Mitochondrial Tumor Suppressors-The Energetic Enemies of Tumor Progression
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
34183354
PubMed Central
PMC9397617
DOI
10.1158/0008-5472.can-21-0518
PII: 0008-5472.CAN-21-0518
Knihovny.cz E-resources
- MeSH
- Cell Differentiation genetics MeSH
- Energy Metabolism * MeSH
- Humans MeSH
- Genes, Mitochondrial * MeSH
- Mitochondria genetics metabolism MeSH
- Cell Transformation, Neoplastic genetics metabolism MeSH
- Neoplasms genetics metabolism pathology MeSH
- Disease Progression MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Genes, Tumor Suppressor * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Tumor suppressors represent a critical line of defense against tumorigenesis. Their mechanisms of action and the pathways they are involved in provide important insights into cancer progression, vulnerabilities, and treatment options. Although nuclear and cytosolic tumor suppressors have been extensively investigated, relatively little is known about tumor suppressors localized within the mitochondria. However, recent research has begun to uncover the roles of these important proteins in suppressing tumorigenesis. Here, we review this newly developing field and summarize available information on mitochondrial tumor suppressors.
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424. PubMed
Hofmarcher T, Lindgren P, Wilking N, Jönsson B. The cost of cancer in Europe 2018. Eur J Cancer 2020;129:41–9. PubMed
Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971;68:820–3. PubMed PMC
Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, et al. . A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986;323:643–6. PubMed
Dryja TP, Friend S, Weinberg RA. Genetic sequences that predispose to retinoblastoma and osteosarcoma. Symp Fundam Cancer Res 1986;39:115–9. PubMed
Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995;81:323–30. PubMed
Linzer DI, Levine AJ. Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979;17:43–52. PubMed
Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979;278:261–3. PubMed
Kress M, May E, Cassingena R, May P. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol 1979;31:472–83. PubMed PMC
Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989;57:1083–93. PubMed
Levine AJ, Finlay CA, Hinds PW. P53 is a tumor suppressor gene. Cell 2004;116:S67–9. PubMed
Peitsaro N, Polianskyte Z, Tuimala J, Porn-Ares I, Liobikas J, Speer O, et al. . Evolution of a family of metazoan active-site-serine enzymes from penicillin-binding proteins: a novel facet of the bacterial legacy. BMC Evol Biol 2008;8:26. PubMed PMC
Smith TS, Southan C, Ellington K, Campbell D, Tew DG, Debouck C. Identification, genomic organization, and mRNA expression of LACTB, encoding a serine beta-lactamase-like protein with an amino-terminal transmembrane domain. Genomics 2001;78:12–4. PubMed
Keckesova Z, Donaher JL, De Cock J, Freinkman E, Lingrell S, Bachovchin DA, et al. . LACTB is a tumor suppressor that modulates lipid metabolism and cell state. Nature 2017;543:681–6. PubMed PMC
Polianskyte Z, Peitsaro N, Dapkunas A, Liobikas J, Soliymani R, Lalowski M, et al. . LACTB is a filament-forming protein localized in mitochondria. Proc Natl Acad Sci U S A 2009;106:18960–95. PubMed PMC
Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, et al. . A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008;134:112–23. PubMed PMC
Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, et al. . The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present. J Biol Chem 2001;276:43958–69. PubMed
Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, et al. . Variations in DNA elucidate molecular networks that cause disease. Nature 2008;452:429–35. PubMed PMC
Yang X, Deignan JL, Qi H, Zhu J, Qian S, Zhong J, et al. . Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat Genet 2009;41:415–23. PubMed PMC
Lu JB, Yao X, Xiu J, Y H. MicroRNA-125b-5p attenuates lipopolysaccharide-induced monocyte chemoattractant protein-1 production by targeting inhibiting LACTB in THP-1 macrophages. Arch Biochem Biophys 2016;590:64–71. PubMed
Zhang J, He Y, Yu Y, Chen X, Cui G, Wang W, et al. . Upregulation of miR-374a promotes tumor metastasis and progression by downregulating LACTB and predicts unfavorable prognosis in breast cancer. Cancer Med 2018;7:3351–62. PubMed PMC
Li HT, Dong DY, Liu Q, Xu YQ, Chen L. Overexpression of LACTB, a mitochondrial protein that inhibits proliferation and invasion in glioma cells. Oncol Res 2019;27:423–9. PubMed PMC
Xu W, Yu M, Qin J, Luo Y, Zhong M. LACTB regulates PIK3R3 to promote autophagy and inhibit EMT and proliferation through the PI3K/AKT/mTOR signaling pathway in colorectal cancer. Cancer Manag Res 2020;12:5181–200. PubMed PMC
