Site selective C-H functionalization of Mitragyna alkaloids reveals a molecular switch for tuning opioid receptor signaling efficacy

. 2021 Jun 22 ; 12 (1) : 3858. [epub] 20210622

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34158473

Grantová podpora
R01 DA046487 NIDA NIH HHS - United States
P30 CA008748 NCI NIH HHS - United States
R21 DA045884 NIDA NIH HHS - United States
R21 AA026949 NIAAA NIH HHS - United States
R21 DA034106 NIDA NIH HHS - United States
R33 DA045884 NIDA NIH HHS - United States

Odkazy

PubMed 34158473
PubMed Central PMC8219695
DOI 10.1038/s41467-021-23736-2
PII: 10.1038/s41467-021-23736-2
Knihovny.cz E-zdroje

Mitragynine (MG) is the most abundant alkaloid component of the psychoactive plant material "kratom", which according to numerous anecdotal reports shows efficacy in self-medication for pain syndromes, depression, anxiety, and substance use disorders. We have developed a synthetic method for selective functionalization of the unexplored C11 position of the MG scaffold (C6 position in indole numbering) via the use of an indole-ethylene glycol adduct and subsequent iridium-catalyzed borylation. Through this work we discover that C11 represents a key locant for fine-tuning opioid receptor signaling efficacy. 7-Hydroxymitragynine (7OH), the parent compound with low efficacy on par with buprenorphine, is transformed to an even lower efficacy agonist by introducing a fluorine substituent in this position (11-F-7OH), as demonstrated in vitro at both mouse and human mu opioid receptors (mMOR/hMOR) and in vivo in mouse analgesia tests. Low efficacy opioid agonists are of high interest as candidates for generating safer opioid medications with mitigated adverse effects.

Zobrazit více v PubMed

Gassaway MM, Rives M-L, Kruegel AC, Javitch JA, Sames D. The atypical antidepressant and neurorestorative agent tianeptine is a μ-opioid receptor agonist. Transl. Psychiatry. 2014;4:e411–e411. doi: 10.1038/tp.2014.30. PubMed DOI PMC

Kruegel AC, Rakshit S, Li X, Sames D. Constructing Iboga alkaloids via C–H bond functionalization: examination of the direct and catalytic union of heteroarenes and isoquinuclidine alkenes. J. Org. Chem. 2015;80:2062–2071. doi: 10.1021/jo5018102. PubMed DOI

Gassaway MM, et al. Deconstructing the Iboga alkaloid skeleton: potentiation of FGF2-induced glial cell line-derived neurotrophic factor release by a novel compound. ACS Chem. Biol. 2016;11:77–87. doi: 10.1021/acschembio.5b00678. PubMed DOI

Marton S, et al. Ibogaine administration modifies GDNF and BDNF expression in brain regions involved in mesocorticolimbic and nigral dopaminergic circuits. Front. Pharmacol. 2019;10:193. doi: 10.3389/fphar.2019.00193. PubMed DOI PMC

Adkins JE, Boyer EW, McCurdy CR. Mitragyna speciosa, a psychoactive tree from Southeast Asia with opioid activity. Curr. Top. Med. Chem. 2011;11:1165–1175. doi: 10.2174/156802611795371305. PubMed DOI

Kruegel AC, Grundmann O. The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology. 2018;134:108–120. doi: 10.1016/j.neuropharm.2017.08.026. PubMed DOI

Swogger MT, et al. Experiences of kratom users: a qualitative analysis. J. Psychoactive Drugs. 2015;47:360–367. doi: 10.1080/02791072.2015.1096434. PubMed DOI

DEA 3 Factor Analysis for mitragynine and 7-hydroxymitragynine https://www.regulations.gov/document?D=DEA-2016-0015-0004 (August 2016).

