalyzed C–H alkylation of indole derivatives via σ-activation. ACS Catal. 2017;7:2616–2623. doi: 10.1021/acscatal.7b00038. DOI

Gribble GW, Johnson JL, Saulnier MG. Stereoselective reduction of 1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine with sodium borohydride in trifluoeoacetic acid. Heterocycles. 1981;16:2109–2114. doi: 10.3987/R-1981-12-2109. DOI

Okada N, Misawa K, Kitajima M. Preparation of ethylene glycol adducts at 2,3-positions of indoles with hypervalent iodine. Heterocycles. 2007;74:461–472. doi: 10.3987/COM-07-S(W)57. DOI

Saito Y, Segawa Y, Itami K. para-C–H borylation of benzene derivatives by a bulky iridium catalyst. J. Am. Chem. Soc. 2015;137:5193–5198. doi: 10.1021/jacs.5b02052. PubMed DOI

Litvinas ND, Fier PS, Hartwig JF. A general strategy for the perfluoroalkylation of arenes and arylbromides by using arylboronate esters and [(phen)CuRF] Angew. Chem. Int. Ed. 2012;51:536–539. doi: 10.1002/anie.201106668. PubMed DOI PMC

Eastabrook AS, Wang C, Davison EK, Sperry J. A procedure for transforming indoles into indolequinones. J. Org. Chem. 2015;80:1006–1017. doi: 10.1021/jo502509s. PubMed DOI

Meyer-Eppler G, et al. Cheap and easy synthesis of highly functionalized (Het)aryl iodides via the aromatic Finkelstein reaction. Synthesis. 2014;46:1085–1090. doi: 10.1055/s-0033-1338598. DOI

Cooper T, Novak A, Humphreys LD, Walker MD, Woodward S. User-friendly methylation of aryl and vinyl halides and pseudohalides with DABAL-Me3. Adv. Synth. Catal. 2006;348:686–690. doi: 10.1002/adsc.200505405. DOI

Wang B, Sun H-X, Sun Z-H. A general and efficient Suzuki-Miyaura cross-coupling protocol using weak base and no water: the essential role of acetate. Eur. J. Org. Chem. 2009;2009:3688–3692. doi: 10.1002/ejoc.200900538. DOI

Suresh AS, Baburajan P, Ahmed M. Synthesis of primary amides by aminocarbonylation of aryl/hetero halides using non-gaseous NH3 and CO sources. Tetrahedron Lett. 2015;56:4864–4867. doi: 10.1016/j.tetlet.2015.06.054. DOI

Ramnauth J, Bhardwaj N, Renton P, Rakhit S, Maddaford SP. The room-temperature palladium-catalyzed cyanation of aryl bromides and iodides with tri-t-butylphosphine as ligand. Synlett. 2003;2003:2237–2239.

Fier PS, Luo J, Hartwig JF. Copper-mediated fluorination of arylboronate esters. identification of a copper(III) fluoride complex. J. Am. Chem. Soc. 2013;135:2552–2559. doi: 10.1021/ja310909q. PubMed DOI PMC

Taylor NJ, et al. Derisking the Cu-mediated 18F-fluorination of heterocyclic positron emission tomography radioligands. J. Am. Chem. Soc. 2017;139:8267–8276. doi: 10.1021/jacs.7b03131. PubMed DOI

Furuya T, Ritter T. Fluorination of boronic acids mediated by silver(I) triflate. Org. Lett. 2009;11:2860–2863. doi: 10.1021/ol901113t. PubMed DOI

Tang P, Wang W, Ritter T. Deoxyfluorination of phenols. J. Am. Chem. Soc. 2011;133:11482–11484. doi: 10.1021/ja2048072. PubMed DOI PMC

Furuya T, Strom AE, Ritter T. Silver-mediated fluorination of functionalized aryl stannanes. J. Am. Chem. Soc. 2009;131:1662–1663. doi: 10.1021/ja8086664. PubMed DOI

Liu S, Scotti JS, Kozmin SA. Emulating the logic of monoterpenoid alkaloid biogenesis to access a skeletally diverse chemical library. J. Org. Chem. 2013;78:8645–8654. doi: 10.1021/jo401262v. PubMed DOI PMC

Movassaghi M, Schmidt MA, Ashenhurst JA. Stereoselective oxidative rearrangement of 2-aryl tryptamine derivatives. Org. Lett. 2008;10:4009–4012. doi: 10.1021/ol8015176. PubMed DOI

Ishikawa H, Takayama H, Aimi N. Dimerization of indole derivatives with hypervalent iodines(III): a new entry for the concise total synthesis of rac- and meso-chimonanthines. Tetrahedron Lett. 2002;43:5637–5639. doi: 10.1016/S0040-4039(02)01137-1. DOI

Jiang LI, et al. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J. Biol. Chem. 2007;282:10576–10584. doi: 10.1074/jbc.M609695200. PubMed DOI PMC