Xue C, He Y, Zhu W, Chen X, Yu Y, Hu Q, et al. . Low expression of LACTB promotes tumor progression and predicts poor prognosis in hepatocellular carcinoma. Am J Transl Res 2018;10:4152–62. PubMed PMC
Zeng K, Chen X, Hu X, Liu X, Xu T, Sun H, et al. . LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation. Oncogene 2018;37:5534–51. PubMed
Ma Y, Wang L, He F, Yang J, Ding Y, Ge S, et al. . LACTB suppresses melanoma progression by attenuating PP1A and YAP interaction. Cancer Lett 2021;506:67–82. PubMed
Du J, Zhang P, Zhao X, He J, Xu Y, Zou Q, et al. . MicroRNA-351-5p mediates skeletal myogenesis by directly targeting lactamase-beta and is regulated by lnc-mg. FASEB J 2019;33:1911–26. PubMed
Yang X, Zhang D, Liu S, Li X, Hu W, Han C. KLF4 suppresses the migration of hepatocellular carcinoma by transcriptionally upregulating monoglyceride lipase. Am J Cancer Res 2018;8:1019–29. PubMed PMC
Xie J, Peng Y, Chen X, Li Q, Jian B, Wen Z, et al. . LACTB mRNA expression is increased in pancreatic adenocarcinoma and high expression indicates a poor prognosis. PLoS One 2021;16:e0245908. PubMed PMC
Peng LX, Wang MD, Xie P, Yang JP, Sun R, Zheng LS, et al. . LACTB promotes metastasis of nasopharyngeal carcinoma via activation of ERBB3/EGFR-ERK signaling resulting in unfavorable patient survival. Cancer Lett 2021;498:165–77. PubMed
Hancock CN, Liu W, Alvord WG, Phang JM. Co-regulation of mitochondrial respiration by proline dehydrogenase/oxidase and succinate. Amino Acids 2016;48:859–72. PubMed PMC
Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature 1997;389:300–5. PubMed
Raimondi I, Ciribilli Y, Monti P, Bisio A, Pollegioni L, Fronza G, et al. . P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements. PLoS One 2013;8:e69152. PubMed PMC
Maxwell SA, Kochevar GJ. Identification of a p53-response element in the promoter of the proline oxidase gene. Biochem Biophys Res Commun 2008;369:308–13. PubMed
Liu Y, Borchert GL, Donald SP, Diwan BA, Anver M, Phang JM. Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res 2009;69:6414–22. PubMed PMC
Liu W, Zabirnyk O, Wang H, Shiao YH, Nickerson ML, Khalil S, et al. . miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer. Oncogene 2010;29:4914–24. PubMed PMC
Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, et al. . Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A 2012;109:8983–8. PubMed PMC
Maxwell SA, Davis GE. Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines. Proc Natl Acad Sci U S A 2000;97:13009–14. PubMed PMC
Maxwell SA, Rivera A. Proline oxidase induces apoptosis in tumor cells, and its expression is frequently absent or reduced in renal carcinomas. J Biol Chem 2003;278:9784–9. PubMed
Hu CA, Donald SP, Yu J, Lin WW, Liu Z, Steel G, et al. . Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol Cell Biochem 2007;295:85–92. PubMed
Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D, et al. . Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 2001;61:1810–5. PubMed
Liu Y, Borchert GL, Surazynski A, Phang JM. Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene 2008;27:6729–37. PubMed PMC
Liu Y, Borchert GL, Donald SP, Surazynski A, Hu CA, Weydert CJ, et al. . MnSOD inhibits proline oxidase-induced apoptosis in colorectal cancer cells. Carcinogenesis 2005;26:1335–42. PubMed
Rivera A, Maxwell SA. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 2005;280:29346–54. PubMed
Liu Y, Borchert GL, Surazynski A, Hu CA, Phang JM. Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling. Oncogene 2006;25:5640–7. PubMed
Pandhare J, Cooper SK, Phang JM. Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor gamma-dependent and -independent mechanisms. J Biol Chem 2006;281:2044–52. PubMed
Kim KY, Ahn JH, Cheon HG. Apoptotic action of peroxisome proliferator-activated receptor-gamma activation in human non small-cell lung cancer is mediated via proline oxidase-induced reactive oxygen species formation. Mol Pharmacol 2007;72:674–85. PubMed
Wang J, Lv X, Shi J, Hu X, Du Y. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells. Biomed Environ Sci 2011;24:391–9. PubMed
Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994;107:1183–8. PubMed
Nagano T, Nakashima A, Onishi K, Kawai K, Awai Y, Kinugasa M, et al. . Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. J Cell Sci 2017;130:1413–20. PubMed
Liu W, Glunde K, Bhujwalla ZM, Raman V, Sharma A, Phang JM. Proline oxidase promotes tumor cell survival in hypoxic tumor microenvironments. Cancer Res 2012;72:3677–86. PubMed PMC