Swogger MT, Walsh Z. Kratom use and mental health: a systematic review. Drug Alcohol Depend. 2018;183:134–140. doi: 10.1016/j.drugalcdep.2017.10.012. PubMed DOI

Fluyau D, Revadigar N. Biochemical benefits, diagnosis, and clinical risks evaluation of kratom. Front. Psychiatry. 2017;8:62. doi: 10.3389/fpsyt.2017.00062. PubMed DOI PMC

Chakraborty S, Majumdar S. Natural products for the treatment of pain: chemistry and pharmacology of salvinorin A, mitragynine, and collybolide. Biochemistry. 2021;60:1381–1400. doi: 10.1021/acs.biochem.0c00629. PubMed DOI PMC

Wilson LL, et al. Kratom alkaloids, natural and semi-synthetic, show less physical dependence and ameliorate opioid withdrawal. Cell Mol. Neurobiol. 2021;41:1131–1143. doi: 10.1007/s10571-020-01034-7. PubMed DOI PMC

Takayama H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chem. Pharm. Bull. 2004;52:916–928. doi: 10.1248/cpb.52.916. PubMed DOI

Takayama H, et al. New procedure to mask the 2,3-π bond of the indole nucleus and its application to the preparation of potent opioid receptor agonists with a corynanthe skeleton. Org. Lett. 2006;8:5705–5708. doi: 10.1021/ol062173k. PubMed DOI

Kruegel AC, et al. Synthetic and receptor signaling explorations of the Mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J. Am. Chem. Soc. 2016;138:6754–6764. doi: 10.1021/jacs.6b00360. PubMed DOI PMC

Váradi A, et al. Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with Mu agonism and delta antagonism, which do not recruit β-arrestin-2. J. Med. Chem. 2016;59:8381–8397. doi: 10.1021/acs.jmedchem.6b00748. PubMed DOI PMC

Kruegel AC, et al. 7-Hydroxymitragynine is an active metabolite of Mitragynine and a key mediator of its analgesic effects. ACS Cent. Sci. 2019;5:992–1001. doi: 10.1021/acscentsci.9b00141. PubMed DOI PMC

Macko E, Weisbach JA, Douglas B. Some observations on the pharmacology of mitragynine. Arch. Int. Pharmacodyn. Ther. 1972;198:145–161. PubMed

Hemby SE, McIntosh S, Leon F, Cutler SJ, McCurdy CR. Abuse liability and therapeutic potential of the Mitragyna speciosa (kratom) alkaloids mitragynine and 7-hydroxymitragynine: kratom abuse liability. Addict. Biol. 2019;24:874–885. doi: 10.1111/adb.12639. PubMed DOI

Yue K, Kopajtic TA, Katz JL. Abuse liability of mitragynine assessed with a self-administration procedure in rats. Psychopharmacology. 2018;235:2823–2829. doi: 10.1007/s00213-018-4974-9. PubMed DOI

Volkow ND, Collins FS. The role of science in addressing the opioid crisis. N. Engl. J. Med. 2017;377:391–394. doi: 10.1056/NEJMsr1706626. PubMed DOI

Majumdar S, Devi LA. Strategy for making safer opioids bolstered. Nature. 2018;553:286–288. doi: 10.1038/d41586-018-00045-1. PubMed DOI

Samuels BA, et al. The behavioral effects of the antidepressant tianeptine require the Mu-opioid receptor. Neuropsychopharmacology. 2017;42:2052–2063. doi: 10.1038/npp.2017.60. PubMed DOI PMC

Takayama H, et al. The first total synthesis of (−)-mitragynine, an analgesic indole alkaloid in Mitragyna speciosa. Tetrahedron Lett. 1995;36:9337–9340. doi: 10.1016/0040-4039(95)02022-H. DOI

Ma J, Yin W, Zhou H, Liao X, Cook JM. General approach to the total synthesis of 9-methoxy-substituted indole alkaloids: synthesis of mitragynine, as well as 9-methoxygeissoschizol and 9-methoxy-Nb-methylgeissoschizol. J. Org. Chem. 2009;74:264–273. doi: 10.1021/jo801839t. PubMed DOI PMC

Kerschgens IP, et al. Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea-catalysed Pictet–Spengler reaction. Chem. Commun. 2012;48:12243. doi: 10.1039/c2cc37023a. PubMed DOI

Kim J, Schneekloth JS, Sorensen EJ. A chemical synthesis of 11-methoxy mitragynine pseudoindoxyl featuring the interrupted Ugi reaction. Chem. Sci. 2012;3:2849. doi: 10.1039/c2sc20669b. PubMed DOI PMC