Kenakin T. A scale of agonism and allosteric modulation for assessment of selectivity, bias, and receptor mutation. Mol. Pharm. 2017;92:414–424. doi: 10.1124/mol.117.108787. PubMed DOI

Gillis A, et al. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci. Signal. 2020;13:eaaz3140. doi: 10.1126/scisignal.aaz3140. PubMed DOI

Stoeber M, et al. Agonist-selective recruitment of engineered protein probes and of GRK2 by opioid receptors in living cells. eLife. 2020;9:e54208. doi: 10.7554/eLife.54208. PubMed DOI PMC

Gutridge AM, et al. G protein-biased kratom-alkaloids and synthetic carfentanil-amide opioids as potential treatments for alcohol use disorder. Br. J. Pharm. 2020;177:1497–1513. doi: 10.1111/bph.14913. PubMed DOI PMC

Matsumoto K, et al. Antinociceptive effect of 7-hydroxymitragynine in mice: Discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa. Life Sci. 2004;74:2143–2155. doi: 10.1016/j.lfs.2003.09.054. PubMed DOI

Matsumoto K, et al. Involvement of μ-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa. Eur. J. Pharmacol. 2006;549:63–70. doi: 10.1016/j.ejphar.2006.08.013. PubMed DOI

Henningfield JE, et al. Risk of death associated with kratom use compared to opioids. Preventive Med. 2019;128:105851. doi: 10.1016/j.ypmed.2019.105851. PubMed DOI

Schmid CL, et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell. 2017;171:1165–1175.e13. doi: 10.1016/j.cell.2017.10.035. PubMed DOI PMC

Johnson TA, et al. Identification of the first marine-derived opioid receptor “balanced” agonist with a signaling profile that resembles the endorphins. ACS Chem. Neurosci. 2017;8:473–485. doi: 10.1021/acschemneuro.6b00167. PubMed DOI PMC

Hill R, et al. The novel μ-opioid receptor agonist PZM21 depresses respiration and induces tolerance to antinociception: PZM21 depresses respiration. Br. J. Pharmacol. 2018;175:2653–2661. doi: 10.1111/bph.14224. PubMed DOI PMC

Kliewer A, et al. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nat. Commun. 2019;10:367. doi: 10.1038/s41467-018-08162-1. PubMed DOI PMC

Kliewer A, et al. Morphine-induced respiratory depression is independent of β‐arrestin2 signalling. Br. J. Pharmacol. 2020;177:2923–2931. doi: 10.1111/bph.15004. PubMed DOI PMC

Conibear AE, Kelly E. A biased view of μ-opioid receptors? Mol. Pharm. 2019;96:542–549. doi: 10.1124/mol.119.115956. PubMed DOI PMC

Faouzi A, et al. Synthesis and pharmacology of a novel μ–δ opioid receptor heteromer-selective agonist based on the carfentanyl template. J. Med. Chem. 2020;63:13618–13637. doi: 10.1021/acs.jmedchem.0c00901. PubMed DOI PMC

Uprety R, et al. Controlling opioid receptor functional selectivity by targeting distinct subpockets of the orthosteric site. eLife. 2021;10:e56519. doi: 10.7554/eLife.56519. PubMed DOI PMC

Pergolizzi J, et al. Current knowledge of buprenorphine and its unique pharmacological profile. Pain Pract. 2010;10:428–450. doi: 10.1111/j.1533-2500.2010.00378.x. PubMed DOI

Saref A, et al. Self-reported prevalence and severity of opioid and kratom (Mitragyna speciosa korth.) side effects. J. Ethnopharmacol. 2019;238:111876. doi: 10.1016/j.jep.2019.111876. PubMed DOI

Garcia-Romeu A, Cox DJ, Smith KE, Dunn KE, Griffiths RR. Kratom (Mitragyna speciosa): user demographics, use patterns, and implications for the opioid epidemic. Drug Alcohol Depend. 2020;208:107849. doi: 10.1016/j.drugalcdep.2020.107849. PubMed DOI PMC

Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 2015;6:48–67. doi: 10.1021/cn500256e. PubMed DOI PMC

Váradi A, et al. Synthesis of carfentanil amide opioids using the Ugi multicomponent reaction. ACS Chem. Neurosci. 2015;6:1570–1577. doi: 10.1021/acschemneuro.5b00137. PubMed DOI PMC

Schuller AGP, et al. Retention of heroin and morphine–6β–glucuronide analgesia in a new line of mice lacking exon 1 of MOR–1. Nat. Neurosci. 1999;2:151–156. doi: 10.1038/5706. PubMed DOI

Majumdar S, et al. Generation of novel radiolabeled opiates through site-selective iodination. Bioorg. Med. Chem. Lett. 2011;21:4001–4004. doi: 10.1016/j.bmcl.2011.05.008. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...