Pandhare J, Donald SP, Cooper SK, Phang JM. Regulation and function of proline oxidase under nutrient stress. J Cell Biochem 2009;107:759–68. PubMed PMC
Olivares O, Mayers JR, Gouirand V, Torrence ME, Gicquel T, Borge L, et al. . Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun 2017;8:16031. PubMed PMC
Liu Y, Mao C, Wang M, Liu N, Ouyang L, Liu S, et al. . Cancer progression is mediated by proline catabolism in non-small cell lung cancer. Oncogene 2020;39:2358–76. PubMed
Dik E, Naamati A, Asraf H, Lehming N, Pines O. Human fumarate hydratase is dual localized by an alternative transcription initiation mechanism. Traffic 2016;17:720–32. PubMed
Yogev O, Naamati A, Pines O. Fumarase: a paradigm of dual targeting and dual localized functions. FEBS J 2011;278:4230–42. PubMed
Castro-Vega LJ, Buffet A, De Cubas AA, Cascón A, Menara M, Khalifa E, et al. . Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet 2014;23:2440–6. PubMed
Clark GR, Sciacovelli M, Gaude E, Walsh DM, Kirby G, Simpson MA, et al. . Germline FH mutations presenting with pheochromocytoma. J Clin Endocrinol Metab 2014;99:E2046–50. PubMed
Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, et al. . Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 2002;30:406–10. PubMed
Alam NA, Olpin S, Rowan A, Kelsell D, Leigh IM, Tomlinson IP, et al. . Missense mutations in fumarate hydratase in multiple cutaneous and uterine leiomyomatosis and renal cell cancer. J Mol Diagn 2005;7:437–43. PubMed PMC
Schmidt C, Sciacovelli M, Frezza C. Fumarate hydratase in cancer: a multifaceted tumor suppressor. Semin Cell Dev Biol 2020;98:15–25. PubMed PMC
Alderson NL, Wang Y, Blatnik M, Frizzell N, Walla MD, Lyons TJ, et al. . S-(2 -Succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate. Arch Biochem Biophys 2006;450:1–8. PubMed
Blatnik M, Frizzell N, Thorpe SR, Baynes JW. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by fumarate in diabetes. Diabetes 2008;57:41. PubMed PMC
Ternette N, Yang M, Laroyia M, Kitagawa M, O'Flaherty L, Wolhulter K, et al. . Inhibition of mitochondrial aconitase by succination in fumarate hydratase deficiency. Cell Rep 2013;3:689–700. PubMed PMC
Kerins MA-O, Vashisht AA, Liang BX, Duckworth SJ, Praslicka BJ, Wohlschlegel JA, et al. . Fumarate mediates a chronic proliferative signal in fumarate hydratase-inactivated cancer cells by increasing transcription and translation of ferritin genes. Mol Cell Biol 2017;37:e00079–17. PubMed PMC
Adam J, Hatipoglu E, O'Flaherty L, Ternette N, Sahgal N, Lockstone H, et al. . Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 2011;20:524–37. PubMed PMC
Bardella C, El-Bahrawy M, Frizzell N, Adam J, Ternette N, Hatipoglu E, et al. . Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status. J Pathol 2011;225:4–11. PubMed
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 2015;3:83–92. PubMed PMC
Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung YL, et al. . HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 2005;8:143–53. PubMed
Bardella C, Olivero M, Lorenzato A, Geuna M, Adam J, O'Flaherty L, et al. . Cells lacking the fumarase tumor suppressor are protected from apoptosis through a hypoxia-inducible factor-independent, AMPK-dependent mechanism. Mol Cell Biol 2012;32:3081–94. PubMed PMC
Pollard P, Wortham N, Barclay E, Alam A, Elia G, Manek S, et al. . Evidence of increased microvessel density and activation of the hypoxia pathway in tumors from the hereditary leiomyomatosis and renal cell cancer syndrome. J Pathol 2005;205:41–9. PubMed
Costa B, Dettori D, Lorenzato A, Bardella C, Coltella N, Martino C, et al. . Fumarase tumor suppressor gene and MET oncogene cooperate in upholding transformation and tumorigenesis. FASEB J 2010;24:2680–8. PubMed
Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC, et al. . Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumors which result from germline FH and SDH mutations. Hum Mol Genet 2005;14:2231–9. PubMed
Sudarshan S, Sourbier C, Kong HS, Block K, V Romero VA, Yang Y, et al. . Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol 2009;29:4080–90. PubMed PMC
Tong WH, Sourbier C, Kovtunovych G, Jeong SY, Vira M, Ghosh M, et al. . The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell 2011;20:315–27. PubMed PMC
Tyrakis PA, Yurkovich ME, Sciacovelli M, Papachristou EK, Bridges HR, Gaude E, et al. . Fumarate hydratase loss causes combined respiratory chain defects. Cell Rep 2017;21:1036–47. PubMed PMC
Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. . Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 2012;26:1326–38. PubMed PMC
Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, da Costa AS, Gaude E, et al. . Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 2016;537:544–7. PubMed PMC