Sun X, Ma D. Organocatalytic approach for the syntheses of corynantheidol, dihydrocorynantheol, protoemetinol, protoemetine, and mitragynine. Chem. Asian J. 2011;6:2158–2165. doi: 10.1002/asia.201100219. PubMed DOI

Matsumoto K, et al. Orally active opioid / dual agonist MGM-16, a derivative of the indole alkaloid Mitragynine, exhibits potent antiallodynic effect on neuropathic pain in mice. J. Pharmacol. Exp. Ther. 2014;348:383–392. doi: 10.1124/jpet.113.208108. PubMed DOI PMC

Godula K. C–H bond functionalization in complex organic synthesis. Science. 2006;312:67–72. doi: 10.1126/science.1114731. PubMed DOI

Pastine SJ, Gribkov DV, Sames D. sp3 C−H bond arylation directed by amidine protecting group: α-arylation of pyrrolidines and piperidines. J. Am. Chem. Soc. 2006;128:14220–14221. doi: 10.1021/ja064481j. PubMed DOI

Guo P, Joo JM, Rakshit S, Sames D. C–H arylation of pyridines: high regioselectivity as a consequence of the electronic character of C–H bonds and heteroarene ring. J. Am. Chem. Soc. 2011;133:16338–16341. doi: 10.1021/ja206022p. PubMed DOI PMC

Genovino J, Sames D, Hamann LG, Touré BB. Accessing drug metabolites via transition-metal catalyzed C−H oxidation: the liver as synthetic inspiration. Angew. Chem. Int. Ed. 2016;55:14218–14238. doi: 10.1002/anie.201602644. PubMed DOI

Lane BS, Brown MA, Sames D. Direct palladium-catalyzed C-2 and C-3 arylation of indoles: a mechanistic rationale for regioselectivity. J. Am. Chem. Soc. 2005;127:8050–8057. doi: 10.1021/ja043273t. PubMed DOI

Goikhman R, Jacques TL, Sames D. C−H bonds as ubiquitous functionality: a general approach to complex arylated pyrazoles via sequential regioselective C-arylation and N-alkylation enabled by SEM-group transposition. J. Am. Chem. Soc. 2009;131:3042–3048. doi: 10.1021/ja8096114. PubMed DOI PMC

Wang X, Lane BS, Sames D. Direct C-arylation of free (NH)-indoles and pyrroles catalyzed by Ar−Rh(III) complexes assembled in situ. J. Am. Chem. Soc. 2005;127:4996–4997. doi: 10.1021/ja050279p. PubMed DOI

He J, Wasa M, Chan KSL, Shao Q, Yu J-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 2017;117:8754–8786. doi: 10.1021/acs.chemrev.6b00622. PubMed DOI PMC

McMurray L, O’Hara F, Gaunt MJ. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 2011;40:1885–1898. doi: 10.1039/c1cs15013h. PubMed DOI

Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 2016;45:546–576. doi: 10.1039/C5CS00628G. PubMed DOI

Yang L, Huang H. Transition-metal-catalyzed direct addition of unactivated C–H bonds to polar unsaturated bonds. Chem. Rev. 2015;115:3468–3517. doi: 10.1021/cr500610p. PubMed DOI

Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 2016;45:2900–2936. doi: 10.1039/C6CS00075D. PubMed DOI

Mukai K, et al. Bioinspired chemical synthesis of monomeric and dimeric stephacidin A congeners. Nat. Chem. 2017;10:38–44. doi: 10.1038/nchem.2862. PubMed DOI PMC

Kerschgens I, Rovira AR, Sarpong R. Total synthesis of (−)-xishacorene B from (R)-carvone using a C–C activation strategy. J. Am. Chem. Soc. 2018;140:9810–9813. doi: 10.1021/jacs.8b05832. PubMed DOI

Roque JB, Kuroda Y, Göttemann LT, Sarpong R. Deconstructive fluorination of cyclic amines by carbon–carbon cleavage. Science. 2018;361:171–174. doi: 10.1126/science.aat6365. PubMed DOI PMC

Liao K, et al. Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature. 2017;551:609–613. doi: 10.1038/nature24641. PubMed DOI

