Precise date for the Laacher See eruption synchronizes the Younger Dryas
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
European Research Council - International
PubMed
34194020
DOI
10.1038/s41586-021-03608-x
PII: 10.1038/s41586-021-03608-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Laacher See eruption (LSE) in Germany ranks among Europe's largest volcanic events of the Upper Pleistocene1,2. Although tephra deposits of the LSE represent an important isochron for the synchronization of proxy archives at the Late Glacial to Early Holocene transition3, uncertainty in the age of the eruption has prevailed4. Here we present dendrochronological and radiocarbon measurements of subfossil trees that were buried by pyroclastic deposits that firmly date the LSE to 13,006 ± 9 calibrated years before present (BP; taken as AD 1950), which is more than a century earlier than previously accepted. The revised age of the LSE necessarily shifts the chronology of European varved lakes5,6 relative to the Greenland ice core record, thereby dating the onset of the Younger Dryas to 12,807 ± 12 calibrated years BP, which is around 130 years earlier than thought. Our results synchronize the onset of the Younger Dryas across the North Atlantic-European sector, preclude a direct link between the LSE and Greenland Stadial-1 cooling7, and suggest a large-scale common mechanism of a weakened Atlantic Meridional Overturning Circulation under warming conditions8-10.
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Bremerhaven Germany
Department of Geography Birkbeck University of London London UK
Department of Geography Faculty of Science Masaryk University Brno Czech Republic
Department of Geography Johannes Gutenberg University Mainz Germany
Department of Geography University of Cambridge Cambridge UK
Department of Geosciences University of Bremen Bremen Germany
Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic
Institute of Applied Botanics and Volcanic Biology Universität Duisburg Essen Essen Germany
Institute of Biology University of Hohenheim Stuttgart Germany
Laboratory of Ion Beam Physics ETH Zurich Zurich Switzerland
Swiss Federal Research Institute WSL Birmensdorf Switzerland
Zobrazit více v PubMed
Schmincke, H.-U. in Mantle Plumes (eds Ritter, J. R. R. & Christensen, U. R.) 241–322 (Springer, 2007).
Schmincke, H.-U., Park, C. & Harms, E. Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP. Quat. Int. 61, 61–72 (1999). DOI
Lane, C. S., Blockley, S. P. E., Bronk Ramsey, C. & Lotter, A. F. Tephrochronology and absolute centennial scale synchronisation of European and Greenland records for the last glacial to interglacial transition: a case study of Soppensee and NGRIP. Quat. Int. 246, 145–156 (2011). DOI
Reinig, F. et al. Towards a dendrochronologically refined date of the Laacher See eruption around 13,000 years ago. Quat. Sci. Rev. 229, 106128 (2020). DOI
Brauer, A., Endres, C. & Negendank, J. F. W. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quat. Int. 61, 17–25 (1999). DOI
Rach, O., Brauer, A., Wilkes, H. & Sachse, D. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 7, 109–112 (2014). DOI
Baldini, J. U. L., Brown, R. J. & Mawdsley, N. Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly. Clim. Past 14, 969–990 (2018). DOI
Broecker, W. S., Peteet, D. M. & Rind, D. Does the ocean–atmosphere system have more than one stable mode of operation? Nature 315, 21–26 (1985). DOI
Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015). DOI
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018). PubMed DOI
Holasek, R. E., Self, S. & Woods, A. W. Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes. J. Geophys. Res. 101, 27635–27655 (1996). DOI
Baales, M. et al. Impact of the Late Glacial eruption of the Laacher See volcano, central Rhineland, Germany. Quat. Res. 58, 273–288 (2002). DOI
van den Bogaard, P. DOI
Textor, C., Sachs, P. M., Graf, H.-F. & Hansteen, T. H. The 12 900 years BP Laacher See eruption: estimation of volatile yields and simulation of their fate in the plume. Geol. Soc. Lon. Spec. Pub. 213, 307–328 (2003). DOI
Reinig, F. et al. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland. Quat. Sci. Rev. 186, 215–224 (2018). DOI
Reinig, F. et al. Introducing anatomical techniques to subfossil wood. Dendrochronologia 52, 146–151 (2018). DOI
Schweingruber, F. H. Tree Rings: Basics and Applications of Dendrochronology (Kluwer Academic Publishers, 1988).