He X, Yan B, Liu S, Jia J, Lai W, Xin X, et al. . Chromatin remodeling factor LSH drives cancer progression by suppressing the activity of fumarate hydratase. Cancer Res 2016;76:5743–55. PubMed PMC
Jiang Y, Qian X, Shen J, Wang Y, Li X, Liu R, et al. . Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nat Cell Biol 2015;17:1158–68. PubMed PMC
Yogev O, Yogev O, Singer E, Shaulian E, Goldberg M, Fox TD, et al. . Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLoS Biol 2010;8:e1000328. PubMed PMC
Leshets M, Ramamurthy D, Lisby M, Lehming N, Pines O. Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2. Curr Genet 2018;64:697–712. PubMed
Sulkowski PL, Sundaram RK, Oeck S, Corso CD, Liu Y, Noorbakhsh S, et al. . Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet 2018;50:1086–92. PubMed PMC
Johnson TI, Costa ASH, Ferguson AN, Frezza C. Fumarate hydratase loss promotes mitotic entry in the presence of DNA damage after ionising radiation. Cell Death Dis 2018;9:913. PubMed PMC
Ooi A, Wong JC, Petillo D, Roossien D, Perrier-Trudova V, Whitten D, et al. . An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 2011;20:511–23. PubMed
Zheng L, Cardaci S, Jerby L, MacKenzie ED, Sciacovelli M, Johnson TI, et al. . Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun 2015;6:6001. PubMed PMC
Sourbier C, Ricketts CJ, Matsumoto S, Crooks DR, Liao PJ, Mannes PZ, et al. . Targeting ABL1-mediated oxidative stress adaptation in fumarate hydratase-deficient cancer. Cancer Cell 2014;26:840–50. PubMed PMC
Gonçalves E, Sciacovelli M, Costa ASH, Tran MGB, Johnson TI, Machado D, et al. . Post-translational regulation of metabolism in fumarate hydratase deficient cancer cells. Metab Eng 2018;45:149–57. PubMed PMC
Yang Y, Lane AN, Ricketts CJ, Sourbier C, Wei MH, Shuch B, et al. . Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma. PLoS One 2013;8:e72179. PubMed PMC
Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, et al. . Reductive carboxylation supports growth in tumor cells with defective mitochondria. Nature 2011;481:385–8. PubMed PMC
Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 2017;66:789–800. PubMed PMC
Boettcher M, Lawson A, Ladenburger V, Fredebohm J, Wolf J, Hoheisel JD, et al. . High throughput synthetic lethality screen reveals a tumorigenic role of adenylate cyclase in fumarate hydratase-deficient cancer cells. BMC Genomics 2014;15:158. PubMed PMC
Yu HE, Wang F, Yu F, Zeng ZL, Wang Y, Lu YX, et al. . Suppression of fumarate hydratase activity increases the efficacy of cisplatin-mediated chemotherapy in gastric cancer. Cell Death Dis 2019;10:413. PubMed PMC
Leshets M, Silas YBH, Lehming N, Pines O. Fumarase: From the TCA Cycle to DNA damage response and tumor suppression. Front Mol Biosci 2018;5:68. PubMed PMC
Yang M, Soga T, Pollard PJ, Adam J. The emerging role of fumarate as an oncometabolite. Front Oncol 2012;2:85. PubMed PMC
Ye X, Li M, Hou T, Gao T, Zhu WG, Yang Y. Sirtuins in glucose and lipid metabolism. Oncotarget 2017;8:1845–59. PubMed PMC
George J, Ahmad N. Mitochondrial sirtuins in cancer: emerging roles and therapeutic potential. Cancer Res 2016;76:2500–6. PubMed PMC
Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 2018;28:643–61. PubMed PMC
Du Y, Hu H, Hua C, Du K, Wei T. Tissue distribution, subcellular localization, and enzymatic activity analysis of human SIRT5 isoforms. Biochem Biophys Res Commun 2018;503:763–9. PubMed
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005;16:4623–35. PubMed PMC
Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 2002;158:647–57. PubMed PMC
Scher MB, Vaquero A, Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 2007;21:920–8. PubMed PMC
Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999;260:273–9. PubMed
Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A 2000;97:14178–82. PubMed PMC
Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000;403:795–800. PubMed
Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, et al. . Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011;334:806–9. PubMed PMC
Yu W, Denu RA, Krautkramer KA, Grindle KM, Yang DT, Asimakopoulos F, et al. . Loss of SIRT3 provides growth advantage for B cell malignancies. J Biol Chem 2016;291:3268–79. PubMed PMC
Zhang YY, Zhou LM. Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation. Biochem Biophys Res Commun 2012;423:26–31. PubMed
Xu WY, Hu QS, Qin Y, Zhang B, Liu WS, Ni QX, et al. . Zinc finger E-box-binding homeobox 1 mediates aerobic glycolysis via suppression of sirtuin 3 in pancreatic cancer. World J Gastroenterol 2018;24:4893–905. PubMed PMC