Larsen MA, Hartwig JF. Iridium-catalyzed C–H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism. J. Am. Chem. Soc. 2014;136:4287–4299. doi: 10.1021/ja412563e. PubMed DOI

Preshlock SM, et al. A traceless directing group for C–H borylation. Angew. Chem. Int. Ed. 2013;52:12915–12919. doi: 10.1002/anie.201306511. PubMed DOI PMC

Murphy JM, Liao X, Hartwig JF. Meta halogenation of 1,3-disubstituted arenes via iridium-catalyzed arene borylation. J. Am. Chem. Soc. 2007;129:15434–15435. doi: 10.1021/ja076498n. PubMed DOI

Paul S, et al. Ir-catalyzed functionalization of 2-substituted indoles at the 7-position: nitrogen-directed aromatic borylation. J. Am. Chem. Soc. 2006;128:15552–15553. doi: 10.1021/ja0631652. PubMed DOI

Homer JA, Sperry J. A short synthesis of the endogenous plant metabolite 7-hydroxyoxindole-3-acetic acid (7-OH-OxIAA) using simultaneous C–H borylations. Tetrahedron Lett. 2014;55:5798–5800. doi: 10.1016/j.tetlet.2014.08.104. DOI

Leitch JA, Bhonoah Y, Frost CG. Beyond C2 and C3: transition-metal-catalyzed C–H functionalization of indole. ACS Catal. 2017;7:5618–5627. doi: 10.1021/acscatal.7b01785. DOI

Feng Y, et al. Total synthesis of verruculogen and fumitremorgin A enabled by ligand-controlled C–H borylation. J. Am. Chem. Soc. 2015;137:10160–10163. doi: 10.1021/jacs.5b07154. PubMed DOI PMC

Ikeda M, Tamura Y. 3-Haloindolenines—versatile intermediates in the indole chemistry. Heterocycles. 1980;14:867–888. doi: 10.3987/R-1980-06-0867. DOI

Vadola PA, Sames D. Catalytic coupling of arene C–H bonds and alkynes for the synthesis of coumarins: substrate scope and application to the development of neuroimaging agents. J. Org. Chem. 2012;77:7804–7814. doi: 10.1021/jo3006842. PubMed DOI PMC

Yang Y, Li R, Zhao Y, Zhao D, Shi Z. Cu-catalyzed direct C6-arylation of indoles. J. Am. Chem. Soc. 2016;138:8734–8737. doi: 10.1021/jacs.6b05777. PubMed DOI

Yang G, et al. Pd(II)-catalyzed meta-C–H olefination, arylation, and acetoxylation of indolines using a U-shaped template. J. Am. Chem. Soc. 2014;136:10807–10813. doi: 10.1021/ja505737x. PubMed DOI

Leitch JA, McMullin CL, Mahon MF, Bhonoah Y, Frost CG. Remote C6-selective ruthenium-catalyzed C–H alkylation of indole derivatives via σ-activation. ACS Catal. 2017;7:2616–2623. doi: 10.1021/acscatal.7b00038. DOI

Gribble GW, Johnson JL, Saulnier MG. Stereoselective reduction of 1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine with sodium borohydride in trifluoeoacetic acid. Heterocycles. 1981;16:2109–2114. doi: 10.3987/R-1981-12-2109. DOI

Okada N, Misawa K, Kitajima M. Preparation of ethylene glycol adducts at 2,3-positions of indoles with hypervalent iodine. Heterocycles. 2007;74:461–472. doi: 10.3987/COM-07-S(W)57. DOI

Saito Y, Segawa Y, Itami K. para-C–H borylation of benzene derivatives by a bulky iridium catalyst. J. Am. Chem. Soc. 2015;137:5193–5198. doi: 10.1021/jacs.5b02052. PubMed DOI

Litvinas ND, Fier PS, Hartwig JF. A general strategy for the perfluoroalkylation of arenes and arylbromides by using arylboronate esters and [(phen)CuRF] Angew. Chem. Int. Ed. 2012;51:536–539. doi: 10.1002/anie.201106668. PubMed DOI PMC

Eastabrook AS, Wang C, Davison EK, Sperry J. A procedure for transforming indoles into indolequinones. J. Org. Chem. 2015;80:1006–1017. doi: 10.1021/jo502509s. PubMed DOI