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62 725–757 (2020). DOI
Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M. & Negendank, J. F. W. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci. 1, 520–523 (2008). DOI
Haflidason, H., Sejrup, H. P., Klitgaard Kristensen, D. & Johnsen, S. Coupled response of the late glacial climatic shifts of northwest Europe reflected in Greenland ice cores: evidence from the northern North Sea. Geology 23, 1059–1062 (1995). DOI
Hughen, K. A., Southon, J. R., Lehman, S. J. & Overpeck, J. T. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290, 1951–1955 (2000). PubMed DOI
Johnsen, S. J. et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313 (1992). DOI
Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014). DOI
Lane, C. S., Brauer, A., Blockley, S. P. E. & Dulski, P. Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas. Geology 41, 1251–1254 (2013). DOI
Muschitiello, F. et al. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas. Nat. Commun. 6, 8939 (2015). PubMed DOI
Obreht, I. et al. An annually resolved record of Western European vegetation response to Younger Dryas cooling. Quat. Sci. Rev. 231, 106198 (2020). DOI
Lohne, Ø. S., Mangerud, J. & Birks, H. H. Precise DOI
Brauer, A. et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329 (1999). DOI
Neugebauer, I. et al. A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany. Quat. Sci. Rev. 36, 91–102 (2012). DOI
Lotter, A. F., Eicher, U., Siegenthaler, U. & Birks, H. J. B. Late‐glacial climatic oscillations as recorded in Swiss lake sediments. J. Quat. Sci. 7, 187–204 (1992). DOI
Merkt, J. & Müller, H. Varve chronology and palynology of the Lateglacial in Northwest Germany from lacustrine sediments of Hämelsee in Lower Saxony. Quat. Int. 61, 41–59 (1999). DOI
Steffensen, J. P. et al. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, 680–684 (2008). PubMed DOI
Adolphi, F. et al. Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events. Clim. Past 14, 1755–1781 (2018). DOI
von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., & Johnsen, S. J. A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science 284, 1654–1657 (1999). DOI
Lauterbach, S. et al. Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps). J. Quat. Sci. 26, 253–267 (2011). DOI
Lohne, Ø. S., Mangerud, J. & Birks, H. H. IntCal13 calibrated ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from Kråkenes, western Norway. J. Quat. Sci. 29, 506–507 (2014). DOI
Condron, A. & Winsor, P. Meltwater routing and the Younger Dryas. Proc. Natl Acad. Sci. USA 109, 19928–19933 (2012). PubMed DOI PMC
Renssen, H. et al. Multiple causes of the Younger Dryas cold period. Nat. Geosci. 8, 946–949 (2015). DOI
Hajdas, I. et al. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 DOI
Wulf, S. et al. Tracing the Laacher See tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland. Quat. Sci. Rev. 76, 129–139 (2013). DOI
Park, C. & Schmincke, H.-U. Multistage damming of the Rhine River by tephra fallout during the 12,900 BP Plinian Laacher See Eruption (Germany). Syn-eruptive Rhine damming I. J. Volcanol. Geotherm. Res. 389, 106688 (2020). DOI
Waldmann, G. Vulkanfossilien im Laacher Bims (Gregor and Unger, 1996).
Frechen, J. Die Tuffe des Laacher Vulkangebietes als quartärgeologische Leitgesteine und Zeitmarken. Fortschr. Geol. Rheinl. Westfal. 4, 363–370 (1959).
Schweitzer, H.-J. Entstehung und Flora des Trasses im nördlichen Laachersee-Gebiet. E&G Quat. Sci. J. 9, 28–56 (1958). DOI
Street, M. Analysis of Late Palaeolithic and Mesolithic Faunal Assemblages in the Northern Rhineland, Germany. PhD thesis, Univ. Birmingham (1993).
Street, M. Ein Wald der Allerodzeit bei Miesenheim, Stadt Andernach (Neuwieder Becken). Archäologisches Korrespondenzblatt 16, 13–22 (1986).
Baales, M., Bittmann, F. & Kromer, B. Verkohlte Bäume im Trass der Laacher See-Tephra bei Kruft (Neuwieder Becken): ein Beitrag zur Datierung des Laacher See-Ereignisses und zur Vegetation der Allerød-Zeit am Mittelrhein. Archäologisches Korrespondenzblatt 28, 191–204 (1998).