Xiao K, Jiang J, Wang W, Cao S, Zhu L, Zeng H, et al. . Sirt3 is a tumor suppressor in lung adenocarcinoma cells. Oncol Rep 2013;30:1323–8. PubMed
Wang L, Wang WY, Cao LP. SIRT3 inhibits cell proliferation in human gastric cancer through down-regulation of Notch-1. Int J Clin Exp Med 2015;8:5263–71. PubMed PMC
Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, et al. . SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010;17:41–52. PubMed PMC
Finley LWS, Carracedo A, Lee J, Souza A, Egia A, Zhang J, et al. . SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 2011;19:416–28. PubMed PMC
Bell EL, Emerling BM, Ricoult SJ, Guarente L. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011;30:2986–96. PubMed PMC
Krebs AM, Mitschke J, Lasierra LM, Schmalhofer O, Boerries M, Busch H, et al. . The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 2017;19:518–29. PubMed
Marfe G, Tafani M, Indelicato M, Sinibaldi-Salimei P, Reali V, Pucci B, et al. . Kaempferol induces apoptosis in two different cell lines via Akt inactivation, Bax and SIRT3 activation, and mitochondrial dysfunction. J Cell Biochem 2009;106:643–50. PubMed
Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008;27:6245–51. PubMed PMC
Winter JN, Jefferson LS, Kimball SR. ERK and Akt signaling pathways function through parallel mechanisms to promote mTORC1 signaling. Am J Physiol Cell Physiol 2011;300:C1172–80. PubMed PMC
Alhazzazi TY, Kamarajan P, Joo N, Huang JY, Verdin E, D'Silva NJ, et al. . Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 2011;117:1670–8. PubMed PMC
Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 2008;382:790–801. PubMed
Kamarajan P, Alhazzazi TY, Danciu T, D'Silva NJ, Verdin E, Kapila YL. Receptor-interacting protein (RIP) and Sirtuin-3 (SIRT3) are on opposite sides of anoikis and tumorigenesis. Cancer 2012;118:5800–10. PubMed PMC
George J, Nihal M, Singh CK, Zhong W, Liu X, Ahmad N. Pro-proliferative function of mitochondrial sirtuin deacetylase SIRT3 in human melanoma. J Invest Dermatol 2016;136:809–18. PubMed PMC
Choi J, Koh E, Lee YS, Lee HW, Kang HG, Yoon YE, et al. . Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma. Biochem Biophys Res Commun 2016;474:547–53. PubMed
Li S, Banck M, Mujtaba S, Zhou MM, Sugrue MM, Walsh MJ. p53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase. PLoS One 2010;5:e10486. PubMed PMC
Ahuja N, Schwer B, Carobbio S, Waltregny D, North BJ, Castronovo V, et al. . Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 2007;282:33583–92. PubMed
Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJJ, et al. . SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 2006;126:941–54. PubMed
Argmann C, Auwerx J. Insulin secretion: SIRT4 gets in on the act. Cell 2006;126:837–9. PubMed
Laurent G, German NJ, Saha AK, de Boer VCJ, Davies M, Koves TR, et al. . SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 2013;50:686–98. PubMed PMC
Anderson KA, Huynh FK, Fisher-Wellman K, Stuart JD, Peterson BS, Douros JD, et al. . SIRT4 is a lysine deacylase that controls leucine metabolism and insulin secretion. Cell Metab 2017;25:838–55. PubMed PMC
Huang G, Lai X, Chen Z, Yu Z, Zhou D, Wang P, et al. . Sirtuin-4 (SIRT4) is downregulated in hepatocellular carcinoma and associated with clinical stage. Int J Clin Exp Pathol 2016;9:6511–7.
Huang G, Cheng J, Yu F, Liu X, Yuan C, Liu C, et al. . Clinical and therapeutic significance of sirtuin-4 expression in colorectal cancer. Oncol Rep 2016;35:2801–10. PubMed
Sun H, Huang D, Liu G, Jian F, Zhu J, Zhang L. SIRT4 acts as a tumor suppressor in gastric cancer by inhibiting cell proliferation, migration, and invasion. Onco Targets Ther 2018;11:3959–68. PubMed PMC
Fu L, Dong Q, He J, Wang X, Xing J, Wang E, et al. . SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene 2017;36:2724–36. PubMed
Huang G, Cui F, Yu F, Lu H, Zhang M, Tang H, et al. . Sirtuin-4 (SIRT4) is downregulated and associated with some clinicopathological features in gastric adenocarcinoma. Biomed Pharmacother 2015;72:135–9. PubMed
Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K, et al. . SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 2013;23:450–63. PubMed PMC
Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, Rowland EA, et al. . Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 2014;159:1615–25. PubMed PMC
Perham RN. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 1991;30:8501–12. PubMed
Miyo M, Yamamoto H, Konno M, Colvin H, Nishida N, Koseki J, et al. . Tumor-suppressive function of SIRT4 in human colorectal cancer. Br J Cancer 2015;113:492–9. PubMed PMC
Lai X, Yu Z, Chen X, Huang G. SIRT4 is upregulated in Chinese patients with esophageal cancer. Int J Clin Exp Pathol 2016;9:10543–9.