Meyer-Eppler G, et al. Cheap and easy synthesis of highly functionalized (Het)aryl iodides via the aromatic Finkelstein reaction. Synthesis. 2014;46:1085–1090. doi: 10.1055/s-0033-1338598. DOI

Cooper T, Novak A, Humphreys LD, Walker MD, Woodward S. User-friendly methylation of aryl and vinyl halides and pseudohalides with DABAL-Me3. Adv. Synth. Catal. 2006;348:686–690. doi: 10.1002/adsc.200505405. DOI

Wang B, Sun H-X, Sun Z-H. A general and efficient Suzuki-Miyaura cross-coupling protocol using weak base and no water: the essential role of acetate. Eur. J. Org. Chem. 2009;2009:3688–3692. doi: 10.1002/ejoc.200900538. DOI

Suresh AS, Baburajan P, Ahmed M. Synthesis of primary amides by aminocarbonylation of aryl/hetero halides using non-gaseous NH3 and CO sources. Tetrahedron Lett. 2015;56:4864–4867. doi: 10.1016/j.tetlet.2015.06.054. DOI

Ramnauth J, Bhardwaj N, Renton P, Rakhit S, Maddaford SP. The room-temperature palladium-catalyzed cyanation of aryl bromides and iodides with tri-t-butylphosphine as ligand. Synlett. 2003;2003:2237–2239.

Fier PS, Luo J, Hartwig JF. Copper-mediated fluorination of arylboronate esters. identification of a copper(III) fluoride complex. J. Am. Chem. Soc. 2013;135:2552–2559. doi: 10.1021/ja310909q. PubMed DOI PMC

Taylor NJ, et al. Derisking the Cu-mediated 18F-fluorination of heterocyclic positron emission tomography radioligands. J. Am. Chem. Soc. 2017;139:8267–8276. doi: 10.1021/jacs.7b03131. PubMed DOI

Furuya T, Ritter T. Fluorination of boronic acids mediated by silver(I) triflate. Org. Lett. 2009;11:2860–2863. doi: 10.1021/ol901113t. PubMed DOI

Tang P, Wang W, Ritter T. Deoxyfluorination of phenols. J. Am. Chem. Soc. 2011;133:11482–11484. doi: 10.1021/ja2048072. PubMed DOI PMC

Furuya T, Strom AE, Ritter T. Silver-mediated fluorination of functionalized aryl stannanes. J. Am. Chem. Soc. 2009;131:1662–1663. doi: 10.1021/ja8086664. PubMed DOI

Liu S, Scotti JS, Kozmin SA. Emulating the logic of monoterpenoid alkaloid biogenesis to access a skeletally diverse chemical library. J. Org. Chem. 2013;78:8645–8654. doi: 10.1021/jo401262v. PubMed DOI PMC

Movassaghi M, Schmidt MA, Ashenhurst JA. Stereoselective oxidative rearrangement of 2-aryl tryptamine derivatives. Org. Lett. 2008;10:4009–4012. doi: 10.1021/ol8015176. PubMed DOI

Ishikawa H, Takayama H, Aimi N. Dimerization of indole derivatives with hypervalent iodines(III): a new entry for the concise total synthesis of rac- and meso-chimonanthines. Tetrahedron Lett. 2002;43:5637–5639. doi: 10.1016/S0040-4039(02)01137-1. DOI

Jiang LI, et al. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J. Biol. Chem. 2007;282:10576–10584. doi: 10.1074/jbc.M609695200. PubMed DOI PMC

Kenakin T. A scale of agonism and allosteric modulation for assessment of selectivity, bias, and receptor mutation. Mol. Pharm. 2017;92:414–424. doi: 10.1124/mol.117.108787. PubMed DOI

Gillis A, et al. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci. Signal. 2020;13:eaaz3140. doi: 10.1126/scisignal.aaz3140. PubMed DOI

Stoeber M, et al. Agonist-selective recruitment of engineered protein probes and of GRK2 by opioid receptors in living cells. eLife. 2020;9:e54208. doi: 10.7554/eLife.54208. PubMed DOI PMC