Brunnacker, K., Fruth, H.-J., Juvigné, E. & Urban, B. Spätpaläolithische Funde aus Thür, Kreis Mayen-Koblenz. Archäologisches Korrespondenzblatt Mainz 12, 417–427 (1982).
Rinn, F. TSAP: time series analyses presentation. Reference manual v.3.0 (RinnTech, 1996).
Synal, H.-A., Stocker, M. & Suter, M. MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. B 259, 7–13 (2007). DOI
Wacker, L. et al. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52, 252–262 (2010). DOI
Wacker, L. et al. Radiocarbon dating to a single year by means of rapid atmospheric DOI
Němec, M., Wacker, L. & Gäggeler, H. Optimization of the graphitization process at age-1. Radiocarbon 52, 1380–1393 (2010). DOI
Sookdeo, A. et al. Quality dating: a well-defined protocol implemented at ETH for high-precision DOI
Kaiser, K. F. Beiträge zur Klimageschichte vom späten Hochglazial bis ins frühe Holozän: rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten (Ziegler, 1993).
Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008). DOI
Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009). DOI
Bird, M. I. in Encyclopedia of Quaternary Science (ed. Elias S.A.) 353–360 (Elsevier, 2013).
Holdaway, R. N., Duffy, B. & Kennedy, B. Evidence for magmatic carbon bias in PubMed DOI PMC
Kromer, B., Spurk, M., Remmele, S., Barbetti, M. & Joniello, V. Segments of atmospheric DOI
Muschitiello, F. & Wohlfarth, B. Time-transgressive environmental shifts across Northern Europe at the onset of the Younger Dryas. Quat. Sci. Rev. 109, 49–56 (2015). DOI
Engels, S. et al. Subdecadal-scale vegetation responses to a previously unknown late-Allerød climate fluctuation and Younger Dryas cooling at Lake Meerfelder Maar (Germany). J. Quat. Sci. 31, 741–752 (2016). DOI
Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015). PubMed DOI
Svensson, A. et al. Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period. Clim. Past 16, 1565–1580 (2020). DOI
Adolphi, F. & Muscheler, R. Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene – Bayesian wiggle-matching of cosmogenic radionuclide records. Clim. Past 12, 15–30 (2016). DOI
Adolphi, F. et al. Radiocarbon calibration uncertainties during the last deglaciation: insights from new floating tree-ring chronologies. Quat. Sci. Rev. 170, 98–108 (2017). DOI
Muscheler, R., Adolphi, F. & Knudsen, M. F. Assessing the differences between the IntCal and Greenland ice-core time scales for the last 14,000 years via the common cosmogenic radionuclide variations. Quat. Sci. Rev. 106, 81–87 (2014). DOI
Ruth, U., Wagenbach, D., Steffensen, J. P. & Bigler, M. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. J. Geophys. Res. 108, 4098 (2003).
Bigler, M. et al. Optimization of high-resolution continuous flow analysis for transient climate signals in ice cores. Environ. Sci. Technol. 45, 4483–4489 (2011). PubMed DOI
Mortensen, A. K., Bigler, M., Grönvold, K., Steffensen, J. P. & Johnsen, S. J. Volcanic ash layers from the Last Glacial Termination in the NGRIP ice core. J. Quat. Sci. 20, 209–219 (2005). DOI
Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013). DOI
Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685 (2018). PubMed DOI
Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ DOI
Sigl, M. et al. The WAIS Divide deep ice core WD2014 chronology – part 2: annual-layer counting (0–31 ka BP). Clim. Past 12, 769–786 (2016). DOI
Litt, T., Behre, K.-E., Meyer, K.-D., Stephan, H.-J. & Wansa, S. Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. Eiszeitalt. Ggw. Quat. Sci. J. 56, 7–65 (2007).
Riede, F. Past-forwarding ancient calamities. Pathways for making archaeology relevant in disaster risk reduction research. Humanities 6, 79 (2017). DOI
Patton, H. et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 169, 148–172 (2017). DOI
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S. & Twickler, M. S. A. 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quat. Res. 45, 109–118 (1996). DOI
Severi, M. et al. Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching. Clim. Past 3, 367–374 (2007). DOI
Reply to: Possible magmatic CO2 influence on the Laacher See eruption date