Huang G, Lin Y, Zhu G. SIRT4 is upregulated in breast cancer and promotes the proliferation, migration and invasion of breast cancer cells. Int J Clin Exp Pathol 2017;10:11849–56. PubMed PMC
Jeong SM, Hwang S, Seong RH. SIRT4 regulates cancer cell survival and growth after stress. Biochem Biophys Res Commun 2016;470:251–6. PubMed
Uzhachenko R, Ivanov SV, Yarbrough WG, Shanker A, Medzhitov R, Ivanova AV. Fus1/Tusc2 is a novel regulator of mitochondrial calcium handling, Ca2+-coupled mitochondrial processes, and Ca2+-dependent NFAT and NF-κB pathways in CD4+ T cells. Antioxid Redox Signal 2014;20:1533–47. PubMed PMC
Lerman MI, Minna JD. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res 2000;60:6116–33. PubMed
Prudkin L, Behrens C, Liu DD, Zhou X, Ozburn NC, Bekele BN, et al. . Loss and reduction of FUS1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer. Clin Cancer Res 2008;14:41–7. PubMed PMC
Liang S, Zhang N, Deng Y, Chen L, Zhang Y, Zheng Z, et al. . miR-663b promotes tumor cell proliferation, migration and invasion in nasopharyngeal carcinoma through targeting TUSC2. Exp Ther Med 2017;14:1095–103. PubMed PMC
Du L, Schageman JJ, Subauste MC, Saber B, Hammond SM, Prudkin L, et al. . miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res 2009;7:1234–43. PubMed PMC
Lin J, Xu K, Gitanjali J, Roth JA, Ji L. Regulation of tumor suppressor gene FUS1 expression by the untranslated regions of mRNA in human lung cancer cells. Biochem Biophys Res Commun 2011;410:235–41. PubMed PMC
Kondo M, Ji L, Kamibayashi C, Tomizawa Y, Randle D, Sekido Y, et al. . Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to G1 arrest and growth inhibition of lung cancer cells. Oncogene 2001;20:6258–62. PubMed
Ji L, Roth JA. Tumor suppressor FUS1 signaling pathway. J Thorac Oncol 2008;3:327–30. PubMed PMC
Deng WG, Kawashima H, Wu G, Jayachandran G, Xu K, Minna JD, et al. . Synergistic tumor suppression by coexpression of FUS1 and p53 is associated with down-regulation of murine double minute-2 and activation of the apoptotic protease-activating factor 1-dependent apoptotic pathway in human non-small cell lung cancer cells. Cancer Res 2007;67:709–17. PubMed
Lin J, Sun T, Ji L, Deng W, Roth J, Minna J, et al. . Oncogenic activation of c-Abl in non-small cell lung cancer cells lacking FUS1 expression: inhibition of c-Abl by the tumor suppressor gene product Fus1. Oncogene 2007;26:6989–96. PubMed PMC
Meng J, Majidi M, Fang B, Ji L, Bekele BN, Minna JD, et al. . The tumor suppressor gene TUSC2 (FUS1) sensitizes NSCLC to the AKT inhibitor MK2206 in LKB1-dependent manner. PLoS One 2013;8:e77067. PubMed PMC
Shah U, Sharpless NE, Hayes DN. LKB1 and lung cancer: more than the usual suspects. Cancer Res 2008;68:3562–5. PubMed
Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression. Nat Rev Cancer 2009;9:563–75. PubMed PMC
Uzhachenko R, Issaeva N, Boyd K, Ivanov SV, Carbone DP, Ivanova AV. Tumor suppressor Fus1 provides a molecular link between inflammatory response and mitochondrial homeostasis. J Pathol 2012;227:456–69. PubMed
Rustin P, Munnich A, Rötig A. Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. Eur J Hum Genet 2002;10:289–91. PubMed
Rutter J, Winge DR, Schiffman JD. Succinate dehydrogenase - Assembly, regulation and role in human disease. Mitochondrion 2010;10:393–401. PubMed PMC
Farshbaf MJ. Succinate dehydrogenase in Parkinson's disease. Front Biol 2017;12:175–82.