Gutridge AM, et al. G protein-biased kratom-alkaloids and synthetic carfentanil-amide opioids as potential treatments for alcohol use disorder. Br. J. Pharm. 2020;177:1497–1513. doi: 10.1111/bph.14913. PubMed DOI PMC

Matsumoto K, et al. Antinociceptive effect of 7-hydroxymitragynine in mice: Discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa. Life Sci. 2004;74:2143–2155. doi: 10.1016/j.lfs.2003.09.054. PubMed DOI

Matsumoto K, et al. Involvement of μ-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa. Eur. J. Pharmacol. 2006;549:63–70. doi: 10.1016/j.ejphar.2006.08.013. PubMed DOI

Henningfield JE, et al. Risk of death associated with kratom use compared to opioids. Preventive Med. 2019;128:105851. doi: 10.1016/j.ypmed.2019.105851. PubMed DOI

Schmid CL, et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell. 2017;171:1165–1175.e13. doi: 10.1016/j.cell.2017.10.035. PubMed DOI PMC

Johnson TA, et al. Identification of the first marine-derived opioid receptor “balanced” agonist with a signaling profile that resembles the endorphins. ACS Chem. Neurosci. 2017;8:473–485. doi: 10.1021/acschemneuro.6b00167. PubMed DOI PMC

Hill R, et al. The novel μ-opioid receptor agonist PZM21 depresses respiration and induces tolerance to antinociception: PZM21 depresses respiration. Br. J. Pharmacol. 2018;175:2653–2661. doi: 10.1111/bph.14224. PubMed DOI PMC

Kliewer A, et al. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nat. Commun. 2019;10:367. doi: 10.1038/s41467-018-08162-1. PubMed DOI PMC

Kliewer A, et al. Morphine-induced respiratory depression is independent of β‐arrestin2 signalling. Br. J. Pharmacol. 2020;177:2923–2931. doi: 10.1111/bph.15004. PubMed DOI PMC

Conibear AE, Kelly E. A biased view of μ-opioid receptors? Mol. Pharm. 2019;96:542–549. doi: 10.1124/mol.119.115956. PubMed DOI PMC

Faouzi A, et al. Synthesis and pharmacology of a novel μ–δ opioid receptor heteromer-selective agonist based on the carfentanyl template. J. Med. Chem. 2020;63:13618–13637. doi: 10.1021/acs.jmedchem.0c00901. PubMed DOI PMC

Uprety R, et al. Controlling opioid receptor functional selectivity by targeting distinct subpockets of the orthosteric site. eLife. 2021;10:e56519. doi: 10.7554/eLife.56519. PubMed DOI PMC

Pergolizzi J, et al. Current knowledge of buprenorphine and its unique pharmacological profile. Pain Pract. 2010;10:428–450. doi: 10.1111/j.1533-2500.2010.00378.x. PubMed DOI

Saref A, et al. Self-reported prevalence and severity of opioid and kratom (Mitragyna speciosa korth.) side effects. J. Ethnopharmacol. 2019;238:111876. doi: 10.1016/j.jep.2019.111876. PubMed DOI

Garcia-Romeu A, Cox DJ, Smith KE, Dunn KE, Griffiths RR. Kratom (Mitragyna speciosa): user demographics, use patterns, and implications for the opioid epidemic. Drug Alcohol Depend. 2020;208:107849. doi: 10.1016/j.drugalcdep.2020.107849. PubMed DOI PMC

Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 2015;6:48–67. doi: 10.1021/cn500256e. PubMed DOI PMC

Váradi A, et al. Synthesis of carfentanil amide opioids using the Ugi multicomponent reaction. ACS Chem. Neurosci. 2015;6:1570–1577. doi: 10.1021/acschemneuro.5b00137. PubMed DOI PMC

Schuller AGP, et al. Retention of heroin and morphine–6β–glucuronide analgesia in a new line of mice lacking exon 1 of MOR–1. Nat. Neurosci. 1999;2:151–156. doi: 10.1038/5706. PubMed DOI

Majumdar S, et al. Generation of novel radiolabeled opiates through site-selective iodination. Bioorg. Med. Chem. Lett. 2011;21:4001–4004. doi: 10.1016/j.bmcl.2011.05.008. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...