Bayley JP, Devilee P, Taschner PE. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency. BMC Med Genet 2005;6:39. PubMed PMC
Gimenez-Roqueplo A, Favier J, Rustin P, Rieubland C, Crespin M, Nau V, et al. . Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res 2003;63:5615–21. PubMed
Kim S, Kim DH, Jung WH, Koo JS. Succinate dehydrogenase expression in breast cancer. Springerplus 2013;2:299. PubMed PMC
Apuria P, Lunt S, Väremo L, Vergnes L, Gozo M, Beach J, et al. . Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism. Cancer Metab 2014;2:21. PubMed PMC
Ishii T, Yasuda K, Akatsuka A, Hino O, Hartman PS, Ishii N. A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res 2005;65:203–9. PubMed
Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. . Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005;7:77–85. PubMed
Wagner AJ, Remillard SP, Zhang YX, Doyle LA, George S, Hornick JL. Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod Pathol 2013;26:289–94. PubMed
Astuti D, Morris M, Krona C, Abel F, Gentle D, Martinsson T, et al. . Investigation of the role of SDHB inactivation in sporadic phaeochromocytoma and neuroblastoma. Br J Cancer 2004;91:1835–41. PubMed PMC
Wang H, Chen Y, Wu G. SDHB deficiency promotes TGFbeta-mediated invasion and metastasis of colorectal cancer through transcriptional repression complex SNAIL1-SMAD3/4. Transl Oncol 2016;9:512–20. PubMed PMC
Loriot C, Burnichon N, Gadessaud N, Vescovo L, Amar L, Libe R, et al. . Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. J Clin Endocrinol Metab 2012;97:E954–62. PubMed
Killian JK, Miettinen M, Walker R, Wang Y, Zhu YJ, Waterfall1 JJ, et al. . Recurrent epimutation of SDHC in gastrointestinal stromal tumors. Sci Transl Med 2014;24:268ra177. PubMed PMC
Rosland GV, Dyrstad SE, Tusubira D, Helwa R, Tan TZ, Lotsberg ML, et al. . Epithelial to mesenchymal transition (EMT) is associated with attenuation of succinate dehydrogenase (SDH) in breast cancer through reduced expression of SDHC. Cancer Metab 2019;7:6. PubMed PMC
Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, et al. . Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000;287:848–51. PubMed
Yu W, Ni Y, Saji M, Ringel MD, Jaini R, Eng C. Cowden syndrome-associated germline succinate dehydrogenase complex subunit D (SDHD) variants cause PTEN-mediated down-regulation of autophagy in thyroid cancer cells. Hum Mol Genet 2017;26:1365–75. PubMed PMC
Populo H, Batista R, Sampaio C, Pardal J, Lopes JM, Soares P. SDHD promoter mutations are rare events in cutaneous melanomas but SDHD protein expression is downregulated in advanced cutaneous melanoma. PLoS One 2017;12:e0180392. PubMed PMC
Zhang T, Xu M, Makowski MM, Lee C, Kovacs M, Fang J, et al. . SDHD promoter mutations ablate GABP transcription factor binding in melanoma. Cancer Res 2017;77:1649–61. PubMed PMC
Seibold S, Rudroff C, Weber M, Galle J, Wanner C, Marx M. Identification of a new tumor suppressor gene located at chromosome 8p21.3–22. FASEB J 2003;17:1180–2. PubMed
Bozgeyik I, Yumrutas O, Bozgeyik E. MTUS1, a gene encoding angiotensin-II type 2 (AT2) receptor-interacting proteins, in health and disease, with special emphasis on its role in carcinogenesis. Gene 2017;626:54–63. PubMed
Di Benedetto M, Pineau P, Nouet S, Berhouet S, Seitz I, Louis S, et al. . Mutation analysis of the 8p22 candidate tumor suppressor gene ATIP/MTUS1 in hepatocellular carcinoma. Mol Cell Endocrinol 2006;252:207–15. PubMed
Wang Y, Huang Y, Liu Y, Li J, Hao Y, Yin P, et al. . Microtubule associated tumor suppressor 1 interacts with mitofusins to regulate mitochondrial morphology in endothelial cells. FASEB J 2018;32:4504–18. PubMed
Di Benedetto M, Bièche I, Deshayes F, Vacher S, Nouet S, Collura V, et al. . Structural organization and expression of human MTUS1, a candidate 8p22 tumor suppressor gene encoding a family of angiotensin II AT2 receptor-interacting proteins, ATIP. Gene 2006;380:127–36. PubMed
Wang Y, Dai X, Liu Y, Li J, Liu Z, Yin P, et al. . MTUS1 silencing promotes E-selectin production through p38 MAPK-dependent CREB ubiquitination in endothelial cells. J Mol Cell Cardiol 2016;101:1–10. PubMed
Zuern C, Heimrich J, Kaufmann R, Richter K, Settmacher U, Wanner C, et al. . Down-regulation of MTUS1 in human colon tumors. Oncol Rep 2009;23:183–9. PubMed
Li X, Liu H, Yu T, Dong Z, Tang L, Sun X. Loss of MTUS1 in gastric cancer promotes tumor growth and metastasis. Neoplasma 2014;61:128–35. PubMed
Sim J, Wi YC, Park HY, Park SY, Yoon YE, Bang S, et al. . Clinicopathological significance of MTUS1 expression in patients with renal cell carcinoma. Anticancer Res 2020;40:2961–7. PubMed
Louis SN, Chow L, Rezmann L, Krezel MA, Catt KJ, Tikellis C, et al. . Expression and function of ATIP/MTUS1 in human prostate cancer cell lines. Prostate 2010;70:1563–74. PubMed PMC
Parbin S, Pradhan N, Das L, Saha P, Deb M, Sengupta D, et al. . DNA methylation regulates microtubule-associated tumor suppressor 1 in human non-small cell lung carcinoma. Exp Cell Res 2019;374:323–32. PubMed
Gu Y, Liu S, Zhang X, Chen G, Liang H, Yu M, et al. . Oncogenic miR-19a and miR-19b co-regulate tumor suppressor MTUS1 to promote cell proliferation and migration in lung cancer. Protein Cell 2017;8:455–66. PubMed PMC
Kara M, Kaplan M, Bozgeyik I, Ozcan O, Celik OI, Bozgeyik E, et al. . MTUS1 tumor suppressor and its miRNA regulators in fibroadenoma and breast cancer. Gene 2016;587:173–7. PubMed
Lv D-B, Zhang J-Y, Gao K, Yu Z-H, Sheng W-C, Yang G, et al. . MicroRNA-765 targets MTUS1 to promote the progression of osteosarcoma via mediating ERK/EMT pathway. Eur Rev Med Pharmacol Sci 2019;23:4618–28. PubMed
Ozcan O, Kara M, Yumrutas O, Bozgeyik E, Bozgeyik I, Celik OI. MTUS1 and its targeting miRNAs in colorectal carcinoma: significant associations. Tumor Biol 2016;37:6637–45. PubMed
Ding X, Zhang N, Cai Y, Li S, Zheng C, Jin Y, et al. . Down-regulation of tumor suppressor MTUS1/ATIP is associated with enhanced proliferation, poor differentiation and poor prognosis in oral tongue squamous cell carcinoma. Mol Oncol 2012;6:73–80. PubMed PMC
Bellance N, Furt F, Melser S, Lalou C, Thoraval D, Maneta-Peyret L, et al. . Doxorubicin inhibits phosphatidylserine decarboxylase and modifies mitochondrial membrane composition in HeLa cells. Int J Mol Sci 2020;21:1317. PubMed PMC
Palka J, Oscilowska I, Szoka L. Collagen metabolism as a regulator of proline dehydrogenase/proline oxidase-dependent apoptosis/autophagy. Amino Acids 2021;4:1438–2199. PubMed PMC
Xu YQ, Long X, Han M, Huang MQ, Lu JF, Sun XD, et al. . Clinical benefit of COX-2 inhibitors in the adjuvant chemotherapy of advanced non-small cell lung cancer: a systematic review and meta-analysis. World J Clin Cases 2021;9:581–601. PubMed PMC
Jung YS, Park JI. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med 2020;52:183–91. PubMed PMC
Wheeler D, Dunn E, Harari P. Understanding resistance to EGFR inhibitors—impact on future treatment strategies. Nat Rev Clin Oncol 2010;7:493–507. PubMed PMC
Kancherla P, Daneshvar M, Sager RA, Mollapour M, Bratslavsky G. Fumarate hydratase as a therapeutic target in renal cancer. Expert Opin Ther Targets 2020;24:923–36. PubMed
Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006;5:493–506. PubMed
Gertz M, Nguyen GTT, Fischer F, Suenkel B, Schlicker C, Fränzel B, et al. . A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One 2012;7:e49761. PubMed PMC
Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, et al. . Potential adverse effects of resveratrol: a literature review. Int J Mol Sci 2020;21:2084. PubMed PMC
Pillai VB, Samant S, Sundaresan NR, Raghuraman H, Kim G, Bonner MY, et al. . Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat Commun 2015;6:6656. PubMed PMC
Pillai VB, Kanwal A, Fang YH, Sharp WW, Samant S, Arbiser J, et al. . Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget 2017;8:34082–98. PubMed PMC
Wei L, Zhou Y, Dai Q, Qiao C, Zhao L, Hui H, et al. . Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis 2013;4:e601. PubMed PMC
Marsboom G, Toth PT, Ryan JJ, Hong Z, Wu X, Fang YH, et al. . Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res 2012;110:1484–97. PubMed PMC
Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G, et al. . Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One 2012;7:e34833. PubMed PMC
Deng WG, Wu G, Ueda K, Xu K, Roth JA, Ji L. Enhancement of antitumor activity of cisplatin in human lung cancer cells by tumor suppressor FUS1. Cancer Gene Ther 2008;15:29–39. PubMed
Xiaobo C, Majidi M, Feng M, Shao R, Wang J, Zhao Y, et al. . TUSC2(FUS1)-erlotinib induced vulnerabilities in epidermal growth factor receptor(EGFR) wildtype non-small cell lung cancer(NSCLC) targeted by the repurposed drug auranofin. Sci Rep 2016;6:35741. PubMed PMC
Khatri A, Gu JJ, McKernan CM, Xu X, Pendergast AM. ABL kinase inhibition sensitizes primary lung adenocarcinomas to chemotherapy by promoting tumor cell differentiation. Oncotarget 2019;10:1874–86. PubMed PMC
Moog S, Lussey-Lepoutre C, Favier J. Epigenetic and metabolic reprogramming of SDH-deficient paragangliomas. Endocr Relat Cancer 2020;27:R451–R63. PubMed